

Mixed-Integer Nonlinear Optimization: Introduction, Modeling, and Applications GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Collaborators

Pietro Belotti and Ashutosh Mahajan

Christian Kirches, Jeff Linderoth, and Jim Luedtke

Outline

- 2 Basic Building Blocks of MINLP Methods
- 3 MINLP Modeling Practices
- 4 Summary and Teaching Points

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to } c(x) \leq 0 \\ & x \in \mathcal{X} \\ & x_i \in \mathbb{Z} \text{ for all } i \in \mathcal{I} \quad \text{set of integers} \end{array}$$

- $f: \mathbb{R}^n \to \mathbb{R}, \ c: \mathbb{R}^n \to \mathbb{R}^m$ smooth (often convex) functions
- $\mathcal{X} \in \mathbb{R}^n$ bounded, polyhedral set, e.g. $\mathcal{X} = \{x : l \leq A^T x \leq u\}$
- $\mathcal{I} \subset \{1, \dots, n\}$ subset of integer variables
- $x_i \in \mathbb{Z}$ for all $i \in \mathcal{I}$... combinatorial problem
- Combines challenges of handling nonlinearities with combinatorial explosion of integer variables
- More general constraints possible, e.g. $l \le c(x) \le u$ etc.

Complexity of MINLP

Mixed-Integer Nonlinear Program (MINLP)

```
\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to } c(x) \leq 0 \\ & x \in \mathcal{X} \\ & x_i \in \mathbb{Z} \text{ for all } i \in \mathcal{I} \end{array}
```

Complexity of MINLP

- MINLP is NP-hard: includes MILP, which are NP-hard [Kannan and Monma, 1978]
- Worse: MINLP are undecidable [Jeroslow, 1973]: quadratically constrained IP for which no computing device can compute the optimum for all problems in this class ... but we're OK if \mathcal{X} is compact!

Notation

Some notation used throughout the course ...

- $f^{(k)} = f(x^{(k)})$ evaluated at $x = x^{(k)}$
- $\nabla f^{(k)} = \nabla f(x^{(k)})$ gradient
- Hessian of Lagrangian L(x, λ) = f(x) ∑λ_ic_i(c) is ∇²L^(k)
 ... assumes X polyhedral
- Subscripts denote components, e.g. x_i is component i of x
- If $\mathcal{J} \subset \{1,\ldots,n\}$ then $x_\mathcal{J}$ are components of x corres. to \mathcal{J}
- $x_{\mathcal{I}}$ integer and $x_{\mathcal{C}}$ are the continuous variables, $p = |\mathcal{I}|$
- Floor and ceiling operators: $\lfloor x_i \rfloor$ and $\lceil x_i \rceil$:
 - $\lfloor x_i \rfloor$ largest integer smaller than or equal to x_i
 - $\lceil x_i \rceil$ smallest integer larger than or equal to x_i

Recall: Convexity of Nonlinear Functions

MINLP techniques distinguish convex and nonconvex MINLPs. For our purposes, we define convexity as ...

Definition (Convex Functions)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex, iff $\forall x^{(0)}, x^{(1)} \in \mathbb{R}^n$ we have:

$$f(x^{(1)}) \ge f(x^{(0)}) + (x^{(1)} - x^{(0)})^T \nabla f^{(0)}$$

In a slight abuse of notation, we say that ...

Definition (Convexity of MINLP)

MINLP is a *convex* if the problem functions f(x) and c(x) are convex functions. If either f(x) or any $c_i(x)$ is a nonconvex function, then MINLP is *nonconvex*.

Recall Convexity (cont.)

We also define the convex hull of a set S as ...

Definition (Convex Hull)

For a set S, the convex hull of S is conv(S):

$$\left\{x|x=\lambda x^{(1)}+(1-\lambda)x^{(0)}, \ orall 0\leq\lambda\leq 1, \ orall x^{(0)},x^{(1)}\in S
ight\}.$$

- If $\mathcal{X} = \{x \in \mathbb{Z}^p : l \le x \le u\}$ and $l \in \mathbb{Z}^p$, $u \in \mathbb{Z}^p$, then $\operatorname{conv}(\mathcal{X}) = [l, u]^p$
- Finding convex hull is hard, even for polyhedral \mathcal{X} .
- Convex hull important for MILP ...

Theorem (LP Relaxations of MILP)

MILP can be solved as LP over the convex hull of feasible set.

$\mathsf{MILP} \neq \mathsf{MINLP}$

Important difference between MINLP and MILP

minimize
$$\sum_{i=1}^{n} (x_i - \frac{1}{2})^2$$
, subject to $x_i \in \{0, 1\}$

... solution is not extreme point (lies in interior) Remedy: Introduce objective η and a constraint $\eta \ge f(x)$

$$\left\{egin{array}{ll} \displaystyle \min_{\eta,x} & \eta, \ {
m subject to } f(x) \leq \eta, \ c(x) \leq 0, \ x \in \mathcal{X}, \ x_i \in \mathbb{Z}, \ orall i \in \mathcal{I} \end{array}
ight.$$

Assume MINLP objective is linear

$\mathsf{MILP} \neq \mathsf{MINLP}$

Important difference between MINLP and MILP

minimize
$$\sum_{i=1}^{n} (x_i - \frac{1}{2})^2$$
, subject to $x_i \in \{0, 1\}$

... solution is not extreme point (lies in interior) Remedy: Introduce objective η and a constraint $\eta \ge f(x)$

$$\left\{egin{array}{ll} \displaystyle \min_{\eta,x} & \eta, \ {
m subject to } f(x) \leq \eta, \ c(x) \leq 0, \ x \in \mathcal{X}, \ x_i \in \mathbb{Z}, \ orall i \in \mathcal{I} \end{array}
ight.$$

Assume MINLP objective is linear

Outline

2 Basic Building Blocks of MINLP Methods

Relaxation and Constraint Enforcement

Relaxation

- Used to compute a lower bound on the optimum
- Obtained by enlarging feasible set; e.g. ignore constraints
- Typically much easier to solve than MINLP

Constraint Enforcement

- Exclude solutions from relaxations not feasible in MINLP
- Refine or tighten of relaxation; e.g. add valid inequalities

Upper Bounds

• Obtained from any feasible point; e.g. solve NLP for fixed $x_{\mathcal{I}}$

Relaxations of Integrality

Definition (Relaxation)

Optimization problem min{ $\check{f}(x) : x \in \mathcal{R}$ } is a relaxation of min{ $f(x) : x \in \mathcal{F}$ }, iff $\mathcal{R} \supset \mathcal{F}$ and $\check{f}(x) \leq f(x)$ for all $x \in \mathcal{F}$.

Goal: relaxation easy to solve globally, e.g. MILP or NLP

Relaxing Integrality

- Relax Integrality $x_i \in \mathbb{Z}$ to $x_i \in \mathbb{R}$ for all $i \in \mathcal{I}$
- Gives nonlinear relaxation of MINLP, or NLP:

$$\left\{egin{array}{l} {
m minimize} & f(x), \\ {
m subject} \ {
m to} \ c(x) \leq 0, \\ & x \in \mathcal{X}, \ \ \ {
m continuous} \end{array}
ight.$$

• Used in branch-and-bound algorithms

Relaxations of Nonlinear Convex Constraints

Relaxing Convex Constraints

Convex 0 ≥ c(x) and η ≥ f(x)f relaxed by supporting hyperplanes

$$\eta \ge f^{(k)} + \nabla f^{(k)^{T}}(x - x^{(k)}) \\ 0 \ge c^{(k)} + \nabla c^{(k)^{T}}(x - x^{(k)})$$

for a set of points $x^{(k)}$, $k = 1, \ldots, K$.

- Obtain polyhedral relaxation of convex constraints.
- Used in the outer approximation methods.

Relaxations of Nonconvex Constraints

Relaxing Nonconvex Constraints

 Construct convex underestimators, *f*(x) and *č*(x) for nonconvex functions c(x) and f(x):

 $\check{f}(x) \leq f(x) \quad ext{and} \quad \check{c}(x) \leq c(x), \; \forall x \in ext{conv}(\mathcal{X}).$

• Relax constraints $z \ge f(x)$ and $0 \ge c(x)$ as

$$z \ge \breve{f}(x)$$
 and $0 \ge \breve{c}(x)$.

• Used in spatial branch-and-bound.

Relaxations Summary

Nonlinear and polyhedral relaxation

Relaxations

Relaxations can be combined to produce better algorithms

- Relax convex underestimators via supporting hyperplanes.
- Relax integrality of polyhedral relaxation to obtain an LP.

Relaxations are useful because we have following result:

Theorem (Relaxation Property)

If the solution of the relaxation of the η -MINLP is feasible in the η -MINLP, then it solves the MINLP.

... but if solution of relaxation is not feasible, then need ...

Constraint Enforcement

Goal: Given solution of relaxation, \hat{x} , not feasible in MINLP, exclude it from further consideration to ensure convergence

Three constraint enforcement strategies

- Relaxation refinement: tighten the relaxation
- Ø Branching: disjunction to exclude set of non-integer points
- Spatial branching: divide region into sub-regions

Strategies can be combined ...

Constraint Enforcement: Refinement

Tighten the relaxation to remove current solution \hat{x} of relaxation

- Add a valid inequality to relaxation, i.e. an inequality that is satisfied by all feasible solutions of MINLP
- Valid inequality is called a cut if it excludes \hat{x}
- Example: $c(x) \leq 0$ convex, and $\exists i : c_i(\hat{x}) > 0$, then

$$0 \geq \hat{c}_i + \nabla \hat{c}^{T} (x - \hat{x})$$

cuts off \hat{x} . Proof: Exercise.

- Used in Benders decomposition and outer approximation.
- MILP: cuts are basis for branch-and-cut techniques.

Constraint Enforcement: Branching

Eliminate current \hat{x} solution by branch on integer variables:

- **(**) Select fractional \hat{x}_i for some $i \in \mathcal{I}$
- Oreate two new relaxations by adding

 $x_i \leq \lfloor \hat{x}_i \rfloor$ and $x_i \geq \lceil \hat{x}_i \rceil$ respectively

... solution to MINLP lies in one of the new relaxations.

Branch-and-Bound Trees can be Huge

Tree after 360 s CPU time has more than 10,000 nodes

Constraint Enforcement: Spatial Branching

Enforcement for relaxed nonconvex constraints

- Combine branching and relaxation refinement
- Branch on continuous variable and split domain in two parts.
- Create new relaxation over (reduced) sub-domains.
- Generates tree similar to integer branching.
- Mix with interval techniques to eliminate sub-domains.

Nonconvex MINLPs combine all 3 enforcement techniques.

Outline

Problem, Notation, and Definitions

- 2 Basic Building Blocks of MINLP Methods
- 3 MINLP Modeling Practices
- 4 Summary and Teaching Points

MINLP Tree

How Big Is It?

The Leyffer-Linderoth-Luedtke (LLL) Measure of Complexity

You have a problem of class X that has Y decision variables? What is the largest value of Y for which one of Sven, Jim, and Jeff would be willing to bet \$50 that a "state-of-the-art" solver could solve the problem?

How Big Is It?

The Leyffer-Linderoth-Luedtke (LLL) Measure of Complexity

You have a problem of class X that has Y decision variables? What is the largest value of Y for which one of Sven, Jim, and Jeff would be willing to bet \$50 that a "state-of-the-art" solver could solve the problem?

Convex		Nonconvex	
Prob. Class (X)	# Var (Y)	Prob. Class (X)	# V ar (<i>Y</i>)
MINLP	500	MINLP	100
NLP	$5 imes 10^4$	NLP	100
MISOCP	1000	MIPP	150
SOCP	10 ⁵	PP	150
MIQP	1000	MIQP	300
QP	$5 imes 10^5$	QP	300
MILP	$2 imes 10^4$		
LP	$5 imes 10^7$		

MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999] ... even more important in MINLP

- MINLP combines integer and nonlinear formulations
- Reformulations of nonlinear relationships can be convex
- Interactions of nonlinear functions and binary variables
- Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.

MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999] ... even more important in MINLP

- MINLP combines integer and nonlinear formulations
- Reformulations of nonlinear relationships can be convex
- Interactions of nonlinear functions and binary variables
- Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.

The great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity. - R. Tyrrell Rockafellar

Linearization of Constraints

Assum $x_2 \neq 0$. A simple transformation (*a* constant parameter):

$$\frac{x_1}{x_2} = a \iff x_1 = ax_2$$

Linearization of bilinear terms x_1x_2 with:

- Binary variable $x_2 \in \{0, 1\}$
- Variable upper bound: $0 \le x_1 \le Ux_2$
- ... introduce new variable x_{12} to replace x_1x_2 and add constraints

$$0 \leq x_{12} \leq x_2 U$$
 and $-U(1-x_2) \leq x_1 - x_{12} \leq U(1-x_2),$

Never Multiply a Nonlinear Function by a Binary

Previous example generalizes to nonlinear functions Often binary variables "switch" constraints on/off

Warning

Never model on/off constraints by multiplying by a binary variable.

Three alternative approaches

- Disjunctive programming, see [Grossmann and Lee, 2003]
- Perspective formulations (not always), see [Günlük and Linderoth, 2012]
- Big-M formulation (weak relaxations)

Avoiding Undefined Nonlinear Expressions

MINLP solvers fail because NLP solver gets IEEE exception, e.g.

$$c(x_1) = -\ln(\sin(x_1)) \le 0,$$

cannot be evaluated at $sin(x_1) \leq 0$

Reformulate equivalently as

$$\tilde{c}(x_2) = -\ln(x_2) \le 0, \ x_2 = \sin(x_1), \ \text{ and } \ x_2 \ge 0.$$

IPM solvers never evaluate at $x_2 \le 0$ Active-set method can also safeguard against $x_2 \le 0$

- $x_2 \ge 0$ is s simple bound which can be enforced exactly
- $x_2 = 0$ get IEEE exception \Rightarrow trap & reduce trust-region
- As $x_2
 ightarrow 0$, the constraint violation $c(x_2)
 ightarrow \infty$

Modeling of Discrete Variables

We can model discrete variables such as

$$y \in \{Y_1, Y_2, \ldots, Y_k\}$$

where Y_i are discrete parameters (e.g. pipe diameters) with special ordered sets (SOS):

$$y = \sum_{i=1}^{k} z_i Y_i, \quad 1 = \sum_{i=1}^{k} z_i, \quad z_i \in \{0, 1\}$$

see [Beale and Tomlin, 1970, Beale and Forrest, 1976]

- Similarly linearize univariate functions $f(z), \ z \in \mathbb{Z}$
- Generalizes to higher dimensions
- Solvers detect SOS structure and use special branching rules

Model of water, gas, air networks Goal: design minimum cost network from discrete pipe diameters

- ${\mathcal N}$ nodes in network
- ${\mathcal S}$ source nodes
- \mathcal{A} : arcs in the network

Goal

Design minimum cost network from discrete pipe diameters

 ${\mathcal N}$ nodes, ${\mathcal S}$ source nodes, ${\mathcal A}:$ arcs in the network

Variables:

- q_{ij} : flow pipe $(i,j) \in \mathcal{A}$
- d_{ij} : diameter of pipe $(i, j) \in \mathcal{A}$, where $d_{ij} \in \{P_1, \dots, P_r\}$
- h_i : hydraulic head at node $i \in \mathcal{N}$
- z_{ij} : binary variables model flow direction $(i,j) \in \mathcal{A}$
- a_{ij} : area of cross section $(i,j) \in \mathcal{A}$
- y_{ijk}: SOS-1 variables to model diameter

NB: Area $a_{ij} = \pi d_{ij}^2/4$ is redundant ... but useful!

- ${\mathcal N}$ nodes
- $\mathcal{S} \subset \mathcal{N}$ source nodes
- $\mathcal{A}:$ arcs in the network

- Equations for q_{ij} flow pipe $(i,j) \in \mathcal{A}$
 - Conservation of flow at every node

$$\sum_{(i,j)\in\mathcal{A}}q_{ij}-\sum_{(j,i)\in\mathcal{A}}q_{ji}=D_i, \ orall i\in\mathcal{N}-\mathcal{S}.$$

• Flow bounds are nonlinear in d_{ij} ... linear in a_{ij} :

$$-V_{\max}a_{ij} \leq q_{ij} \leq V_{\max}a_{ij}, \ \forall (i,j) \in \mathcal{A}.$$

Modeling Trick: SOS & Nonlinear Expressions

Modeling discrete $d_{ij} \in \{P_1, \ldots, P_r\}$ and nonlinear $a_{ij} = \pi d_{ij}^2/4$:

- Introduce SOS-1 variables $y_{ijk} \in \{0,1\}$ for $k = 1, \ldots, r$
- Ø Model discrete choice as linear equation

$$\sum_{k=1}^r y_{ijk} = 1$$
, and $\sum_{k=1}^r P_k y_{ijk} = d_{ij}$. $orall (i,j) \in \mathcal{A}$,

Model nonlinear relationship as linear equation

$$\sum_{k=1}^r (\pi P_k/4) y_{ijk} = a_{ij}, \ \forall (i,j) \in \mathcal{A}.$$

 \Rightarrow no longer need nonlinear equation $a_{ij} = \pi d_{ij}^2/4!$

Nonsmooth pressure loss model along arc $(i, j) \in \mathcal{A}$

$$h_i - h_j = rac{\operatorname{sgn}(q_{ij})|q_{ij}|^{c_1}c_2L_{ij}K_{ij}^{-c_1}}{d_{ij}^{c_3}}$$

... introduce binary variables to model nonsmooth term $|q_{ij}|^{c_1}$ Add binary variables $z_{ij} \in \{0, 1\}$, and $q_{ij} = q_{ii}^+ - q_{ii}^-$.

$$0 \leq q_{ij}^+ \leq Q_{\mathsf{max}} \mathsf{z}_{ij}, \quad 0 \leq q_{ij}^- \leq Q_{\mathsf{max}} (1-\mathsf{z}_{ij}),$$

Pressure drop becomes

$$h_i - h_j = rac{\left[\left(q_{ij}^+\right)^{c_1} - \left(q_{ij}^-\right)^{c_1}
ight]c_2 L_{ij}K_{ij}^{-c_1}}{d_{ij}^{c_3}}, \ \forall (i,j) \in \mathcal{A}.$$

... can again linearize the $d_{ij}^{c_3}$ expression with SOS ... alternative uses complementarity: $0 \le q_{ij}^+ \perp q_{ij}^- \ge 0$

Optimize 802.11 broadband networks for resource sharing meshes

- objective: minimizing co-channel and inter-channel interference
- integrality: assign channels to basic nodes within a network
- 13 Direct Sequence Spread Spectrum (DSSS) overlapping channels
- co-channel interference: two access points with same channel
- inter-channel interference: cards with overlapping channels transmit simultaneously
- \Rightarrow general nonconvex MINLP

Original model has one horrible constraint ...

... and the horrible constraint is ...

$$z = \frac{1}{1 + 1000(x - y)^{10}}$$

• highly nonlinear/nonconvex

... and the horrible constraint is ...

$$z = \frac{1}{1 + 1000(x - y)^{10}}$$

- highly nonlinear/nonconvex
- *z* = 1, if *x* = *y*
- z = 0, if $x \neq y$

... and the horrible constraint is ...

$$z = \frac{1}{1 + 1000(x - y)^{10}}$$

- highly nonlinear/nonconvex
- *z* = 1, if *x* = *y*
- z = 0, if $x \neq y$
- x, y integer (channels)

 \dots and the horrible constraint is \dots

$$z = \frac{1}{1 + 1000(x - y)^{10}}$$

- highly nonlinear/nonconvex
- *z* = 1, if *x* = *y*
- z = 0, if $x \neq y$
- x, y integer (channels)
- model as MIP not NLP

Collections of MINLP Test Problems

AMPL Collections of MINLP Test Problems

- MacMINLP www.mcs.anl.gov/~leyffer/macminlp/
- IBM/CMU collection egon.cheme.cmu.edu/ibm/page.htm

GAMS Collections of MINLP Test Problems

- GAMS MINLP-world www.gamsworld.org/minlp/
- Ø MINLP CyberInfrastructure www.minlp.org/index.php

Solve MINLPs online on the NEOS server, www.neos-server.org/neos/

... and there are even a few CUTEr problems in SIF!

Summary and Teaching Points

Basic building blocks of solvers

- Relaxation ... create easier to solve problem
- Constraint enforcement ... exclude relaxation solution
- Upper bounds ... prune search space
- ... more on these concepts over the next three days!

Modeling is very, very, very important

- Linearize, linearize, linearize as much as possible
- Prefer linear over convex and convex over nonconvex ... order or magnitude difference in solver capabilities

Beale, E. and Tomlin, J. (1970).

Special facilities in a general mathematical programming system for non- convex problems using ordered sets of variables.

In Lawrence, J., editor, *Proceedings of the 5th International Conference on Operations Research*, pages 447–454, Venice, Italy.

Beale, E. M. L. and Forrest, J. J. H. (1976). Global optimization using special ordered sets. *Mathematical Programming*, 10:52–69.

Grossmann, I. and Lee, S. (2003). Generalized convex disjunctive programming: Nonlinear convex hull relaxation. *Computational Optimization and Applications*, pages 83–100.

Günlük, O. and Linderoth, J. T. (2012). Perspective reformulation and applications. In *IMA Volumes*, volume 154, pages 61–92.

Jeroslow, R. G. (1973).

There cannot be any algorithm for integer programming with quadratic constraints.

Operations Research, 21(1):221-224.

Kannan, R. and Monma, C. (1978).

On the computational complexity of integer programming problems. In Henn, R., Korte, B., and Oettli, W., editors, *Optimization and Operations Research*, volume 157 of *Lecture Notes in Economics and Mathematical Systems*, pages 161–172. Springer.

Williams, H. P. (1999). Model Building in Mathematical Programming. John Wiley & Sons.