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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I set of integers

f : Rn → R, c : Rn → Rm smooth (often convex) functions

X ∈ Rn bounded, polyhedral set, e.g. X = {x : l ≤ AT x ≤ u}
I ⊂ {1, . . . , n} subset of integer variables

xi ∈ Z for all i ∈ I ... combinatorial problem

Combines challenges of handling nonlinearities
with combinatorial explosion of integer variables

More general constraints possible, e.g. l ≤ c(x) ≤ u etc.
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Complexity of MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Complexity of MINLP

MINLP is NP-hard: includes MILP, which are NP-hard
[Kannan and Monma, 1978]

Worse: MINLP are undecidable [Jeroslow, 1973]:
quadratically constrained IP for which no computing device
can compute the optimum for all problems in this class
... but we’re OK if X is compact!
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Notation

Some notation used throughout the course ...

f (k) = f (x (k)) evaluated at x = x (k)

∇f (k) = ∇f (x (k)) gradient

Hessian of Lagrangian L(x , λ) = f (x)−
∑
λici (c) is ∇2L(k)

... assumes X polyhedral

Subscripts denote components, e.g. xi is component i of x

If J ⊂ {1, . . . , n} then xJ are components of x corres. to J
xI integer and xC are the continuous variables, p = |I|
Floor and ceiling operators: bxic and dxie:

bxic largest integer smaller than or equal to xi
dxie smallest integer larger than or equal to xi
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Recall: Convexity of Nonlinear Functions

MINLP techniques distinguish convex and nonconvex MINLPs.
For our purposes, we define convexity as ...

Definition (Convex Functions)

A function f : Rn → R is convex, iff ∀x (0), x (1) ∈ Rn we have:

f (x (1)) ≥ f (x (0)) + (x (1) − x (0))T∇f (0)

In a slight abuse of notation, we say that ...

Definition (Convexity of MINLP)

MINLP is a convex if the problem functions f (x) and c(x) are
convex functions. If either f (x) or any ci (x) is a nonconvex
function, then MINLP is nonconvex.
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Recall Convexity (cont.)

We also define the convex hull of a set S as ...

Definition (Convex Hull)

For a set S , the convex hull of S is conv(S):{
x |x = λx (1) + (1− λ)x (0), ∀0 ≤ λ ≤ 1, ∀x (0), x (1) ∈ S

}
.

If X = {x ∈ Zp : l ≤ x ≤ u} and l ∈ Zp, u ∈ Zp,
then conv(X ) = [l , u]p

Finding convex hull is hard, even for polyhedral X .

Convex hull important for MILP ...

Theorem (LP Relaxations of MILP)

MILP can be solved as LP over the convex hull of feasible set.
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MILP 6= MINLP
Important difference between MINLP and MILP

minimize
x

n∑
i=1

(xi − 1
2)2, subject to xi ∈ {0, 1}

... solution is not extreme point (lies in interior)
Remedy: Introduce objective η and a constraint η ≥ f (x)



minimize
η,x

η,

subject to f (x) ≤ η,
c(x) ≤ 0,
x ∈ X ,
xi ∈ Z, ∀i ∈ I.

Assume MINLP objective is linear x1

x2

(x̂1, x̂2)

η
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Relaxation and Constraint Enforcement

Relaxation

Used to compute a lower bound on the optimum

Obtained by enlarging feasible set; e.g. ignore constraints

Typically much easier to solve than MINLP

Constraint Enforcement

Exclude solutions from relaxations not feasible in MINLP

Refine or tighten of relaxation; e.g. add valid inequalities

Upper Bounds

Obtained from any feasible point; e.g. solve NLP for fixed xI
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Relaxations of Integrality

Definition (Relaxation)

Optimization problem min{f̆ (x) : x ∈ R} is a relaxation of
min{f (x) : x ∈ F}, iff R ⊃ F and f̆ (x) ≤ f (x) for all x ∈ F .

Goal: relaxation easy to solve globally, e.g. MILP or NLP

Relaxing Integrality

Relax Integrality xi ∈ Z to xi ∈ R for all i ∈ I
Gives nonlinear relaxation of MINLP, or NLP:

minimize
x

f (x),

subject to c(x) ≤ 0,
x ∈ X , continuous

Used in branch-and-bound algorithms
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Relaxations of Nonlinear Convex Constraints
Relaxing Convex Constraints

Convex 0 ≥ c(x) and η ≥ f (x)f relaxed by supporting
hyperplanes

η ≥ f (k) +∇f (k)T (x − x (k))

0 ≥ c(k) +∇c(k)T (x − x (k))

for a set of points x (k), k = 1, . . . ,K .

Obtain polyhedral relaxation of convex constraints.

Used in the outer approximation methods.
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Relaxations of Nonconvex Constraints

Relaxing Nonconvex Constraints

Construct convex underestimators, f̆ (x) and c̆(x) for
nonconvex functions c(x) and f (x):

f̆ (x) ≤ f (x) and c̆(x) ≤ c(x), ∀x ∈ conv(X ).

Relax constraints z ≥ f (x) and 0 ≥ c(x) as

z ≥ f̆ (x) and 0 ≥ c̆(x).

Used in spatial branch-and-bound.
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Relaxations Summary

Nonlinear and polyhedral relaxation
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Relaxations

Relaxations can be combined to produce better algorithms

Relax convex underestimators via supporting hyperplanes.

Relax integrality of polyhedral relaxation to obtain an LP.

Relaxations are useful because we have following result:

Theorem (Relaxation Property)

If the solution of the relaxation of the η-MINLP is feasible in the
η-MINLP, then it solves the MINLP.

... but if solution of relaxation is not feasible, then need ...
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Constraint Enforcement

Goal: Given solution of relaxation, x̂ , not feasible in MINLP,
exclude it from further consideration to ensure convergence

Three constraint enforcement strategies

1 Relaxation refinement: tighten the relaxation

2 Branching: disjunction to exclude set of non-integer points

3 Spatial branching: divide region into sub-regions

Strategies can be combined ...
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Constraint Enforcement: Refinement
Tighten the relaxation to remove current solution x̂ of relaxation

Add a valid inequality to relaxation, i.e. an inequality that is
satisfied by all feasible solutions of MINLP

Valid inequality is called a cut if it excludes x̂

Example: c(x) ≤ 0 convex, and ∃i : ci (x̂) > 0, then

0 ≥ ĉi +∇ĉT (x − x̂)

cuts off x̂ . Proof: Exercise.

Used in Benders decomposition and outer approximation.

MILP: cuts are basis for branch-and-cut techniques.
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Constraint Enforcement: Branching

Eliminate current x̂ solution by branch on integer variables:

1 Select fractional x̂i for some i ∈ I
2 Create two new relaxations by adding

xi ≤ bx̂ic and xi ≥ dx̂ie respectively

... solution to MINLP lies in one of the new relaxations.

... creates branch-and-bound tree
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Branch-and-Bound Trees can be Huge

Tree after 360 s CPU time has more than 10,000 nodes
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Constraint Enforcement: Spatial Branching

Enforcement for relaxed nonconvex constraints

Combine branching and relaxation refinement

Branch on continuous variable and split domain in two parts.

Create new relaxation over (reduced) sub-domains.

Generates tree similar to integer branching.

Mix with interval techniques to eliminate sub-domains.

Nonconvex MINLPs combine all 3 enforcement techniques.
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MINLP Tree
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How Big Is It?

The Leyffer-Linderoth-Luedtke (LLL) Measure of Complexity

You have a problem of class X that has Y decision variables?
What is the largest value of Y for which one of Sven, Jim, and Jeff
would be willing to bet $50 that a “state-of-the-art” solver could
solve the problem?

Convex Nonconvex
Prob. Class (X ) # Var (Y ) Prob. Class (X ) # Var (Y )

MINLP 500 MINLP 100
NLP 5× 104 NLP 100

MISOCP 1000 MIPP 150
SOCP 105 PP 150
MIQP 1000 MIQP 300

QP 5× 105 QP 300
MILP 2× 104

LP 5× 107
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MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999]
... even more important in MINLP

MINLP combines integer and nonlinear formulations

Reformulations of nonlinear relationships can be convex

Interactions of nonlinear functions and binary variables

Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.

The great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.

- R. Tyrrell Rockafellar
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Linearization of Constraints

Assum x2 6= 0. A simple transformation (a constant parameter):

x1
x2

= a ⇔ x1 = ax2

Linearization of bilinear terms x1x2 with:

Binary variable x2 ∈ {0, 1}
Variable upper bound: 0 ≤ x1 ≤ Ux2

... introduce new variable x12 to replace x1x2 and add constraints

0 ≤ x12 ≤ x2U and − U(1− x2) ≤ x1 − x12 ≤ U(1− x2),
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Never Multiply a Nonlinear Function by a Binary

Previous example generalizes to nonlinear functions
Often binary variables “switch” constraints on/off

Warning

Never model on/off constraints by multiplying by a binary variable.

Three alternative approaches

Disjunctive programming, see [Grossmann and Lee, 2003]

Perspective formulations (not always), see
[Günlük and Linderoth, 2012]

Big-M formulation (weak relaxations)
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Avoiding Undefined Nonlinear Expressions

MINLP solvers fail because NLP solver gets IEEE exception, e.g.

c(x1) = − ln(sin(x1)) ≤ 0,

cannot be evaluated at sin(x1) ≤ 0

Reformulate equivalently as

c̃(x2) = − ln(x2) ≤ 0, x2 = sin(x1), and x2 ≥ 0.

IPM solvers never evaluate at x2 ≤ 0
Active-set method can also safeguard against x2 ≤ 0

x2 ≥ 0 is s simple bound which can be enforced exactly

x2 = 0 get IEEE exception ⇒ trap & reduce trust-region

As x2 → 0, the constraint violation c(x2)→∞
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Modeling of Discrete Variables

We can model discrete variables such as

y ∈ {Y1,Y2, . . . ,Yk}

where Yi are discrete parameters (e.g. pipe diameters) with
special ordered sets (SOS):

y =
k∑

i=1

ziYi , 1 =
k∑

i=1

zi , zi ∈ {0, 1}

see [Beale and Tomlin, 1970, Beale and Forrest, 1976]

Similarly linearize univariate functions f (z), z ∈ Z
Generalizes to higher dimensions

Solvers detect SOS structure and use special branching rules
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Design of Water Distribution Networks

Model of water, gas, air networks
Goal: design minimum cost network from discrete pipe diameters

N nodes in network

S source nodes

A: arcs in the network
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Design of Water Distribution Networks

Goal

Design minimum cost network from discrete pipe diameters

N nodes, S source nodes, A: arcs in the network

Variables:
qij : flow pipe (i , j) ∈ A
dij : diameter of pipe (i , j) ∈ A, where dij ∈ {P1, . . . ,Pr}
hi : hydraulic head at node i ∈ N
zij : binary variables model flow direction (i , j) ∈ A
aij : area of cross section (i , j) ∈ A
yijk : SOS-1 variables to model diameter

NB: Area aij = πd2
ij/4 is redundant ... but useful!
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Design of Water Distribution Networks

N nodes

S ⊂ N source nodes

A: arcs in the network

Equations for qij flow pipe (i , j) ∈ A
Conservation of flow at every node∑

(i ,j)∈A

qij −
∑

(j ,i)∈A

qji = Di , ∀i ∈ N − S.

Flow bounds are nonlinear in dij ... linear in aij :

−Vmaxaij ≤ qij ≤ Vmaxaij , ∀(i , j) ∈ A.
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Design of Water Distribution Networks

Modeling Trick: SOS & Nonlinear Expressions

Modeling discrete dij ∈ {P1, . . . ,Pr} and nonlinear aij = πd2
ij/4:

1 Introduce SOS-1 variables yijk ∈ {0, 1} for k = 1, . . . , r

2 Model discrete choice as linear equation

r∑
k=1

yijk = 1, and
r∑

k=1

Pkyijk = dij . ∀(i , j) ∈ A,

3 Model nonlinear relationship as linear equation

r∑
k=1

(πPk/4)yijk = aij , ∀(i , j) ∈ A.

⇒ no longer need nonlinear equation aij = πd2
ij/4!
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Design of Water Distribution Networks
Nonsmooth pressure loss model along arc (i , j) ∈ A

hi − hj =
sgn(qij)|qij |c1c2LijK−c1ij

dc3
ij

... introduce binary variables to model nonsmooth term |qij |c1
1 Add binary variables zij ∈ {0, 1}, and qij = q+ij − q−ij .

0 ≤ q+ij ≤ Qmaxzij , 0 ≤ q−ij ≤ Qmax(1− zij),

2 Pressure drop becomes

hi − hj =

[(
q+ij

)c1
−
(
q−ij

)c1]
c2LijK

−c1
ij

dc3
ij

, ∀(i , j) ∈ A.

... can again linearize the dc3
ij expression with SOS

... alternative uses complementarity: 0 ≤ q+ij ⊥ q−ij ≥ 0
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Optimization of IEEE 802.11 Broadband Networks

Optimize 802.11 broadband networks for resource sharing meshes

objective: minimizing co-channel and inter-channel
interference

integrality: assign channels to basic nodes within a network

13 Direct Sequence Spread Spectrum (DSSS) overlapping
channels

co-channel interference: two access points with same channel

inter-channel interference: cards with overlapping channels
transmit simultaneously

⇒ general nonconvex MINLP

Original model has one horrible constraint ...
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Optimization of IEEE 802.11 Broadband Networks

... and the horrible constraint is ...

z =
1

1 + 1000(x − y)10

highly nonlinear/nonconvex

z = 1, if x = y

z = 0, if x 6= y

x , y integer (channels)

model as MIP not NLP
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Collections of MINLP Test Problems

AMPL Collections of MINLP Test Problems

1 MacMINLP www.mcs.anl.gov/~leyffer/macminlp/

2 IBM/CMU collection egon.cheme.cmu.edu/ibm/page.htm

GAMS Collections of MINLP Test Problems

1 GAMS MINLP-world www.gamsworld.org/minlp/

2 MINLP CyberInfrastructure www.minlp.org/index.php

Solve MINLPs online on the NEOS server,
www.neos-server.org/neos/

... and there are even a few CUTEr problems in SIF!
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Summary and Teaching Points

Basic building blocks of solvers

Relaxation ... create easier to solve problem

Constraint enforcement ... exclude relaxation solution

Upper bounds ... prune search space

... more on these concepts over the next three days!

Modeling is very, very, very important

Linearize, linearize, linearize as much as possible

Prefer linear over convex and convex over nonconvex
... order or magnitude difference in solver capabilities
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