
Heuristic Static Load-Balancing Algorithm Applied

to the Fragment Molecular Orbital Method

Yuri Alexeev*, Ashutosh Mahajan*, Sven Leyffer,

Graham Fletcher

Argonne National Laboratory

9700 S. Cass Avenue

Argonne, IL 60439, USA

{yuri,fletcher}@alcf.anl.gov

{mahajan,leyffer}@mcs.anl.gov

Dmitri G. Fedorov

National Institute of Advanced Industrial

Science and Technology

Central 2, Umezono 1-1-1

Tsukuba 305-8568, Japan

d.g.fedorov@aist.go.jp

Abstract

In the era of petascale supercomputing, the importance of load

balancing is crucial. Although dynamic load balancing is

widespread, it is increasingly difficult to implement effectively

with thousands of processors or more, prompting a second look

at static load-balancing techniques even though the optimal

allocation of tasks to processors is an NP-hard problem. We

propose a heuristic static load-balancing algorithm, employing

fitted benchmarking data, as an alternative to dynamic load

balancing. The problem of allocating CPU cores to tasks is

formulated as a mixed-integer nonlinear optimization problem,

which is solved by using an optimization solver. On 163,840

cores of Blue Gene/P, we achieved a parallel efficiency of 80%

for an execution of the fragment molecular orbital method

applied to model protein-ligand complexes quantum-

mechanically. The obtained allocation is shown to outperform

dynamic load balancing by at least a factor of 2, thus

motivating the use of this approach on other coarse-grained

applications.

Keywords: Dynamic load balancing, static load balancing,

heuristic algorithm, quantum chemistry, GAMESS, fragment

molecular orbitals, FMO, optimization, MINLP, protein-ligand

complex

I. INTRODUCTION

Achieving an even load balance is a key issue in parallel
computing, and increasingly so as we enter the petascale
supercomputing era. By Amdahl’s law, the scalable
component of the total wall time shrinks as the numbers of
processors increases, while the load imbalance, together with
the constant sequential component, acts to retard the
scalability. Although parallelization of sequential code often
requires rewriting the code, adopting an efficient load-
balancing scheme can be a simple and effective way to boost
scalability and performance.

Dynamic load balancing (DLB) and static load balancing
(SLB) are two broad classes of load-balancing algorithms.

Whereas SLB relies on previously obtained knowledge
(for example benchmarking data), or consistent task sizes,
DLB dynamically assigns jobs to processors during code
execution. Many variations on SLB and DLB algorithms
adapted for specific applications have been reported [1-4],
using different techniques such as random stealing [5, 6],
simulated annealing [7], recursive bisection methods [8-10],
space-filling curve partitioning [11-14], and graph
partitioning [15-21]. SLB is usually simple to implement and
has negligible overhead, making it suitable for “fine-grained”
parallelism consisting of many small tasks. However, if the
application involves much larger tasks of diverse sizes, as is
often the case with “coarse-grained” parallelism, DLB may
be preferred. Since many applications naturally involve
widely differing task sizes, DLB algorithms have become
widespread. Indeed, as the number of available processors
increases (for instance, when moving from a PC cluster
environment to a large modern supercomputer), many
applications find it advantageous to allocate work in larger
chunks in the interest of reducing overhead.

In the shift from fine- to coarse-grained parallelism, DLB
may seem to be the natural choice. However, the DLB
schemes suitable for a PC cluster often perform poorly on
many thousands of processors, prompting the search for
load-balancing paradigms that can handle diverse task sizes
with minimal overhead. One possibility is to adapt SLB
techniques to pre-allocate tasks more effectively by drawing
on a deeper understanding of the application at hand.
However, the optimal static mapping of jobs to more than
two processors is, in general, an NP-hard problem [22, 23].
Nevertheless, such SLB methods have been successfully
applied to a large number of applications [1]. The success of
applying SLB often relies on predictive models that can also
depend on the accuracy of input data from a benchmarking
study; both factors can be systematically improved.
Furthermore, if the calculation is iterative, the lack of a
dynamic means of allocating tasks can be accounted for in
SLB schemes by redistributing work between iterations.

*YA and AM contributed equally to this work

SC12, November 10-16, 2012, Salt Lake City, Utah, USA

978-1-4673-0806-9/12/$31.00 ©2012 IEEE

In this paper we examine parallel load-balancing schemes
applied to a quantum chemistry method - the fragment
molecular orbital (FMO) method implemented in the
quantum chemistry code GAMESS [24, 25] - on the Blue
Gene/P [26] supercomputer at Argonne National Laboratory.
While FMO has been shown before to achieve superior
scalability for fine-grained systems such as water clusters
[27], we aim to improve the scalability and efficiency of
coarse-grained systems, such as proteins. We analyze why
FMO’s current DLB scheme is not optimal and propose an
SLB alternative.

A key feature of our SLB method is the formulation of a
mixed-integer nonlinear optimization (MINLP) problem to
model the allocation of processing cores to tasks. The
MINLP approach provides great flexibility in modeling the
allocation problem realistically. Using nonlinear functions,
we can capture complex relationships between running time
and the number of processors. At the same time, we can
impose integer restrictions on certain variables (e.g., number
of processors). The solution to MINLP can then be directly
used for load balancing in the GAMESS application. To
solve the MINLP arising in our procedure, we use
MINOTAUR [28], a freely available MINLP toolkit. It offers
several algorithms for solving general MINLPs, and can be
easily called from different interfaces. Our MINLP
formulation requires a few parameters to accurately model
the performance, obtained by collecting benchmarking data
about the application and solving a fitting problem. We
describe these methods in Section IV. Our experiments
demonstrate that both the fitting problem and the MINLP
problem can be solved quickly on a single core, and the
resulting allocations lead to significant savings in the run
time of the GAMESS application.

The DLB and SLB comparison is done on the receptor-
ligand system – Aurora-A kinase and inhibitor shown in Fig.
1 (A). We demonstrate the performance of our method on a
large protein system (see Fig. 1 (C)) using all 40 racks
(163,840 cores) on Argonne’s Blue Gene/P.

II. FRAGMENT MOLECULAR ORBITAL METHOD

Ab initio quantum chemistry methods are, in principle,
applicable to any molecular system though the computational
cost increases steeply with the system size. Even the simplest
restricted Hartree-Fock (RHF) method scales approximately
cubically with the system size. There are ongoing efforts to
reduce the scaling of quantum-mechanical (QM) methods
[29, 30] and parallelize them efficiently [31-38]. See, for
example, the linearly scaling method developed by
Challacombe and Schwegler [39], and the adaptive
multiresolution method developed by Harrison, et al. [40].
Alternatively, fragment-based methods [41, 42] (which
divide the system into fragments) can dramatically reduce
computational cost, increase stability of calculations, and
provide additional information on properties of fragments
and their interactions. Algorithmically, fragmentation results
in division of one large calculation into many small and
nearly independent subtasks or loosely coupled ensemble
calculations. As a result, fragmentation methods are efficient

for performing quantum mechanical calculations on
supercomputers.

One of the fragment-based methods is the FMO method
[43], which has been interfaced with many QM methods and
successfully applied to chemical systems such as proteins,
DNA, silicon nanowires, and ionic liquids [44]. FMO has
been implemented in GAMESS [45] and parallelized with
the generalized distributed data interface (GDDI) [46-48].

In FMO, each fragment electronic state is computed in
the potential exerted by all the others. Starting from an initial
guess, fragment calculations that update the embedding
potential are iterated until self-consistency is achieved.
Subsequently, fragment pair calculations are performed in
the embedding potential. The fragmentation, which is usually
chemically motivated for rapid convergence, fixes the
parallel domain decomposition at the outset.

The basic FMO equation has the form

 ,
,...1

,...1:),(1








jiFj
Fiji

jiij

F

i

i EEEEE (1)

where F is the number of fragments and iE , ijE are the

energies of fragment (monomer) i and fragment pair (dimer)
ij, respectively. These energies are assembled according to
Eq. (1) to give the total energy and other properties of the
system.

GDDI is a two-level parallelization scheme, which can be
thought of as coarse-grained parallelism since all CPU cores
are divided into a few groups. At the higher intergroup level
the load balancing is accomplished by assigning fragments or
fragment pairs to GDDI groups. At the lower intragroup
level, the load balancing is accomplished by assigning some
integral workload to individual CPU cores within a group.
Various implementations of GDDI exist, of which the main
ones are (1) UNIX socket-based, whereby each CPU core
runs a GAMESS process and communicates over TCP/IP via
sockets, and (2) MPI-based, where MPI communicators are
created for groups. This two-level parallelization has been
successful in obtaining up to about 90% of the perfect
scalability (i.e., 90-fold speedup on a 100-fold increase in the
number of cores) [48] on PC clusters with 128 CPUs
connected by a low-end network (FastEthernet). FMO/GDDI
has subsequently been used on larger computer systems such
as the AIST supercluster [49]. More recently, FMO/GDDI
has been successfully run for large water clusters on 131,072
CPU cores on Argonne’s Blue Gene/P [27]. Our current
MPI-based implementation on Blue Gene/P comprises
compute- and data-server process pairs, so that half of all
CPU cores are used for QM calculations, while the other half
handle communications and distributed memory processing.
We reported wall-clock timings for GAMESS runs on the
total number of CPU cores.

In this paper we apply FMO to two protein-ligand
systems. All benchmarking and tuning of both DLB and
HSLB schemes have been done on Aurora-A kinase with
inhibitor phthalazinone shown on Fig. 1 (A). Aurora kinases

are essential for cell proliferation and a major target in
designing new anti-cancer drugs. The system is of moderate
size: 155 fragments (154 amino acids and 1 ligand), with the
total number of atoms equal to 2,604, computed at the RHF
level of theory with the 6-31G* basis set. The production run
was done for ovine COX-1 complexed with ibuprofen shown
on Fig. 1 (B). The system consists of 17,767 atoms divided
into 1,093 fragments. For this work, we used the distributed
memory storage of fragment densities [27]. Various tasks,
including the fragmentation of proteins, structure checking,
the generation of GAMESS input for FMO calculations, and
the visualization of results, were performed by the FMOtools
suite of Python programs [50].

Figure 1: (A) A schematic view of the structure of Aurora-A kinase
complexed with inhibitor – phthalazinone in cyan color (PDB code: 3P9J).
(B) ball-and-stick representation of inhibitor. The system consists of 2,604
atoms divided into 155 fragments. (C) a schematic view of the structure of
prostaglandin H(2) synthase-1 (COX-1) in a complex with ibuprofen in cyan
color (PDB code: 1EQG). (D) ball-and-stick representation of ibuprofen.
The system consists of 17,767 atoms divided into 1,093 fragments.

III. LOAD BALANCING IN FRAGMENT MOLECULAR

ORBITAL METHOD

In the FMO method, a system is first subdivided into
fragments. The proteins considered in this paper are divided

naturally into amino acid residue fragments (at the C
atoms) using the FMOgen tool in the FMOtools package
[50]). We assumed that their standard protonation state lies at
pH 7. The key issue for load balancing is that amino acid
residues vary in size from the smallest with 7 atoms
(Glycine) to the largest with 24 atoms (Tryptophan). The
accuracy of FMO [44] is determined by the fragmentation,
and hence fragments should not be very small. In other
words, the number and the size of fragments are determined
by the underlying chemistry and should not be modified
merely to improve the efficiency of parallelization. The
number of fragments and their sizes are therefore considered
fixed for the purposes of parallelizing the calculations.

The size of a fragment greatly affects quantum chemistry
calculations because the calculation cost tends to scale as a

high power of the system size. For example, RHF scales as
N

3
 and coupled-cluster with perturbative triples (CCSD(T))

scales as N
7
. The electronic state of some fragments can be

frozen [51]. Still more variation in task sizes can arise from
having different levels of theory and basis set for different
regions of the system, as in the multilayer FMO method [52].
As the methodology of FMO becomes increasingly
sophisticated, the time to solution and the scalability of
individual fragment calculations become harder to model. An
example of the variation in scalability of fragment
calculations as a function of size is shown in Fig. 2.

Figure 2: Scalability of FMO fragments in Aurora-A kinase and inhibitor
system on Blue Gene/P. The smallest fragment (Gly amino acid residue) and
the largest fragment (inhibitor) are represented by ○ and □, respectively. The
data points were fitted and performance models for each fragment are
shown. The cores represent the computational processes in GDDI. The scale
of the x-axis is logarithmic.

A primary factor in the cost of quantum chemical
calculations is the number of basis-functions (which is
roughly proportional to the number of atoms). For FMO
specifically (assuming the simple RHF level), important
factors also include (1) the number of self-consistent field
(SCF) iterations needed to achieve convergence; (2) the
fragment packing density, namely, the number of fragments
close to a given fragment, which strongly affects the
computational time for the embedding potential; and (3) the
fragment packing density. The latter has a large impact on
dimer calculations owing to the use of electrostatic
approximations (described elsewhere [44]). Furthermore,
factors (1)-(3) strongly interact. For instance, the fragment
packing density affects the SCF convergence, which, in turn,
also depends on the charge, spin state, and the initial guess of
the electron density. In addition, the scaling and parallel
efficiency of the code are a complex function of these
factors; for instance, the relative fraction of the number of
sequential steps, such as matrix diagonalizations, is strongly
affected by the choice of SCF convergence method, as well
as by the number of SCF iterations (because the embedding
potential is computed once before SCF). All these factors

// Initialize variables

1: number_of_fragments=input();

2: number_of_groups=number_of_fragments/3;
3: DDI_group=DDI_group_create(number_of_groups,DDI_world);

// Monomer loop

4: do {
5: for (i=1; i<number_of_fragments; i++) {

6: DDI_scope(DDI_world);

7: mytask=dynamic_load_balancing(DDI_world);
8: if (mytask==i) {

9: DDI_scope(DDI_group);

10: fragment_density(i)=SCF(i);
11: DDI_scope(DDI_world);

12: DDI_put(fragment_density[i]);

13: }
14: }

15: DDI_sync(DDI_world);

16: } while (fragment_density[]!=converged);

// Dimer loop

17: for (i=1; i<number_of_fragments; i++) {

18: for (j=1; j<i; j++) {
19: DDI_scope(DDI_world);

20: mytask=dynamic_load_balancing(DDI_world);

21: if (mytask==i,j) {
22: DDI_scope(DDI_group);

23: two_fragment_density(i,j)=SCF(i,j);

24: }
25: }

26: }

make the modeling of the functional dependence of the
timing upon the fragment size a formidable task.

Once a system is split into fragments FMO calculations
can be performed by using the algorithm shown in Fig. 3. A
detailed discussion of the algorithm is given elsewhere [48].
Here, we describe it briefly. At the coarse-grained DLB
level, fragments are assigned to groups of CPU cores. In
conjunction with MPI, GDDI can generate processor groups
as shown in Fig. 3, line 3 (MPI_COMM_SPLIT function).
Currently, the default option in GAMESS creates processor
subgroups of uniform size. Each group performs single-point
fragment calculations, assigned dynamically (see Fig. 3, line
7). Throughout this paper the theory is RHF. The output of
such an RHF calculation is the fragment density in the
Coulomb field of all fragments (Fig. 3, line 10). Since the
new density changes the field, the process must be repeated
until self-consistency is achieved. This process involves
exchange of fragment densities among the groups by putting
generated densities in DDI global array (DDI_put, Fig. 3,
line 12). The fragment densities are accessed via DDI_get
inside SCF(i) and SCF(i,j) in order to compute the
embedding potential, lines 10 and 23, respectively. The
iterative process is sometimes referred to as the “self-
consistent charge” (SCC) or “monomer SCF” step,
corresponding to the first term of the energy expansion in
equation (1) with RHF theory. In the final step (Fig. 3, lines
17-26), fragment monomer densities are used to construct
dimers from all pairs of monomers constituting a second
round of larger RHF calculations. However, the “dimer” step
is not iterated to self-consistency with respect to the
embedding potential.

Figure 3: Pseudo-code of FMO calculations for dynamic load balancing.

For FMO, three types of load balancing have been
attempted prior to this work, and we suggest an efficient

modification of one of them, the static load balancing [48].
The alternative to SLB is DLB; in addition, there is semi-
dynamic load balancing (SDLB) [49]. In DLB, an efficient
means to improve efficiency is the large-jobs-first strategy
[48]. This strategy considerably reduces the synchronization
lag at the end of calculations because the smallest tasks are
done last. DLB, in our experience, performs satisfactorily
when the ratio of the total number of cores to the number of
fragments is not very high (roughly 16 for our case, but it
may vary considerably). Using this ratio and recalling that
the number of fragments is fixed, DLB may be applied on a
protein with 400 residues with good results on up to roughly
6,400 CPU cores. Adding more cores may result in a
deterioration of the performance. The parallelization
efficiency may drop because the calculations of small
fragments cannot be efficiently parallelized on a large
number of cores allocated under the equal partitioning
scheme of DLB. An improvement of this DLB problem has
been achieved with SDLB, in which a handful of the largest
fragment calculations are performed using SLB, while the
rest are done with DLB (after the CPU cores participating in
SLB finish, they also join in the DLB calculations).
However, such a strategy is useful mainly in cases where
there are only a few large fragments and the total number of
CPU cores is not high; otherwise the problems mentioned
above cannot be avoided, an efficient solution is given by the
heuristic static load balancing (HSLB) method proposed in
Section IV. The main idea behind HSLB is to customize
GDDI group sized to the fragment sizes. Since we solve an
optimization problem heuristically, it can easily adapt to
handle different numbers of CPUs and fragments.

The number of processor groups used in FMO
calculations can vary from one to the number of fragments.
Fig. 4 depicts the impact of the group count on the scalability
of FMO for a single SCC iteration of a system with 155
fragments. In the case of a single GDDI group, each
fragment calculation is executed on all CPU cores. Clearly,
all but the largest fragments utilize the large processor count
inefficiently, and the overall calculation has a low scalability.
On the other hand, the 155-group calculation, in which there
is a group for every fragment, exhibits improved scalability.
The current default choice assumes three fragments per
group, yielding 52 groups in this system. The difference in
scalability and wall clock time for different group counts is
explained in Figs 5 and 6. While the synchronization time
shown is averaged over all GDDI groups, the efficiency is
computed for each fragment separately and then averaged
over all fragments. Thus, the efficiency, Wi, of fragment i, as
a function of the number of CPU cores, is computed as

 
   

,
/

/

0

0

nn

nTnT
nW ii

i  (2)

where 0n is the reference value of the number of CPU cores

(0n =2 and  0nTi was obtained by extrapolation), n is the

actual number of CPU cores, and  0nTi and  nTi are the

wall clock times to compute the energy of fragment i in

FMO on 0n and n CPU cores, respectively.

The data in Fig. 5 and Fig. 6 can be used to explain why
the optimum group count with DLB is between 1 and 155.
For example, the synchronization time tends to increase with
the group count, starting at zero seconds in the case of a
single group. However, computational efficiency also tends
to increase with the group count as smaller groups encounter
lower parallel overheads. Therefore, an optimal group-count
can be obtained only by finding the right balance between
the time spent in synchronization and that gained by
parallelism. In addition, we must ensure that the variance in
time taken by different fragments in minimized. These times
in turn depend on hardware characteristics: the number of
cores, CPU type, and the network type of the system.

Figure 4: Wall-clock time to finish a single FMO SCC iteration with
different load balancing schemes. The dataset is for Aurora-A kinase and
inhibitor system. The calculations are done at the RHF-D level of theory and
6-31G* basis set on Blue Gene/P. The scale of the y-axis is logarithmic.

Figure 5: Average synchronization time among fragments accumulated
during the first FMO SCC iteration. For DLB with one group, the
synchronization time is equal to 0 seconds but because of the log scale it is
shown as 1 second. The scale of the y-axis is logarithmic.

Figure 6: Parallel efficiency averaged over fragments during the first FMO
SCC iteration for different load balancing schemes on Blue Gene/P. The
dataset is for Aurora-A kinase and inhibitor system.

IV. HEURISTIC STATIC LOAD-BALANCING ALGORITHM

Our heuristic static load-balancing method consists of
four steps. First, we collect benchmarking data related to the
compute time of fragments. Second, we solve for the optimal
parameters by a least-squares method based on our chosen
scalability model. Third, we solve an integer optimization
problem in order to obtain an optimal allocation of cores.
Fourth, we allocate the optimal number of cores obtained
from the optimization to run FMO in static load-balancing
mode.

With a suitable model for the compute time, one can
apply this four-step procedure to any other coarse-grained
application. Before describing each of these steps for our
application, we list in Table I the notation used to denote
variables and parameters in our models.

Table I. List of variables and parameters used in models described in Section
IV.

Symbol Description

 Set of positive real numbers.

F Total number of tasks (fragments) among which we want

to allocate available cores.

N Total number of cores available for allocation.

in Number of cores allocated for processing task- i .

)(ii nT Performance function that models the time taken to

process task- i by using in number of cores.

)(i
scal

i nT Scalable component of the function)(ii nT .

)(i
serial

i nT “Serial” component of the function)(ii nT .

)(i
nonlin

i nT Component of the function)(ii nT other than

)(i
scal

i nT and)(i
serial

i nT .

iD Total number of data points available for creating the

performance function model for fragment i .

iiii dcba ,,, Parameters associated with the performance function,

)(ii nT , of task- i .

 Wall-clock time obtained from solving the allocation

problem.

ijy Observed wall-clock time in the thj run of fragment

i , ,,...,1 iDj  in the benchmarking stage.

ijn Number of cores allocated in the thj run of fragment

i , ,,...,1 iDj  in the benchmarking stage.

A. Performance Model

Choosing an appropriate performance model is one of the
most important steps in designing a successful SLB
algorithm. Over the years many performance models have
been developed [53]. Many of parallel performance models
begin by identifying sequential and parallel components of
the execution time in accordance with Amdahl’s law. They
try to capture the salient features of the calculation in terms
of the key parameters of the problem. For the FMO
application considered here, the key feature is the coarse-
grained parallelism, which can be captured by selecting
mathematical models for the run time of each fragment
independently. In this work, we use the nonlinear model

,,...,1 ,)()()(Fidnb
n

a
TnTnTnT i

c
ii

i

iserial
ii

nonlin
ii

scal
iii

i 

(3)

where)(ii nT represents the wall-clock time to compute the

thi fragment as a function of in the number of processor

cores allocated to process it. The three components of)(ii nT

are described next.

The quantity)(i
scal

i nT represents the component of the

wall-clock time with perfect (or linear) scalability. It is a

monotonically decreasing function that asymptotically

approaches zero. The quantity),(i
serial

i nT on the other

hand, represents the time spent in the nonparallelized

component of the application. It is independent of the

number of cores in and includes any purely serial part of

code. From the mathematical point of view it is a constant

that defines the minimum value of)(ii nT

(ignoring)(i
nonlin

i nT). As in increases, serial
iT is expected

to dominate)(ii nT .

The quantity)(i
nonlin

i nT represents the component of the

wall-clock time that is not described by either)(i
scal

i nT or

).(i
serial

i nT It represents the time spent in code that is only

partially parallelized or depends on in in a way more

complicated than the other two components. An example of

a partially parallel component of our application is the

diagonalization of the Fock matrix in the self-consistent

field (SCF) method. Generally,)(i
nonlin

i nT may include time

spent in activities such as initialization, communication, and

synchronization. Our choice of the form of)(i
nonlin

i nT gives

our model the ability to account for all these components

without constraining it to be an increasing or decreasing

function. The sign of the parameters ib and ic determines

the shape of the function, and consequently every fragment

may have a different shape of)(i
nonlin

i nT .

The functional form of)(ii nT seems to make sense both

mathematically and from the viewpoint of Amdahl’s law.
From the mathematical perspective, one component of

)(ii nT decreases, while another increases with in . The

function may increase or decrease for different values of

in depending on the dominating component for that number

of cores. Two real examples of)(ii nT are illustrated in Fig.

2, where the probed range of the number of cores is not large

enough to observe a complex behavior and)(ii nT is a

smoothly decreasing function. From the perspective of
Amdahl’s law, in the absence of the complicating

component),(i
nonlin

i nT)(i
scal

i nT accounts for largest

contribution when in is small, while serial
iT is the largest

contribution to for large in .

B. Fitting Data

We estimate the parameters ,,, iii cba and id used in Eq.

(3) by fitting the values of wall-clock time of each fragment
over the first SCC iteration for different CPU core groupings.
In other words, we perform calculations of each fragment in
the embedding potential, varying the number of cores per
GDDI group. The timings are collected as a function of the
number of cores per group, and we fit the coefficients. In the
future we plan to examine the possibilities of using several
SCC iterations for the fitting.

For the thi fragment, we obtain the best fit by solving

the least squares problem

,,,, subject to

,min

1

2

,,,






















iiii

D

j

i
c
iji

ij

i
ij

dcba

dcba

dnb
n

a
y

i

i

iiii (4)

where ijy is the observed value of time taken in solving for

fragment j when ijn cores are allocated to it. Di is the

number of different GDDI groups sizes tried in the fitting
procedure (in this paper, Di varied from 3 to 7, depending on
the system). The objective function of the optimization
problem (4) is in general not convex, and there may be
several locally optimal solutions of the problem. Since
nonlinear optimization algorithms are iterative, selecting a
different starting point may lead the solver to a different local
solution. We experimented with different starting solutions
and observed that even though the parameter values may

differ, the solution value of problem (4) did not vary
significantly. More important was the observation that the
differences in parameter values did not translate into
significant differences in the optimal allocation of cores that
we calculate in the next step.

We have constrained the variables in our fitting problem
Eq. (4) to be nonnegative even though doing so is not
necessary mathematically. It makes sense for parameters a,
b, and d to be positive because they represent values of time.
It is less obvious what the constraints for c should be. In

general,)(i
nonlin

i nT can be increasing or decreasing, but we

prefer a positive c because our application is highly scalable.
The total time does not increase even when the number of
cores used in production runs is much larger than that in trial
runs for gathering data. Thus, a positive value of c ensures
that our model has a better fit even when we extrapolate it to
a large number of cores.

The examples of fitted ,,, iii cba and id can be seen for

the smallest and the largest fragments in Fig. 2. Since the

values ijy are gathered from actual runs on the system, it is

important to judiciously choose trial values of ijn in the

data-gathering stage. There is an obvious trade-off between

the time taken to obtain ijy and the quality of the model.

Since the solution procedure in GAMESS is iterative and the
nature of work is similar for all iterations, we can model the
functions using time observations for a single iteration only.
It helps us save time without sacrificing accuracy. To obtain

good estimates of ,,, iii cba and ,id we recommend sampling

ijn from a large range of core counts: from a few to

thousands for each fragment. In order to avoid over-fitting,
the number of samples should be at least greater than four for
each fragment. We used eight samples in our experiments.
The number of samples should obviously increase with the
level of noise in the application and the number of
parameters to be estimated.

In general, one should judiciously pick samples based on
a priori knowledge of the tasks. Lacking such knowledge,
we began by dividing the available cores equally among all
groups. This approach proved satisfactory for systems with
similar-sized fragments (along with a consistent theory and
basis set). In the cases when, for example, a ligand is much
larger than the largest amino acid, a more sophisticated
allocation for sampling may needed. We also note that the
recorded times do not include FMO initialization and
intergroup synchronization time, but they do include all
intragroup computation and communication including
synchronization.

Our procedure of first collecting data and then rerunning
the full application from scratch can be improved. We use
our simple procedure to demonstrate the effectiveness of
using an optimal allocation of cores. Our procedure can be
modified with little effort to reuse more information from the
data collection stage for the solving stage.

C. Formulating the Optimization Problem

Once we have identified an appropriate performance
model and obtained values of all parameters from the
previous steps, we can formulate an optimization problem to
find the optimal allocation of cores. The decision variables

that we seek to optimize are the number of processors, ,in to

be allocated to each fragment }.,...1{ Fi The choice of

objective that we seek to minimize or maximize depends on
the preference of the user. One can minimize the total wall-
clock time of the application the following min-max function
can be used

 
).(

,...,1
maxmin iniT

Fin 
 (5)

Alternatively, the objective function is just the sum of times
used by each task,

.

1

)(min


F

i

iniT
n

 (6)

One can also seek to maximize the minimum time used by a
task. Like the min-max criterion, the max-min criterion also
seeks to obtain a fair distribution of cores by taking away
allocations from the fastest tasks. It is written as

).(minmax iniT
in

 (7)

The physical restrictions of the system can be modeled by
adding constraints to the optimization problem; for example,
the number of cores used in calculations cannot exceed the
total number of available cores, N,

.

1






F

i

Nin (8)

We can also have constraints based on user’s preferences,
e.g. the user may wish to minimize the wall clock time with
an additional constraint that the total core time must be
below a threshold T:

.

1

)(T

F

i

iniT 



 (9)

Some constraints may be needed to make the model
amenable for the solver. In particular, most solvers require
the derivatives of objective and constraints to be continuous.
The min-max objective function should be therefore be
replaced by an objective of minimizing a new variable, say η,
and additional constraints must be introduced to ensure η is

no less than each)(inf . The full model is

.,...,1 integer, ,0

,,...,1,

1

 subject to
,

min

Fiin

Fiidc
inib

in

ia

F

i

Nin
n

i

i














 (10)

We considered the three objective functions described above,
together with constraint (8) in our models. We observed in
our experiments that the min-max function (5) outperforms
the other objectives, which makes sense from the viewpoint
of minimizing the overall wall-clock time. Minimizing total
time, at the other extreme, may lead to a solution where one
fragment is solved in exceptionally large time (Fig. 7), thus
keeping the other processors waiting.

D. Solving the MINLP Model

MINLP problems, of which the optimization problem Eq.
(10) is a special case, are NP-hard in general. Certain
specific classes of MINLP, such as the single constraint
resource constrained problems with nonincreasing objective
functions can be solved in polynomial time [54]. But they
require customized algorithms. Hence we consider
algorithms for general MINLPs only. The algorithms to
solve general MINLPs are usually based on the branch-and-
bound method [55]. These methods are guaranteed to
provide an optimal solution or show that none exists. In
addition to the number of variables and constraints, the time
required to solve these problems depends on the type of
functions used in the objective and constraints. For instance,
if all the nonlinear functions are convex, then a local solution
of the continuous relaxation is also its global solution.
Several specialized algorithms exploit this fact and other
useful properties of convex functions [55-60]. On the other
hand, if any function is not convex, then the continuous
relaxation does not give a bound on the objective value. In
this case, one needs to further relax the continuous problem
by introducing new variables and modifying the constraints
[61, 62].

We wrote our optimization problem in the AMPL [63]
modeling language. AMPL enables users to write
optimization model using simple mathematical notation. It
also provides derivatives of nonlinear functions
automatically, and it can be used with several different
solvers. To solve the problem, we used the open-source
solver toolkit MINOTAUR [28]. MINOTAUR offers
different solvers based on the algorithms mentioned above
and also offers advanced routines to reformulate MINLPs. It
provides libraries that can be called from other C++ and

FORTRAN codes and hence can be directly called without
requiring AMPL. For solving our problem, we use the
LP/NLP [56] solver implemented in MINOTAUR. Since the

coefficients iii cba ,, are positive, the nonlinear functions are

convex, and this algorithm finds a global solution of the
problem. We briefly describe this algorithm next.

The LP/NLP algorithm is initialized by first creating a
linear relaxation of the MINLP. Suppose we have a nonlinear
constraint of the form 0)(xf , where f is a continuously

differentiable convex function. A linear relaxation of the
constraint is obtained by the linearization around any

point kx ,

  .0)()( kkTk xfxxxf (11)

In general, the more the number of linearization
constraints obtained from distinct points, the closer is the
relaxation to the original problem. However, a large number
of constraints can slow the solver. In order to mitigate this
problem, linearization-constraints derived from only a single
point are added initially. This point is the obtained by solving
the continuous nonlinear programming (NLP) problem. We
later add linearization constraints for only those nonlinear
constraints that are violated significantly by the solution.

After the initial linear programming (LP) relaxation is
created, it is added to a list of unsolved sub-problems. The
value of the incumbent solution of MINLP is initialized to
infinity. In each step of the algorithm, we remove a sub-
problem from the list and solve the linear relaxation using an
LP solver. If the solution value is greater than the incumbent,
we discard this sub-problem because it does not contain any

solution better than the incumbent. If the solution)ˆ(x of the

LP problem has fractional values, we create two new sub-
problems by branching. We choose an integer variable i for

which ix̂ is fractional. In one sub-problem we add the

constraint  ii xx ˆ . In the other, we add the

constraint  ii xx ˆ . These two sub-problems are added to

Figure 7: Allocation of different solvers: (A) minimizing total time, (B) maximizing the minimum group time, and (C) minimizing the maximum group time. The
height of each column represents time to compute one fragment, and the width of each column represents how many cores were assigned. The dataset is for the
complex of Aurora-A kinase and its inhibitor, which was collected on 1024 cores of Blue Gene/P for FMO at the RHF/6-31G* level.

the list of unsolved sub-problems. If x̂ satisfies integer

constraints, we check whether it satisfies all the nonlinear
constraints as well. If it is feasible, then we have an
incumbent solution. Otherwise, we add more linearization

constraints around x̂ of the form shown in Eq. (10), and

continue. The algorithm terminates when the list is empty.

In MINOTAUR, the LP problems are solved by using the
CLP solver [64], and the NLP problems use filterSQP [65].
In the worst case, the algorithm may require solving an
exponential (in the number of integer variables) number of
LP and NLP problems, but in practice it takes much fewer.
For example, the MINLP for 4096 cores took < 180 seconds
on one core to solve, and made 12863 calls to the LP solver
and 2 calls to the NLP solver. For 16384 cores, these
numbers were 165 seconds, 9883 and 2, respectively.

E. Summary of HSLB Algorithm

Before presenting the results of our experiments, we
summarize the four-step HSLB algorithm and discuss some
ways of further improving it.

(1) Gather Data: Perform a single SCC iteration for
the given molecular system (protein-ligand complex) with
FMO by executing GAMESS D times using a different total
numbers of cores, with suitable choices for Di. Collect the
running times yij for each fragment i.

(2) Fit: Next, solve F different least squares problems
(4) to determine the coefficients ai, bi, ci, and di in Eq. (3) for
each fragment i.

(3) Solve: Determine the best allocation by solving the
MINLP (10), and obtain the optimal values of size ni for each
fragment i.

(4) Execute: Execute the complete FMO run with
GAMESS, using the determined group sizes in step (3).

This algorithm, being of a general nature, can be
improved in several ways for a given application. The data
gathering step (1) can be avoided altogether if reliable
benchmarks are already available, for example, from
previous experiments. Steps (2) and (3) can be solved by
calling a MINLP solver directly from the application, thus
avoiding the use of AMPL. The least-squares problem can be
solved with a MINLP solver by just calling its nonlinear
solver once. After it is solved, the MINLP solver can then
solve the MINLP of step (3). More improvements are
possible if the HSLB procedure is called more than once to
reallocate the cores after a few iterations of the complete run.
The running time of all iterations can be stored, a better fit be
obtained, and the MINLP re-solved to obtained better
allocation based on the new data.

In this work, we applied HSLB only to the monomer step
in FMO, which is iterative and requires running each
monomer calculation typically 20-25 times. We used DLB
for the dimer step, which involves computing each dimer
once; and thus the benefits of an optimized allocation in
HSLB do not merit its application given the need to do
preliminary data gathering. However, in the future it is
conceivable to construct a good guess for an optimum node

allocation in dimers based on the monomer data, which
would accelerate the dimer step as well. The load balancing
in dimers is also less severe than in monomers, because the
number of dimers, for which quantum-mechanical
calculations are performed, is typically 3-4 times the number
of fragments F (dimers that are spatially well separated are
computed with a very fast electrostatic approximation) [44].

V. RESULTS AND DISCUSSION

The performance of HSLB is compared to that of DLB
with different numbers of groups for the system of Aurora
kinase and inhibitor phthalazinone (see Fig. 1 (A) and (B)).
This system has 155 fragments. Fig. 4 shows that the HSLB
scheme outperforms the DLB schemes by at least a factor of
two in the wall-clock time. We also found that some DLB
schemes have scalability similar to HSLB. We also make
other observations about the performance of HSLB. Fig. 5
shows that HSLB has the lowest synchronization time even
on thousands of processors. Since the synchronization time
becomes important when a large number of CPU cores are
used, HSLB should be preferred for such systems. The
HSLB algorithm also shows excellent efficiency, greater
than 90% on large numbers of cores, as shown in Fig. 6. As
the number of cores increases, we anticipated that the
scalability and efficiency of HSLB might deteriorate. To
quantify this deterioration, we tested the performance of
HSLB for larger processor counts using a larger problem:
COX-1 complexed with ibuprofen (see Fig. 1 (C) and (D)); a
total of 1093 fragments and 17,767 atoms. Fig. 8 shows that
the COX-1 calculation achieves 80% efficiency averaged
over all fragments for the SCC iterations in FMO on 163,840
cores at the RHF, 6-31G* level of theory. The single-point

Figure 8: Ideal and observed scalability curves based on wall-clock time for
the first FMO SCC iteration on Blue Gene/P for COX-1 complexed with
ibuprofen. All calculations are done in a “dual” mode that restricts processes
to 2 MPI tasks per node. Efficiency averaged over all the fragments is
shown for each run.

energy calculation takes only ~54 minutes (6+ years on a
single core). The results obtained at this computational level
strongly suggest that significantly higher processor counts
can be efficiently utilized for larger problems.

While HSLB outperforms DLB, it still exhibits a small
decline in scalability and efficiency for high processor counts
for both the Aurora kinase and COX-1 calculations. This
decline may be due to sequential steps in the fragment SCF
and the fluctuations in the synchronization time caused by
runtime operating system tasks, shared network issues,
hardware failure, deficiencies of performance model or
benchmarking data, and so forth. It is commonly understood
that for these reasons, synchronization becomes more
problematic as the number of processors increases. Although
these fluctuations do not appear in Fig. 5 (only averaged
values are shown), use of a low level of theory (RHF, 6-
31G*) here has helped uncover the limitations of the HSLB
approach by raising the significance of the synchronization
time (for density functional theory (DFT) one can expect a
better parallel efficiency because of a high scaling of the
DFT specific grid integration). From the data, the operating
limits of HSLB on Blue Gene/P would appear to be
anywhere from three cores per task up to the point where
random computational noise (>100 thousands cores) hampers
the ability to predict the time to solution for tasks.

We have identified directions for further improving our
load-balancing approach. We observed that the iteration time
in our application is not a constant but tends to decrease
because successive SCC iterations typically require fewer
micro-iterations to converge the density. Moreover, this
behavior is not uniform over different fragments because
they converge at different rates. We propose to apply HSLB
adaptively. We can fit scalability curves, obtain the nonlinear
equations and solve for the optimal allocation for all SCC
iterations, as described in Section IV. To this end, we have
interfaced MINOTAUR directly with GAMESS on Blue
Gene/P. It enables us to directly optimize without making
system calls to execute the AMPL model. We have not
included results for adaptive HSLB here because our goal is
to present the fundamental HSLB concept. That said,
adaptive HSLB offers a promising direction for future
development because it combines the efficiency of HSLB
with the adaptability of DLB.

VI. CONCLUSIONS

The method development in this paper is an evolution of
the parallelization of a complex quantum-mechanical
program GAMESS [24, 25] over dozens of CPU cores in
DDI introduced in 2000 [46], extended to hundreds with
GDDI in 2004 [48] as demonstrated on a powerful
supercomputer of that time (in 2005 [49]). The manual
variation of the group size in GDDI to optimize its
performance used in a Supercomputing-2005 paper [49]
inspired the present work, which we have conducted based
on advanced mathematical methods guaranteeing the best
allocation for a given number of cores and a molecular
system. Although for fine-grained systems (water clusters)
the previously developed load balancing has performed well
up to about 130,000 CPU cores [27], coarse-grained systems
(proteins) cannot be treated with high efficiency on modern
petascale computers in the same way.

We have shown that the present HSLB approach is twice
as fast as the previous DLB method and achieves a parallel

efficiency of about 80% on petascale core-counts (hundreds
of thousands of cores). Thus, from the user-perspective,
HSLB is enabling FMO to handle automatically very large
problems with diverse fragment sizes. Many interesting cases
fall into the latter category. For example, in the study of
photosynthesis, the reaction center [49, 66] features the
chlorophyll special pair, which is large and difficult to
fragment for the chemical reasons (significant electron
delocalization across the planar system). Another common
situation is found in drug design, where the drug molecules
often have 50-100 atoms with extended conjugation. Such
large fragments typically coexist with many small ones, such
as explicit water molecules having only three atoms per
fragment. Where DLB based on uniform group sizes would
be unable to utilize many cores effectively for such systems,
by fitting the GDDI group sizes to the fragments HSLB can
efficiently utilize CPU core counts in the 100,000-range with
negligible overhead. In this sense, HSLB is similar in spirit
to the use of “preliminary” benchmarks in previous work to
guess the optimum group sizes [49].

Our current era of petascale computing already has an
eye on the coming exascale era, and the development of
software capable of efficiently utilizing many thousands or
millions of CPU cores is a topic of great interest. FMO
accelerated by HSLB on petascale and exascale computers
can become a powerful tool for drug and material design
[44], realizing the high potential held by quantum-
mechanical methods on massively parallel computers.

The present coarse-grained optimization algorithm is not
limited to FMO. Many coarse-grained applications can
benefit from the present approach. For instance, many other
fragment-based methods can be similarly parallelized. As the
number of cores increases, the issues of minimizing the
synchronization time while retaining a high efficiency will
put load balancing schemes to a highly stressful test. We
believe that for coarse-grained applications our HSLB
algorithm is a promising and general approach.

ACKNOWLEDGMENT

We thank Dr. R. Loy and ALCF team members for
discussions and help related to the paper. We thank Dr. M.
Mazanetz from Evotec for providing the PDB structure of
Aurora-A kinase system used in our calculations. DGF
thanks the Next Generation Super Computing Project,
Nanoscience Program (MEXT, Japan) and Computational
Materials Science Initiative (CMSI, Japan) for financial
support and Prof. K. Kitaura for fruitful discussions.

The submitted manuscript has been created by the
UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”) under Contract No. DE-AC02-
06CH11357 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. This work was
also supported by the U.S. Department of Energy through
grant DE-FG02-05ER25694.

REFERENCES

[1]C. Xu and F. C. M. Lau, Load balancing in parallel

computers: theory and practice. Norwell, MA. Kluwer

Academic Publishers, 1997.

[2]K. D. Devine, E. G. Boman, R. T. Heaphy, B. A.

Hendrickson, J. D. Teresco, J. Faik, J. E. Flaherty, and L.

G. Gervasio, "New challenges in dynamic load

balancing," Applied Numerical Mathematics, vol. 52, pp.

133-152, 2005.

[3]M. H. Willebeek-LeMair and A. P. Reeves, "Strategies for

dynamic load balancing on highly parallel computers,"

Parallel and Distributed Systems, IEEE Transactions on,

vol. 4, pp. 979-993, 1993.

[4]Y. Bejerano, S. J. Han, and L. E. Li, "Fairness and load

balancing in wireless LANs using association control," in

Proceedings of the 10th annual international conference

on mobile computing and networking, New York, NY,

2004, pp. 315-329.

[5]B. Y. Zhang, Z. Y. Mo, G. W. Yang, and W. M. Zheng,

"An efficient dynamic load-balancing algorithm in a

large-scale cluster," Distributed and Parallel Computing,

pp. 174-183, 2005.

[6]M. J. Zaki, W. Li, and S. Parthasarathy, "Customized

dynamic load balancing for a network of workstations,"

in Proceedings of 5th IEEE International Symposium on

High Performance Distributed Computing, Syracuse,

NY, 1996, pp. 282-291.

[7]R. D. Williams, "Performance of dynamic load balancing

algorithms for unstructured mesh calculations,"

Concurrency: Practice and experience, vol. 3, pp. 457-

481, 1991.

[8]M. J. Berger and S. H. Bokhari, "A partitioning strategy

for nonuniform problems on multiprocessors,"

Computers, IEEE Transactions on, vol. 100, pp. 570-580,

1987.

[9]H. D. Simon, "Partitioning of unstructured problems for

parallel processing," Computing Systems in Engineering,

vol. 2, pp. 135-148, 1991.

[10]V. E. Taylor and B. Nour-Omid, "A study of the

factorization fill-in for a parallel implementation of the

finite element method," International journal for

numerical methods in engineering, vol. 37, pp. 3809-

3823, 1994.

[11]M. S. Warren and J. K. Salmon, "A parallel hashed oct-

tree n-body algorithm," in Proceedings of the ACM/IEEE

Supercomputing 1993 Conference, Portland, 1993, pp.

12-21.

[12]J. R. Pilkington and S. B. Baden, "Partitioning with

spacefilling curves, CSE Technical Report CS94-349,"

Dept. of Computer Science Engineering, University of

California, San Diego, CA1994.

[13]A. Patra and J. T. Oden, "Problem decomposition for

adaptive hp finite element methods," Computing Systems

in Engineering, vol. 6, pp. 97-109, 1995.

[14]J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K.

Szymanski, J. D. Teresco, and L. H. Ziantz, "Adaptive

local refinement with octree load balancing for the

parallel solution of three-dimensional conservation laws,"

Journal of Parallel and Distributed Computing, vol. 47,

pp. 139-152, 1997.

[15]A. Pothen, H. D. Simon, and K. P. Liou, "Partitioning

sparse matrices with eigenvectors of graphs," SIAM

Journal on Matrix Analysis and Applications vol. 11, pp.

430-452, 1990.

[16]E. Leiss and H. Reddy, "Distributed load balancing:

design and performance analysis," WM Keck Research

Computation Laboratory, vol. 5, pp. 205-270, 1989.

[17]G. Karypis and V. Kumar, "A fast and high quality

multilevel scheme for partitioning irregular graphs,"

SIAM Journal on Scientific Computing, vol. 20, p. 359,

1999.

[18]Y. F. Hu and R. J. Blake, "An optimal dynamic load

balancing algorithm, Technical Report DL-P-95-011,"

Daresbury Laboratory, Warrington, WA4 4AD, UK1995.

[19]B. Hendrickson and R. Leland, "A multilevel algorithm

for partitioning graphs," in Proceedings of the ACM

Supercomputing 1995 Conference, New York, 1995, pp.

28-42.

[20]G. Cybenko, "Dynamic load balancing for distributed

memory multiprocessors," Journal of Parallel and

Distributed Computing, vol. 7, pp. 279-301, 1989.

[21]T. Bui and C. Jones, "A heuristic for reducing fill in

sparse matrix factorization," in SIAM Conference on

Parallel Processing for Scientific Computing,

Philadelphia, PA, 1993, pp. 445-452.

[22]S. H. Bokhari, "On the mapping problem," IEEE

Transactions on Computers, vol. 100, pp. 207-214, 1981.

[23]S. H. Bokhari, Assignment problems in parallel and

distributed computing vol. 32. New York, NY. Springer-

Verlag, 1987.

[24]M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T.

Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N.

Matsunaga, K. A. Nguyen, S. S., T. L. Windus, M.

Dupuis, and J. A. J. Montgomery, "General atomic and

molecular electronic structure system," Journal of

Computational Chemistry, vol. 14, pp. 1347-1363, 1993.

[25]M. S. Gordon and M. W. Schmidt, "Advances in

electronic structure theory: GAMESS a decade later," in

Theory and Applications of Computational Chemistry:

The First Forty Years, C. Dykstra, G. Frenking, K. Kim,

and G. Scuseria, Eds., ed. Elsevier Science, 2005, pp.

1167-1189.

[26]Argonne National Laboratory: Argonne Leadership

Computing Facility. Available: http://www.alcf.anl.gov/,

[27]G. D. Fletcher, D. G. Fedorov, S. R. Pruitt, T. L.

Windus, and M. S. Gordon, "Large-scale MP2

calculations on the Blue Gene architecture using the

Fragment Molecular Orbital method," Journal of

Chemical Theory and Computation, vol. 8, pp. 75-79,

2012.

[28]A. Mahajan, S. Leyffer, J. Linderoth, J. Luedtke, and T.

Munson. MINOTAUR wiki. Available:

http://www.mcs.anl.gov/minotaur, (January 16, 2012)

http://www.alcf.anl.gov/
http://www.mcs.anl.gov/minotaur

[29]R. Zalesny, M. G. Papadopoulos, P. G. Mezey, and J.

Leszczynski, Linear-Scaling Techniques in

Computational Chemistry and Physics. New York, NY.

Springer, 2011.

[30]J. R. Reimers, Computational Methods for Large

Systems: Electronic Structure Approaches for

Biotechnology and Nanotechnology. Singapore. Wiley,

2011.

[31]E. Apra, R. J. Harrison, W. Shelton, V. Tipparaju, and A.

Vázquez-Mayagoitia, "Computational chemistry at the

petascale: Are we there yet?," in Journal of Physics:

Conference Series, 2009, p. 012027.

[32]Y. Hasegawa, J. I. Iwata, M. Tsuji, D. Takahashi, A.

Oshiyama, K. Minami, T. Boku, F. Shoji, A. Uno, and M.

Kurokawa, "First-principles calculations of electron states

of a silicon nanowire with 100,000 atoms on the K

computer," in Proceedings of the ACM/IEEE

Supercomputing 2005 Conference, Seattle, 2011, pp. 1-

11.

[33]E. Apra, A. P. Rendell, R. J. Harrison, V. Tipparaju, W.

A. deJong, and S. S. Xantheas, "Liquid water: obtaining

the right answer for the right reasons," in Proceedings of

the ACM/IEEE Supercomputing 2009 Conference,

Portland, 2009, p. 66.

[34]K. Kowalski, S. Krishnamoorthy, R. M. Olson, V.

Tipparaju, and E. Aprà, "Scalable implementations of

accurate excited-state coupled cluster theories:

Application of high-level methods to porphyrin-based

systems," in Proceedings of the ACM/IEEE

Supercomputing 2011 Conference, Seattle, 2011, pp. 1-

10.

[35]Y. Alexeev, R. A. Kendall, and M. S. Gordon, "The

distributed data SCF," Computer Physics

Communications, vol. 143, pp. 69-82, 2002.

[36]Y. Alexeev, M. W. Schmidt, T. L. Windus, and M. S.

Gordon, "A parallel distributed data CPHF algorithm for

analytic Hessians," Journal of Computational Chemistry,

vol. 28, pp. 1685-1694, 2007.

[37]M. Krishnan, Y. Alexeev, T. L. Windus, and J.

Nieplocha, "Multilevel parallelism in computational

chemistry using Common Component Architecture and

Global Arrays," in Proceedings of the ACM/IEEE

Supercomputing 2005 Conference, Seattle, 2005, pp. 23-

23.

[38]G. Fletcher, "A parallel multi-configuration self-

consistent field algorithm," Molecular Physics, vol. 105,

pp. 2971-2976, 2007.

[39]M. Challacombe and E. Schwegler, "Linear scaling

computation of the Fock matrix," Journal of Chemical

Physics, vol. 106, pp. 5526-5536, 1997.

[40]R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, and G.

Beylkin, "Multiresolution quantum chemistry: Basic

theory and initial applications," Journal of Chemical

Physics, vol. 121, p. 11587, 2004.

[41]M. S. Gordon, S. R. Pruitt, D. G. Fedorov, and L. V.

Slipchenko, "Fragmentation methods: a route to accurate

calculations on large systems," Chemical Reviews, vol.

112, pp. 632-672, 2012.

[42]S. Hirata, M. Valiev, M. Dupuis, S. S. Xantheas, S.

Sugiki, and H. Sekino, "Fast electron correlation methods

for molecular clusters in the ground and excited states,"

Molecular Physics, vol. 103, pp. 2255-2265, 2005.

[43]K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M.

Uebayasi, "Fragment molecular orbital method: an

approximate computational method for large molecules,"

Chemical Physics Letters, vol. 313, pp. 701-706, 1999.

[44]D. G. Fedorov, T. Nagata, and K. Kitaura, "Exploring

chemistry with the Fragment Molecular Orbital method,"

Physical Chemistry Chemical Physics, vol. 14, pp. 7562-

7577, 2012.

[45]D. G. Fedorov and K. Kitaura, "The importance of three-

body terms in the fragment molecular orbital method,"

Journal of Chemical Physics, vol. 120, pp. 6832-6840,

2004.

[46]G. D. Fletcher, M. W. Schmidt, B. M. Bode, and M. S.

Gordon, "The distributed data interface in GAMESS,"

Computer Physics Communications, vol. 128, pp. 190-

200, 2000.

[47]J. L. Bentz, R. M. Olson, M. S. Gordon, M. W. Schmidt,

and R. A. Kendall, "Coupled cluster algorithms for

networks of shared memory parallel processors,"

Computer Physics Communications, vol. 176, pp. 589-

600, 2007.

[48]D. G. Fedorov, R. M. Olson, K. Kitaura, M. S. Gordon,

and S. Koseki, "A new hierarchical parallelization

scheme: Generalized distributed data interface (GDDI),

and an application to the fragment molecular orbital

method (FMO)," Journal of Computational Chemistry,

vol. 25, pp. 872-880, 2004.

[49]T. Ikegami, T. Ishida, D. G. Fedorov, K. Kitaura, Y.

Inadomi, H. Umeda, M. Yokokawa, and S. Sekiguchi,

"Full electron calculation beyond 20,000 atoms: Ground

electronic state of photosynthetic proteins," in

Proceedings of the ACM/IEEE Supercomputing 2005

Conference, Seattle, pp. 10-10.

[50]Y. Alexeev. FMO portal: Web interface for FMOtools.

Available: http://www.fmo-portal.info, (January 16,

2012)

[51]D. G. Fedorov, Y. Alexeev, and K. Kitaura, "Geometry

optimization of the active site of a large system with the

fragment molecular orbital method," Journal of Physical

Chemistry Letters, vol. 2, pp. 282-288, 2011.

[52]D. G. Fedorov, T. Ishida, and K. Kitaura, "Multilayer

formulation of the fragment molecular orbital method

(FMO)," The Journal of Physical Chemistry A, vol. 109,

pp. 2638-2646, 2005.

[53]C. L. Janssen and I. M. B. Nielsen, Parallel computing

in quantum chemistry. CRC Press, 2008.

[54]T. Ibaraki and N. Katoh, Resource allocation problems:

algorithmic approaches. Cambridge, MA. The MIT

Press, 1988.

http://www.fmo-portal.info/

[55]R. J. Dakin, "A tree-search algorithm for mixed integer

programming problems," The Computer Journal, vol. 8,

pp. 250-255, 1965.

[56]I. Quesada and I. E. Grossmann, "An LP/NLP based

branch and bound algorithm for convex MINLP

optimization problems," Computers & Chemical

Engineering, vol. 16, pp. 937-947, 1992.

[57]M. A. Duran and I. E. Grossmann, "An outer-

approximation algorithm for a class of mixed-integer

nonlinear programs," Mathematical Programming, vol.

36, pp. 307-339, 1986.

[58]R. Fletcher and S. Leyffer, "Solving mixed integer

nonlinear programs by outer approximation,"

Mathematical Programming, vol. 66, pp. 327-349, 1994.

[59]T. Westerlund and F. Pettersson, "An extended cutting

plane method for solving convex MINLP problems,"

Computers & Chemical Engineering, vol. 19, pp. 131-

136, 1995.

[60]A. Mahajan, S. Leyffer, and C. Kirches, "Solving mixed-

integer nonlinear programs by QP-diving," Argonne

National Laboratory ANL/MCS-P2071-0312, 2012

[61]R. Horst and T. Hoang, Global Optimization:

Deterministic Approaches. Berlin. Springer-Verlag, 1996.

[62]M. Tawarmalani and N. V. Sahinidis, Convexification

and Global Optimization in Continuous and Mixed-

Integer Nonlinear Programming: Theory, Algorithms,

Software, and Applications vol. 65. Dordrecht. Kluwer

Academic Publishers, 2002.

[63]R. Fourer, D. M. Gay, and B. Kernighan, AMPL: A

Modeling Language for Mathematical Programming, 2nd

Edition Independence, KY. Cengage Learning, 2002.

[64]J. J. Forrest. Clp project. Available: http://projects.coin-

or.org/Clp, (January 16, 2012)

[65]R. Fletcher and S. Leyffer, "Nonlinear programming

without a penalty function," Mathematical Programming,

vol. 91, pp. 239-269, 2002.

[66]T. Ikegami, T. Ishida, D. G. Fedorov, K. Kitaura, Y.

Inadomi, H. Umeda, M. Yokokawa, and S. Sekiguchi,

"Fragment molecular orbital study of the electronic

excitations in the photosynthetic reaction center of

Blastochloris viridis," Journal of Computational

Chemistry, vol. 31, pp. 447-454, 2010.

http://projects.coin-or.org/Clp
http://projects.coin-or.org/Clp

