Difference between revisions of "MIPDECO"
Line 152: | Line 152: | ||
In this problem, the state variables, u, can be eliminated, resulting in a pure integer QP. The model that defines the problems without state variables is [[Media:SrcDetctElim.mod|SrcDetctElim.mod]], and the AMPL script, [[Media:Presolve.ampl|Presolve.ampl]] implements the presolve step. The calling sequence is | In this problem, the state variables, u, can be eliminated, resulting in a pure integer QP. The model that defines the problems without state variables is [[Media:SrcDetctElim.mod|SrcDetctElim.mod]], and the AMPL script, [[Media:Presolve.ampl|Presolve.ampl]] implements the presolve step. The calling sequence is | ||
− | <code> ampl | + | <code> ampl: model SrcDetctElim.mod; data MeshDep-008-1.dat; include Presolve.ampl; </code> |
for the small example, SrcDetct-MeshDep-008-1, where solver.ampl defines the solver, e.g. option solver bnb;. | for the small example, SrcDetct-MeshDep-008-1, where solver.ampl defines the solver, e.g. option solver bnb;. |
Revision as of 14:32, 20 March 2017
Mixed-Integer PDE Constrained Optimization (MIPDECO) Test Problems
This page links to sets of MIPDECO test problems written in AMPL and described in a companion report.
Each problem includes a characterization in terms of type of PDE, class of integers, type of objective, type of constraints, and discretization scheme.
A tar-ball with all ampl models, data, and command files is available here. A tar-ball with the corresponding stub.nl files is available here.
Laplace Source Inversion
Problem is to identify source to match an observed state, governed by Laplace equation with Dirichtlet boundary conditions.
Type of PDE | Laplace equation on [0,1]^2 with Dirichlet boundary conditions |
Class of Integers | Mesh-dependent & mesh-independent binary variables |
Type of Objective | Least-squares (inverse problem) with possible regularization term |
Type of Constraints | Knapsack constraint on binary variables |
Discretization | Five-point finite difference stencil |
NAME | mod file | dat file | mesh | optimal objective |
---|---|---|---|---|
SrcDetct-MeshDep-008-1 | SrcDetct.mod | MeshDep-008-1.dat | 8x8 | ??? |
SrcDetct-MeshDep-008-2 | SrcDetct.mod | MeshDep-008-2.dat | 8x8 | ??? |
SrcDetct-MeshDep-008-3 | SrcDetct.mod | MeshDep-008-3.dat | 8x8 | ??? |
SrcDetct-MeshDep-016-1 | SrcDetct.mod | MeshDep-016-1.dat | 16x16 | ??? |
SrcDetct-MeshDep-016-2 | SrcDetct.mod | MeshDep-016-2.dat | 16x16 | ??? |
SrcDetct-MeshDep-016-3 | SrcDetct.mod | MeshDep-016-3.dat | 16x16 | ??? |
SrcDetct-MeshDep-032-1 | SrcDetct.mod | MeshDep-032-1.dat | 32x32 | ??? |
SrcDetct-MeshDep-032-2 | SrcDetct.mod | MeshDep-032-2.dat | 32x32 | ??? |
SrcDetct-MeshDep-032-3 | SrcDetct.mod | MeshDep-032-3.dat | 32x32 | ??? |
SrcDetct-MeshInd-008-1 | SrcDetct.mod | MeshInd-008-1.dat | 8x8 | ??? |
SrcDetct-MeshInd-008-2 | SrcDetct.mod | MeshInd-008-2.dat | 8x8 | ??? |
SrcDetct-MeshInd-008-3 | SrcDetct.mod | MeshInd-008-3.dat | 8x8 | ??? |
SrcDetct-MeshInd-016-1 | SrcDetct.mod | MeshInd-016-1.dat | 16x16 | ??? |
SrcDetct-MeshInd-016-2 | SrcDetct.mod | MeshInd-016-2.dat | 16x16 | ??? |
SrcDetct-MeshInd-016-3 | SrcDetct.mod | MeshInd-016-3.dat | 16x16 | ??? |
SrcDetct-MeshInd-032-1 | SrcDetct.mod | MeshInd-032-1.dat | 32x32 | ??? |
SrcDetct-MeshInd-032-2 | SrcDetct.mod | MeshInd-032-2.dat | 32x32 | ??? |
SrcDetct-MeshInd-032-3 | SrcDetct.mod | MeshInd-032-3.dat | 32x32 | ??? |
In this problem, the state variables, u, can be eliminated, resulting in a pure integer QP. The model that defines the problems without state variables is SrcDetctElim.mod, and the AMPL script, Presolve.ampl implements the presolve step. The calling sequence is
ampl: model SrcDetctElim.mod; data MeshDep-008-1.dat; include Presolve.ampl;
for the small example, SrcDetct-MeshDep-008-1, where solver.ampl defines the solver, e.g. option solver bnb;.
Distributed Control with Neumann Boundary Conditions
Parabolic Robin Boundary Problem in One Spatial Dimension
This model is modified from OPTPDE library (http://www.optpde.uni-hamburg.de/result.php?id=8). The goal is to find the optimal state and control variables that satisfy the Heat equation with boundary conditions. There are two classes of models: one with binary controls, and one with controls in {-1,0,1}. Both L1 and L2 regularizations are used.
Type of PDE | Heat equation on [0,1]x[0,1.58] with Robin and Neuman boundary conditions |
Class of Integers | Mesh-dependent & mesh-independent binary variables |
Type of Objective | Least-squares (inverse problem) with L1 or L2 regularization term |
Type of Constraints | Binary or integer controls |
Discretization | Crank-Nicolson formula |
NAME | mod file | dat file | mesh | optimal objective |
---|---|---|---|---|
RobinBin-08 | RobinBin.mod | m08.dat | 8x8 | 0.0305 |
RobinBin-16 | RobinBin.mod | m16.dat | 16x16 | 0.0190 |
RobinBin-32 | RobinBin.mod | m32.dat | 32x32 | 0.0145 |
RobinBinL1-08 | RobinBinL1.mod | m08.dat | 8x8 | 0.0305 |
RobinBinL1-16 | RobinBinL1.mod | m16.dat | 16x16 | 0.0190 |
RobinBinL1-32 | RobinBinL1.mod | m32.dat | 32x32 | 0.0145 |
RobinInt-08 | RobinInt.mod | m08.dat | 8x8 | 0.0305 |
RobinInt-16 | RobinInt.mod | m16.dat | 16x16 | 0.0190 |
RobinInt-32 | RobinInt.mod | m32.dat | 32x32 | 0.0145 |
RobinIntL1-08 | RobinIntL1.mod | m08.dat | 8x8 | 0.0305 |
RobinIntL1-16 | RobinIntL1.mod | m16.dat | 16x16 | 0.0190 |
RobinIntL1-32 | RobinIntL1.mod | m32.dat | 32x32 | 0.0145 |