Mixed-Integer Nonlinear Optimization: Introduction, Modeling, and Applications GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Collaborators

Pietro Belotti and Ashutosh Mahajan

Christian Kirches, Jeff Linderoth, and Jim Luedtke

Outline

(1) Problem, Notation, and Definitions
(2) Basic Building Blocks of MINLP Methods
(3) MINLP Modeling Practices

4 Summary and Teaching Points

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& x_{i} \in \mathbb{Z} \text { for all } i \in \mathcal{I} \quad \text { set of integers }
\end{array}
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ smooth (often convex) functions
- $\mathcal{X} \in \mathbb{R}^{n}$ bounded, polyhedral set, e.g. $\mathcal{X}=\left\{x: I \leq A^{T} x \leq u\right\}$
- $\mathcal{I} \subset\{1, \ldots, n\}$ subset of integer variables
- $x_{i} \in \mathbb{Z}$ for all $i \in \mathcal{I}$... combinatorial problem
- Combines challenges of handling nonlinearities with combinatorial explosion of integer variables
- More general constraints possible, e.g. $I \leq c(x) \leq u$ etc.

Complexity of MINLP

Mixed-Integer Nonlinear Program (MINLP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& x_{i} \in \mathbb{Z} \text { for all } i \in \mathcal{I}
\end{array}
$$

Complexity of MINLP

- MINLP is NP-hard: includes MILP, which are NP-hard [Kannan and Monma, 1978]
- Worse: MINLP are undecidable [Jeroslow, 1973]: quadratically constrained IP for which no computing device can compute the optimum for all problems in this class ... but we're OK if \mathcal{X} is compact!

Notation

Some notation used throughout the course ...

- $f^{(k)}=f\left(x^{(k)}\right)$ evaluated at $x=x^{(k)}$
- $\nabla f^{(k)}=\nabla f\left(x^{(k)}\right)$ gradient
- Hessian of Lagrangian $\mathcal{L}(x, \lambda)=f(x)-\sum \lambda_{i} c_{i}(c)$ is $\nabla^{2} \mathcal{L}^{(k)}$... assumes \mathcal{X} polyhedral
- Subscripts denote components, e.g. x_{i} is component i of x
- If $\mathcal{J} \subset\{1, \ldots, n\}$ then $x_{\mathcal{J}}$ are components of x corres. to \mathcal{J}
- $x_{\mathcal{I}}$ integer and $x_{\mathcal{C}}$ are the continuous variables, $p=|\mathcal{I}|$
- Floor and ceiling operators: $\left\lfloor x_{i}\right\rfloor$ and $\left\lceil x_{i}\right\rceil$:
- $\left\lfloor x_{i}\right\rfloor$ largest integer smaller than or equal to x_{i}
- $\left\lceil x_{i}\right\rceil$ smallest integer larger than or equal to x_{i}

Recall: Convexity of Nonlinear Functions

MINLP techniques distinguish convex and nonconvex MINLPs.
For our purposes, we define convexity as ...

Definition (Convex Functions)

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, iff $\forall x^{(0)}, x^{(1)} \in \mathbb{R}^{n}$ we have:

$$
f\left(x^{(1)}\right) \geq f\left(x^{(0)}\right)+\left(x^{(1)}-x^{(0)}\right)^{T} \nabla f^{(0)}
$$

In a slight abuse of notation, we say that ...

Definition (Convexity of MINLP)

MINLP is a convex if the problem functions $f(x)$ and $c(x)$ are convex functions. If either $f(x)$ or any $c_{i}(x)$ is a nonconvex function, then MINLP is nonconvex.

Recall Convexity (cont.)

We also define the convex hull of a set S as ...

Definition (Convex Hull)

For a set S, the convex hull of S is $\operatorname{conv}(S)$:

$$
\left\{x \mid x=\lambda x^{(1)}+(1-\lambda) x^{(0)}, \forall 0 \leq \lambda \leq 1, \forall x^{(0)}, x^{(1)} \in S\right\} .
$$

- If $\mathcal{X}=\left\{x \in \mathbb{Z}^{p}: I \leq x \leq u\right\}$ and $I \in \mathbb{Z}^{p}, u \in \mathbb{Z}^{p}$, then $\operatorname{conv}(\mathcal{X})=[I, u]^{P}$
- Finding convex hull is hard, even for polyhedral \mathcal{X}.
- Convex hull important for MILP ...

Theorem (LP Relaxations of MILP)

MILP can be solved as LP over the convex hull of feasible set.

MILP \neq MINLP

Important difference between MINLP and MILP

$$
\underset{x}{\operatorname{minimize}} \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2}, \quad \text { subject to } x_{i} \in\{0,1\}
$$

... solution is not extreme point (lies in interior) Remedy: Introduce objective η and a constraint $\eta \geq f(x)$

$$
\begin{cases}\underset{\eta, x}{\operatorname{minimize}} & \eta, \\ \text { subject to } & f(x) \leq \eta, \\ & c(x) \leq 0, \\ & x \in \mathcal{X}, \\ & x_{i} \in \mathbb{Z}, \forall i \in \mathcal{I} .\end{cases}
$$

Assume MINLP objective is linear

MILP \neq MINLP

Important difference between MINLP and MILP

$$
\underset{x}{\operatorname{minimize}} \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2}, \quad \text { subject to } x_{i} \in\{0,1\}
$$

... solution is not extreme point (lies in interior) Remedy: Introduce objective η and a constraint $\eta \geq f(x)$

$$
\begin{cases}\underset{\eta, x}{\operatorname{minimize}} & \eta, \\ \text { subject to } & f(x) \leq \eta, \\ & c(x) \leq 0, \\ & x \in \mathcal{X}, \\ & x_{i} \in \mathbb{Z}, \forall i \in \mathcal{I}\end{cases}
$$

Assume MINLP objective is linear

Outline

(1) Problem, Notation, and Definitions
(2) Basic Building Blocks of MINLP Methods

3 MINLP Modeling Practices

4 Summary and Teaching Points

Relaxation and Constraint Enforcement

Relaxation

- Used to compute a lower bound on the optimum
- Obtained by enlarging feasible set; e.g. ignore constraints
- Typically much easier to solve than MINLP

Constraint Enforcement

- Exclude solutions from relaxations not feasible in MINLP
- Refine or tighten of relaxation; e.g. add valid inequalities

Upper Bounds

- Obtained from any feasible point; e.g. solve NLP for fixed $x_{\mathcal{I}}$

Relaxations of Integrality

Definition (Relaxation)

Optimization problem $\min \{\breve{f}(x): x \in \mathcal{R}\}$ is a relaxation of $\min \{f(x): x \in \mathcal{F}\}$, iff $\mathcal{R} \supset \mathcal{F}$ and $\breve{f}(x) \leq f(x)$ for all $x \in \mathcal{F}$.

Goal: relaxation easy to solve globally, e.g. MILP or NLP
Relaxing Integrality

- Relax Integrality $x_{i} \in \mathbb{Z}$ to $x_{i} \in \mathbb{R}$ for all $i \in \mathcal{I}$
- Gives nonlinear relaxation of MINLP, or NLP:

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & f(x), \\ \text { subject to } & c(x) \leq 0, \\ & x \in \mathcal{X}, \text { continuous }\end{cases}
$$

- Used in branch-and-bound algorithms

Relaxations of Nonlinear Convex Constraints

Relaxing Convex Constraints

- Convex $0 \geq c(x)$ and $\eta \geq f(x) f$ relaxed by supporting hyperplanes

$$
\begin{aligned}
& \eta \geq f^{(k)}+\nabla f^{(k)^{T}}\left(x-x^{(k)}\right) \\
& 0 \geq c^{(k)}+\nabla c^{(k)^{T}}\left(x-x^{(k)}\right)
\end{aligned}
$$

for a set of points $x^{(k)}, k=1, \ldots, K$.

- Obtain polyhedral relaxation of convex constraints.
- Used in the outer approximation methods.

Relaxations of Nonconvex Constraints

Relaxing Nonconvex Constraints

- Construct convex underestimators, $\breve{f}(x)$ and $\breve{c}(x)$ for nonconvex functions $c(x)$ and $f(x)$:

$$
\breve{f}(x) \leq f(x) \quad \text { and } \quad \breve{c}(x) \leq c(x), \forall x \in \operatorname{conv}(\mathcal{X}) .
$$

- Relax constraints $z \geq f(x)$ and $0 \geq c(x)$ as

$$
z \geq \breve{f}(x) \quad \text { and } \quad 0 \geq \breve{c}(x)
$$

- Used in spatial branch-and-bound.

Relaxations Summary

Nonlinear and polyhedral relaxation

Relaxations

Relaxations can be combined to produce better algorithms

- Relax convex underestimators via supporting hyperplanes.
- Relax integrality of polyhedral relaxation to obtain an LP.

Relaxations are useful because we have following result:

Theorem (Relaxation Property)

If the solution of the relaxation of the η-MINLP is feasible in the η-MINLP, then it solves the MINLP.
... but if solution of relaxation is not feasible, then need ...

Constraint Enforcement

Goal: Given solution of relaxation, \hat{x}, not feasible in MINLP, exclude it from further consideration to ensure convergence

Three constraint enforcement strategies
(1) Relaxation refinement: tighten the relaxation
(2) Branching: disjunction to exclude set of non-integer points
(3) Spatial branching: divide region into sub-regions

Strategies can be combined ...

Constraint Enforcement: Refinement

Tighten the relaxation to remove current solution \hat{x} of relaxation

- Add a valid inequality to relaxation, i.e. an inequality that is satisfied by all feasible solutions of MINLP
- Valid inequality is called a cut if it excludes \hat{x}
- Example: $c(x) \leq 0$ convex, and $\exists i: c_{i}(\hat{x})>0$, then

$$
0 \geq \hat{c}_{i}+\nabla \hat{c}^{T}(x-\hat{x})
$$

cuts off \hat{x}. Proof: Exercise.

- Used in Benders decomposition and outer approximation.
- MILP: cuts are basis for branch-and-cut techniques.

Constraint Enforcement: Branching

Eliminate current \hat{x} solution by branch on integer variables:
(1) Select fractional \hat{x}_{i} for some $i \in \mathcal{I}$
(2) Create two new relaxations by adding

$$
x_{i} \leq\left\lfloor\hat{x}_{i}\right\rfloor \text { and } x_{i} \geq\left\lceil\hat{x}_{i}\right\rceil \quad \text { respectively }
$$

... solution to MINLP lies in one of the new relaxations.

... creates branch-and-bound tree

Branch-and-Bound Trees can be Huge

Tree after 360 s CPU time has more than 10,000 nodes

Constraint Enforcement: Spatial Branching

Enforcement for relaxed nonconvex constraints

- Combine branching and relaxation refinement
- Branch on continuous variable and split domain in two parts.
- Create new relaxation over (reduced) sub-domains.
- Generates tree similar to integer branching.
- Mix with interval techniques to eliminate sub-domains.

Nonconvex MINLPs combine all 3 enforcement techniques.

Outline

(1) Problem, Notation, and Definitions
(2) Basic Building Blocks of MINLP Methods
(3) MINLP Modeling Practices

4 Summary and Teaching Points

MINLP Tree

How Big Is It?

The Leyffer-Linderoth-Luedtke (LLL) Measure of Complexity
You have a problem of class X that has Y decision variables? What is the largest value of Y for which one of Sven, Jim, and Jeff would be willing to bet $\$ 50$ that a "state-of-the-art" solver could solve the problem?

How Big Is It?

The Leyffer-Linderoth-Luedtke (LLL) Measure of Complexity

You have a problem of class X that has Y decision variables? What is the largest value of Y for which one of Sven, Jim, and Jeff would be willing to bet $\$ 50$ that a "state-of-the-art" solver could solve the problem?

Convex		Nonconvex	
Prob. Class (X)	\# Var (Y)	Prob. Class (X)	\# Var (Y)
MINLP	500	MINLP	100
NLP	5×10^{4}	NLP	100
MISOCP	1000	MIPP	150
SOCP	10^{5}	PP	150
MIQP	1000	MIQP	300
QP	5×10^{5}	QP	300
MILP	2×10^{4}		
LP	5×10^{7}		

MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999]
... even more important in MINLP

- MINLP combines integer and nonlinear formulations
- Reformulations of nonlinear relationships can be convex
- Interactions of nonlinear functions and binary variables
- Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.

MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999]
... even more important in MINLP

- MINLP combines integer and nonlinear formulations
- Reformulations of nonlinear relationships can be convex
- Interactions of nonlinear functions and binary variables
- Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.

The great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.

- R. Tyrrell Rockafellar

Linearization of Constraints

Assum $x_{2} \neq 0$. A simple transformation (a constant parameter):

$$
\frac{x_{1}}{x_{2}}=a \Leftrightarrow x_{1}=a x_{2}
$$

Linearization of bilinear terms $x_{1} x_{2}$ with:

- Binary variable $x_{2} \in\{0,1\}$
- Variable upper bound: $0 \leq x_{1} \leq U x_{2}$
... introduce new variable x_{12} to replace $x_{1} x_{2}$ and add constraints

$$
0 \leq x_{12} \leq x_{2} U \text { and }-U\left(1-x_{2}\right) \leq x_{1}-x_{12} \leq U\left(1-x_{2}\right)
$$

Never Multiply a Nonlinear Function by a Binary

Previous example generalizes to nonlinear functions Often binary variables "switch" constraints on/off

Warning

Never model on/off constraints by multiplying by a binary variable.

Three alternative approaches

- Disjunctive programming, see [Grossmann and Lee, 2003]
- Perspective formulations (not always), see [Günlük and Linderoth, 2012]
- Big-M formulation (weak relaxations)

Avoiding Undefined Nonlinear Expressions

MINLP solvers fail because NLP solver gets IEEE exception, e.g.

$$
c\left(x_{1}\right)=-\ln \left(\sin \left(x_{1}\right)\right) \leq 0,
$$

cannot be evaluated at $\sin \left(x_{1}\right) \leq 0$
Reformulate equivalently as

$$
\tilde{c}\left(x_{2}\right)=-\ln \left(x_{2}\right) \leq 0, x_{2}=\sin \left(x_{1}\right), \text { and } x_{2} \geq 0
$$

IPM solvers never evaluate at $x_{2} \leq 0$
Active-set method can also safeguard against $x_{2} \leq 0$

- $x_{2} \geq 0$ is s simple bound which can be enforced exactly
- $x_{2}=0$ get IEEE exception \Rightarrow trap \& reduce trust-region
- As $x_{2} \rightarrow 0$, the constraint violation $c\left(x_{2}\right) \rightarrow \infty$

Modeling of Discrete Variables

We can model discrete variables such as

$$
y \in\left\{Y_{1}, Y_{2}, \ldots, Y_{k}\right\}
$$

where Y_{i} are discrete parameters (e.g. pipe diameters) with special ordered sets (SOS):

$$
y=\sum_{i=1}^{k} z_{i} Y_{i}, \quad 1=\sum_{i=1}^{k} z_{i}, \quad z_{i} \in\{0,1\}
$$

see [Beale and Tomlin, 1970, Beale and Forrest, 1976]

- Similarly linearize univariate functions $f(z), z \in \mathbb{Z}$
- Generalizes to higher dimensions
- Solvers detect SOS structure and use special branching rules

Design of Water Distribution Networks

Model of water, gas, air networks
Goal: design minimum cost network from discrete pipe diameters

- \mathcal{N} nodes in network
- \mathcal{S} source nodes
- \mathcal{A} : arcs in the network

Design of Water Distribution Networks

Goal

Design minimum cost network from discrete pipe diameters
\mathcal{N} nodes, \mathcal{S} source nodes, \mathcal{A} : arcs in the network
Variables:
$q_{i j}: \quad$ flow pipe $(i, j) \in \mathcal{A}$
$d_{i j}$: diameter of pipe $(i, j) \in \mathcal{A}$, where $d_{i j} \in\left\{P_{1}, \ldots, P_{r}\right\}$
h_{i} : hydraulic head at node $i \in \mathcal{N}$
$z_{i j}$: binary variables model flow direction $(i, j) \in \mathcal{A}$
$a_{i j}$: area of cross section $(i, j) \in \mathcal{A}$
$y_{i j k}$: SOS-1 variables to model diameter
NB: Area $a_{i j}=\pi d_{i j}^{2} / 4$ is redundant \ldots but useful!

Design of Water Distribution Networks

\mathcal{N} nodes
$\mathcal{S} \subset \mathcal{N}$ source nodes
\mathcal{A} : arcs in the network

Equations for $q_{i j}$ flow pipe $(i, j) \in \mathcal{A}$

- Conservation of flow at every node

$$
\sum_{(i, j) \in \mathcal{A}} q_{i j}-\sum_{(j, i) \in \mathcal{A}} q_{j i}=D_{i}, \forall i \in \mathcal{N}-\mathcal{S} .
$$

- Flow bounds are nonlinear in $d_{i j}$... linear in $a_{i j}$:

$$
-V_{\max } a_{i j} \leq q_{i j} \leq V_{\max } a_{i j}, \forall(i, j) \in \mathcal{A}
$$

Design of Water Distribution Networks

Modeling Trick: SOS \& Nonlinear Expressions

Modeling discrete $d_{i j} \in\left\{P_{1}, \ldots, P_{r}\right\}$ and nonlinear $a_{i j}=\pi d_{i j}^{2} / 4$:
(1) Introduce SOS-1 variables $y_{i j k} \in\{0,1\}$ for $k=1, \ldots, r$
(2) Model discrete choice as linear equation

$$
\sum_{k=1}^{r} y_{i j k}=1, \quad \text { and } \quad \sum_{k=1}^{r} P_{k} y_{i j k}=d_{i j} . \forall(i, j) \in \mathcal{A}
$$

(3) Model nonlinear relationship as linear equation

$$
\sum_{k=1}^{r}\left(\pi P_{k} / 4\right) y_{i j k}=a_{i j}, \forall(i, j) \in \mathcal{A}
$$

\Rightarrow no longer need nonlinear equation $a_{i j}=\pi d_{i j}^{2} / 4$!

Design of Water Distribution Networks

Nonsmooth pressure loss model along arc $(i, j) \in \mathcal{A}$

$$
h_{i}-h_{j}=\frac{\operatorname{sgn}\left(q_{i j}\right)\left|q_{i j}\right|^{c_{1}} c_{2} L_{i j} K_{i j}^{-c_{1}}}{d_{i j}^{c_{3}}}
$$

... introduce binary variables to model nonsmooth term $\left|q_{i j}\right|^{c_{1}}$
(1) Add binary variables $z_{i j} \in\{0,1\}$, and $q_{i j}=q_{i j}^{+}-q_{i j}^{-}$.

$$
0 \leq q_{i j}^{+} \leq Q_{\max } z_{i j}, \quad 0 \leq q_{i j}^{-} \leq Q_{\max }\left(1-z_{i j}\right)
$$

(2) Pressure drop becomes

$$
h_{i}-h_{j}=\frac{\left[\left(q_{i j}^{+}\right)^{c_{1}}-\left(q_{i j}^{-}\right)^{c_{1}}\right] c_{2} L_{i j} K_{i j}^{-c_{1}}}{d_{i j}^{c_{3}}}, \forall(i, j) \in \mathcal{A} .
$$

... can again linearize the $d_{i j}^{c_{3}}$ expression with SOS
... alternative uses complementarity: $0 \leq q_{i j}^{+} \perp q_{i j}^{-} \geq 0$

Optimization of IEEE 802.11 Broadband Networks

Optimize 802.11 broadband networks for resource sharing meshes

- objective: minimizing co-channel and inter-channel interference
- integrality: assign channels to basic nodes within a network
- 13 Direct Sequence Spread Spectrum (DSSS) overlapping channels
- co-channel interference: two access points with same channel
- inter-channel interference: cards with overlapping channels transmit simultaneously
\Rightarrow general nonconvex MINLP

Original model has one horrible constraint ...

Optimization of IEEE 802.11 Broadband Networks

... and the horrible constraint is ...

$$
z=\frac{1}{1+1000(x-y)^{10}}
$$

- highly nonlinear/nonconvex

Optimization of IEEE 802.11 Broadband Networks

... and the horrible constraint is ...

$$
z=\frac{1}{1+1000(x-y)^{10}}
$$

- highly nonlinear/nonconvex
- $z=1$, if $x=y$
- $z=0$, if $x \neq y$

Optimization of IEEE 802.11 Broadband Networks

... and the horrible constraint is ...

$$
z=\frac{1}{1+1000(x-y)^{10}}
$$

- highly nonlinear/nonconvex
- $z=1$, if $x=y$
- $z=0$, if $x \neq y$
- x, y integer (channels)

Optimization of IEEE 802.11 Broadband Networks

... and the horrible constraint is ...

$$
z=\frac{1}{1+1000(x-y)^{10}}
$$

- highly nonlinear/nonconvex
- $z=1$, if $x=y$
- $z=0$, if $x \neq y$
- x, y integer (channels)
- model as MIP not NLP

Collections of MINLP Test Problems

AMPL Collections of MINLP Test Problems
(1) MacMINLP www.mcs.anl.gov/~leyffer/macminlp/
(2) IBM/CMU collection egon.cheme.cmu.edu/ibm/page.htm

GAMS Collections of MINLP Test Problems
(1) GAMS MINLP-world www.gamsworld.org/minlp/
(2) MINLP CyberInfrastructure www.minlp.org/index.php

Solve MINLPs online on the NEOS server, www.neos-server.org/neos/
... and there are even a few CUTEr problems in SIF!

Summary and Teaching Points

Basic building blocks of solvers

- Relaxation ... create easier to solve problem
- Constraint enforcement ... exclude relaxation solution
- Upper bounds ... prune search space
... more on these concepts over the next three days!

Modeling is very, very, very important

- Linearize, linearize, linearize as much as possible
- Prefer linear over convex and convex over nonconvex ... order or magnitude difference in solver capabilities

Beale, E. and Tomlin, J. (1970).
Special facilities in a general mathematical programming system for non- convex problems using ordered sets of variables.
In Lawrence, J., editor, Proceedings of the 5th International Conference on
Operations Research, pages 447-454, Venice, Italy.
Beale, E. M. L. and Forrest, J. J. H. (1976).
Global optimization using special ordered sets.
Mathematical Programming, 10:52-69.

Grossmann, I. and Lee, S. (2003).
Generalized convex disjunctive programming: Nonlinear convex hull relaxation.
Computational Optimization and Applications, pages 83-100.

Günlük, O. and Linderoth, J. T. (2012).
Perspective reformulation and applications.
In IMA Volumes, volume 154, pages 61-92.

Jeroslow, R. G. (1973).
There cannot be any algorithm for integer programming with quadratic constraints.
Operations Research, 21(1):221-224.

Kannan, R. and Monma, C. (1978).
On the computational complexity of integer programming problems.
In Henn, R., Korte, B., and Oettli, W., editors, Optimization and Operations Research,, volume 157 of Lecture Notes in Economics and Mathematical Systems, pages 161-172. Springer.

Williams, H. P. (1999).
Model Building in Mathematical Programming. John Wiley \& Sons.

