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More Methods for Nonlinear Optimization

Nonlinear Program (NLP) of the form

minimize
x

f (x)

subject to c(x) = 0
x ≥ 0,

where

objective f : Rn → R twice continuously differentiable

constraints c : Rn → Rm twice continuously differentiable

y multipliers of c(x) = 0

z ≥ 0 multipliers of x ≥ 0.

... can reformulate more general NLPs easily

... solvers accept more general format
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Interior-point methods (IPMs)

IPMs are alternative to active-set methods (SLP, SQP, etc)

Class of perturbed Newton methods

Postpone decision of which constraints are active until end

SQP et al. are active-set methods
SQP et al. have estimate of active set at every iteration
... from active set of LP or QP subproblem

Best IPM are primal-dual methods, use perturbed KKT system

NLP Problem

minimize
x

f (x)

subject to c(x) = 0
x ≥ 0,

KKT conditions

∇f (x)−∇c(x)T y − z = 0
c(x) = 0
Xz = 0

where X = diag(x), x ≥ 0, z ≥ 0

Without x , z ≥ 0, KKT is a system of equations!
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Perturbed KKT System

minimize
x

f (x) subject to c(x) = 0, x ≥ 0

Perturbation to KKT system

Assume that given x (0) > 0 and z(0) > 0

Seek an algorithm that maintains x (k) > 0 and z(k) > 0

⇒ Perturb complementarity , Xz = 0, in KKT system

Primal-Dual System

0 = Fµ(x , y , z) =

∇f (x)−∇c(x)T y − z
c(x)

Xz − µe

 ,

where µ > 0 is the barrier parameter
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Interior-Point Methods
Primal-dual interior-point methods

Start at “interior” iterate x (0), z(0) > 0 (near analytic center)

Generate sequence of interior iterates x (k), z(k) > 0

Approximately solve primal-dual system, decreasing µ

Polynomial-time algorithms for convex NLPs; e.g.
[Nesterov and Nemirovskii, 1994]

Relationship to classical barrier methods

Primal dual system related to minimization of barrier function

f (x ;µ) := f (x)− µ
n∑

i=1

log(xi ) subject to c(x) = 0

Log-barrier log(xi ) as approach boundary: xi → 0

Can show that minimizers, xµ → x∗ as µ→ 0

... more later, for now let’s look at solving the primal-dual system
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Solving the Primal-Dual System

Apply Newton’s method to primal-dual system:

0 = Fµ(x , y , z) =

∇f (x)−∇c(x)T y − z
c(x)

Xz − µe

 ,

Around iterate x (k) get Newton (linear) system: H(k) −A(k) −I
A(k)T 0 0

Z (k) 0 X (k)

∆x
∆y
∆z

 = −Fµ(x (k), y (k), z(k)),

where H(k) ≈ ∇2L(k) and ensure x (k+1), z(k+1) > 0
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Algorithm: Primal-Dual Interior-Point Method (IPM)

Given (x (0), y (0), z(0)), with (x (0), z(0)) > 0

Choose barrier parameter µ0, 0 < σ < 1, and εk ↘ 0

repeat
Set (x (k,0), y (k,0), z(k,0)) = (x (k), y (k), z(k)), l = 0.

repeat
Approx. solve Newton system: (x (k,l+1), y (k,l+1), z(k,l+1))

Set l = l + 1
until ‖Fµk (x (k,l), y (k,l), z(k,l))‖ ≤ εk ;

Reduce barrier parameter µk+1 = σµk , set k = k + 1.

until x (k), y (k), z(k) optimal ;

Remark (Structure of Interior-Point Methods (IPMs))

IPMs have inner (approx. Newton) & outer loop (barrier, µ↘ 0)

8 / 24



Relationship to Barrier Methods

Primal-dual IPMs related to classical barrier methods
[Fiacco and McCormick, 1990].

Popular methods in 1960s

Lost popularity with rise of SQP due to ill-conditioning

Renewed interest in 1980s due to polynomial-time properties

Good references on IPMs: [Wright, 1992,
Forsgren et al., 2002, Nemirovski and Todd, 2008]

Barrier Problem:

minimize
x

f (x)− µ
n∑

i=1

log(xi ) subject to c(x) = 0,

for decreasing barrier parameters µ↘ 0
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Illustration of Barrier Methods

Contours barrier for min
x

x2
1 + x2

2 subject to x1 + x2
2 ≥ 1
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Relationship to Barrier Methods

Barrier Problem: for barrier parameters µ↘ 0

minimize
x

f (x)− µ
n∑

i=1

log(xi ) subject to c(x) = 0,

First-Order Conditions of Barrier Problem:

∇f (x)− µX−1e − A(x)y = 0 and c(x) = 0.

Newton’s method applied to FO conditions of barrier problem:[
H(k) + µX (k)−2 −A(k)

A(k)T 0

](
∆x
∆y

)
= −

(
g (k) − µX (k)−1

e − A(k)y (k)

c(k)

)
.

... show how this relates to primal-dual Newton
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Relationship to Barrier Methods

Newton’s method applied to FO conditions of barrier problem:[
H(k) + µX (k)−2 −A(k)

A(k)T 0

](
∆x
∆y

)
= −

(
g (k) − µX (k)−1

e − A(k)y (k)

c(k)

)
.

First-order multipliers: Z (x (k)) := µX (k)−1 ⇔ Z (x (k))X (k) = µe

[
H(k) + Z (x (k))X (k)−1 −A(k)

A(k)T 0

](
∆x
∆y

)
= −

(
g (k) − µX (k)−1

e − A(k)y (k)

c(k)

)
,

equivalent to primal-dual Newton system ...
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Relationship between Barrier Methods & Primal-Dual IPMs
Consider primal-dual Newton system H(k) −A(k) −I

A(k)T 0 0

Z (k) 0 X (k)

∆x
∆y
∆z

 = −

∇g (k) − A(k)T y (k) − z(k)

c(k)

X (k)z(k) − µe


... from last equation eliminate ∆z

∆z = −X (k)−1
Z (k)∆x − Z (k)e − µX (k)−1

e.

then get[
H(k) + Z (x (k))X (k)−1 −A(k)

A(k)T 0

](
∆x
∆y

)
= −

(
g (k) − µX (k)−1

e − A(k)y (k)

c(k)

)
,

Difference between Classical & Primal-Dual IPM

Multipliers Z (k) are not free in barrier methods but set as
Z (x (k)) = µX (k)−1
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Convergence of Barrier Methods
(NLP) minimize

x
f (x) subject to c(x) = 0 x ≥ 0

Barrier Method solves

minimize
x

f (x)− µ
n∑

i=1

log(xi ) subject to c(x) = 0,

... for µ↘ 0

Theorem (Convergence of Barrier Methods [Wright, 1992])

If there exists compact set of isolated local minimizers of (NLP)
with at least one point in closure of strictly feasible set, then it
follows that barrier methods converge to local minimum.

No guarantee that have converging subsequence in {x (k)}
No convergence to local min, if we do not find global min of
barrier
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Augmented Lagrangian Methods

(NLP)


minimize

x
f (x)

subject to c(x) = 0
x ≥ 0,

Augmented Lagrangian related to quadratic penalty methods:

Given penalty ρk ↗∞
repeat

Solve quadratic penalty problem:

xρ ← argmin
x

f (x) + ρk‖c(x)‖2
2 subject to x ≥ 0

Increase ρ
until xρ optimal ;

Inefficient (solve many bound constrained NLPs)

Solution only in limit, i.e. ρ→∞
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Augmented Lagrangian Methods

(NLP)


minimize

x
f (x)

subject to c(x) = 0
x ≥ 0,

Recall Lagrangian function: L(x , y , z) = f (x)− yT c(x)− zT x

Augmented Lagrangian allows convergence for finite value of ρ

L(x , y , ρ) = f (x)− yT c(x) +
ρ

2
‖c(x)‖2

2,

where ρ > 0 is penalty parameter.
Classical Augmented Lagrangian Methods

1 Linearly constrained augmented Lagrangian

2 Bound constrained augmented Lagrangian
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Linearly Constrained Lagrangian Methods

Successively minimize shifted augmented Lagrangian

L(x , y , ρ) = f (x)− yTp(k)(x) +
ρ

2
‖p(k)(x)‖2

2,

subject linearized constraints.
Here p(k)(x) are higher-order nonlinear terms at x (k):

p(k)(x) = c(x)− c(k) − A(k)T (x − x (k)).

Gives approximate subproblem:

(LCL)


minimize

x
L(x , y (k), ρk)

subject to c(k) + A(k)T (x − x (k)) = 0,
x ≥ 0.
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Linearly Constrained Lagrangian Methods

Linearly Constrained Lagrangian (LCL) subproblem (e.g. minos)

(LCL)


minimize

x
L(x , y (k), ρk)

subject to c(k) + A(k)T (x − x (k)) = 0,
x ≥ 0.

c(k) + AT
k (x − x (k)) = 0 ⇒ equivalent to min. Lagrangian

Solve sequence of approx. subproblems for fixed penalty, ρk

Update multipliers by first-order multiplier update rule:

y (k+1) = y (k) − ρkc(x (k+1))

where x (k+1) solves (LCL).

Augmented Lagrangian methods iterate on the dual variables
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Bound-Constrained Lagrangian (BCL) Methods

Approximately minimize the augmented Lagrangian,

(BCL) minimize
x

L(x , y (k), ρk) subject tox ≥ 0.

Advantages

Have fast methods for bound-constrained optimization
e.g. projected gradient CG method described earlier

Potential for parallel linear algebra
... good preconditioners are an issue

Global Convergence of BCL

Forcing sequences: ωk ↘ 0, and ηk ↘ 0

ωk controls accuracy of approx. (BCL) solve

ηk controls convergence to feasibility
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Bound-Constrained Lagrangian (BCL) Methods
Given (x (0), y (0)), and penalty parameter ρ0

repeat
Set x (k,0) = x (k), ρk,0 = ρk , l = 0, and success = false.
repeat

Find ωk -optimal solution x (k,l+1) of

minimize
x

L(x , y (k), ρk,l) subject to x ≥ 0

if ‖c(x (k,l+1))‖ ≤ ηk then
FO multiplier update: y (k+1) = y (k) − ρk,lc(x (k,l+1))
Set ρk+1 = ρk,l , and success = true.

else
Increase penalty: ρk,l+1 = 10ρk,l ; set l = l + 1.

end

until success = true;

Set x (k+1) + x (k,l+1), and k = k + 1.
until x (k), y (k) is optimal ;
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Bound-Constrained Lagrangian (BCL) Methods

Method has inner and outer loop:

Inner loop updates penalty parameter to get suff. large
Outer loop iterates on dual y (k) variables
... x (k,0) = x (k) only initial guess for approx. BCL solve

Solve each (BCL) subproblem with trust-region algorithm
... e.g. projected-gradient with conjugate gradient steps

Implemented in LANCELOT package (open source)
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Theory of Augmented Lagrangian Methods

Theorem (Global Convergence of BCL [Conn et al., 1991])

If {x (k)} bounded and if constraint Jacobian has full rank for all
limit points, then BCL converges from any starting point.

Can show algorithm is R-linearly convergent and q-linearly, if

Theorem (Convergence Rates [Bertsekas, 1996])

Assume that

1 y (k) updated as y (k+1) = y (k) + ρkc(x (k)),

2 {ρ(k)} sequence such that ρk+1 ≥ ρk ∀ k > 0,

3 x∗ is strict local minimum & regular with multipliers y∗,

4 sT∇2L(x∗, y∗)s > 0 for all s 6= 0 with ∇c(x∗)T s = 0,

then BCL converges to (x∗, y∗) Q-linearly, if {ρk} bounded, and
superlinearly otherwise.
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Summary

Presented two families of methods

Interior-Point Methods

Follow path defined by perturbed KKT conds

Apply Newton’s method to perturbed KKT conds
... solve (sparse) linear system ⇒ suitable for large NLPs

Related to classical barrier methods
... primal-dual methods avoid ill-conditioning

Augmented Lagrangian Methods

Minimize augmented Lagrangian (add penalty ρ‖c(x)‖2
2)

Linearly constrained augmented Lagrangian

Bound constrained augmented Lagrangian
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