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Abstract

We consider the minimization of a quadratic objective subject to second-order cone con-
straints that generalizes the well-studied bound-constrained quadratic programming (QP) prob-
lem. We propose a new two-phase method: in the first phase a projected-gradient method is used
to quickly identify the active set of cones, and in the second phase Newton’s method is applied
to rapidly converge given the subsystem of active cones. Computational experiments confirm
that the conically constrained QP is solved more efficiently by our method than by specialized
conic optimization solvers and a general nonlinear programming solver. We further suggest how
to generalize the two-phase method to solve problems with additional linear constraints using
an augmented Lagrangian approach.

Keywords: Conically Constrained Quadratic Program, Projected Gradient Method.
AMS-MSC2010: 90C20, 90C25, 90C52

1 Introduction

Traditionally, interior-point methods have been used to solve (linear) conic optimization problems.
Second-order cone programs (SOCPs) of moderate size can be efficiently solved by semidefinite
programming (SDP) interior-point solvers such as SDPT3 [21] and SeDuMi [20]. One drawback of
interior-point solvers is that they cannot be efficiently restarted from a current optimal solution.
This is a disadvantage when solving conic relaxations of combinatorial optimization problems, for
example, max cut [13, 18] or other binary quadratic problems [10], within a branch-and-bound
method. Mixed-integer SOCPs [7] naturally result in SOCP relaxations. In addition, second-order
cone relaxations of mixed-integer nonlinear programs include the recently proposed perspective
relaxation of Giinliikk and Linderoth [9]. Another drawback of interior-point methods in attempting
to solve large-scale continuous optimization problems in general is the computational cost of solving
a large linear system at each iteration.

Recently, renewed interest has been expressed in first-order methods for linear and nonlinear
conic optimization. Work includes a semismooth method that is proposed for nonlinear second-
order cone programming [11] and an augmented Lagrangian method that has been developed for
linear semidefinite programming [23].

In the following we propose a first-order two-phase active-set method for second-order cone-
constrained quadratic programming. This method can be used as a building block to solve larger
classes of problems that include linear constraints. The minimization of a quadratic function subject
to second-order conic constraints generalizes bound-constrained quadratic programming, which has
been considered by many authors including Bertsekas [3] and Moré and Toraldo [15]. The bound-
constrained case is a simple special case in the sense that the projected gradient corresponds



to a piecewise linear curve and the Cauchy point is given by a closed-form expression over each
segment. The general second-order cone constrained case is more challenging; however, it maintains
the advantage that it is fairly inexpensive to compute the projections onto the feasible region and
the curve’s breakpoints at which constraints become active.

We start by defining the second-order cone. For a a positive integer n and a vector w € R"”,
we let ||w]|| denote its Euclidean norm, let @ = (wy ... wn_l)T, and denote the n dimensional
second-order cone by Q,, = {w € R" | ||w|| < w,}. To define the conic optimization problem, we
let z € RN be the vector of unknowns; and for £ = 1,...,m we let z[¢] € R™ be a subvector, which
will refer to a sequence of consecutive components of z and that lies in an n,-dimensional cone.
Accordingly, for all ¢, z[(] € Q,,, z = (2[1],...,2[m]), N = ni + ...+ n,, and we note that that
the z[¢]’s are a partition of z.

We are interested in the following quadratic optimization problem over cones:

min qz) =gtz + %ZTGZ (1a)
subject to z[l] € Qp, C=1,...,m. (1b)
In particular, (1b) implies for each ¢ that
ng—1
co(z) = z[lpn, — z[ﬁ]? >0
j=1

Note that nonnegativity constraints are a special case for all £ with ny = 1, for which the sum
over the empty set in square root is zero, and so ¢y(z) = z[{],, > 0. In the following, assume

for convenience that z = (;) with z[(] € Q1 = Ry for ¢ = 1,...m; and y/_p,, € Qn,, with

ng > 2 for £ = my + 1,...,m. Further, let m. = m — m; denote the number of conic variables,
and Q = 9y, X ---Q,, . We also assume that the Hessian matrix, G, is positive semidefinite
and introduce Lagrange multipliers v € RY. The conic Karush-Kuhn Tucker (KKT) first-order
conditions of (1) can then be written as

Gz4+g—v=0 (2a)
2€Q, ve@, 2lv=0; (2b)

see [12, 19].

A key challenge in solving (1) using common general nonlinear programming (NLP) techniques
is the nondifferentiability of each cy(z) at zy = 0. This observation motivates us to consider a
two-phase active-set approach: once the optimal active set is identified, then the associated con-
straint functions are continuously differentiable near the optimal solution in the reduced subspace
of free variables (after having fixed some of the variables at zero). The two-phase active-set algo-
rithm involves a projected-gradient phase to identify an active set and a Newton phase that solves
a sequence of equality-constrained sequential quadratic programming (EQP) problems to obtain
quadratic convergence once the active set is identified.

Solving SOCPs with Standard NLP Solvers. One approach to solving SOCPs is to simply
use standard NLP solvers. However the following example illustrates the difficulty of traditional
nonlinear solvers.



Example 1. Consider the SOCP (1) with the following data:

1 0 -1 0 0
0 1 0 -1 0
G=_1 o 1 o 9=1 o
0 -1 0 2 -1

with m = 2, ng = 1, and ny = 3. Using (2) it can be verified that z = (O 0 0 O)T is optimal

for this instance with v = (0 00 —1)T. If we let A € R™ denote the NLP Lagrange multipliers,
then the NLP first-order conditions at this point,

A1
0 <)\2V62(0)> =0 =zh | 0
A2
clearly are undefined, since Vea(0) involves division by zero.

This is Problem SOCP-2 in Table 1, which shows the iteration count for a number of standard
NLP solvers on four simple SOCPs. The problem data for all four problems is given in Appendix A.

Table 1: Major iteration counts for some small SOCP example problems with NLP solvers.

Problem | SNOPT MINOS Filter Ipopt | Comments

SOCP-1 13 12 5 6 | superlinear convergence

SOCP-2 25 32 10 18 | linear convergence

SOCP-3 18 26 42 7 | IEEE exception & linear convergence
SOCP-4 17 30 6 8 | superlinear convergence

The four nonlinear solvers converge superlinearly for problems SOCP-1 and SOCP-4. However,
all solvers suffer from a slow linear rate of convergence on problem SOCP-2. For problem SOCP-3,
both SNOPT and Filter converge linearly, with Filter also showing warning messages about IEEE
exceptions that indicate it is trying to evaluate the square root function of the conic constraint for a
negative argument. Surprisingly, both MINOS and TPOPT converge superlinearly for this problem.
The examples illustrate that nonlinear solvers are not sufficiently robust to solve general conically
constrained optimization problems and that IEEE errors may even result in failure. Our preliminary
results motivate the derivation of new, robust methods for solving SOCPs. The solution of SOCPs,
as well as smooth reformulations of SOCPs, using NLP solvers has been studied by Vanderbei and
Yurttan [22]. In their experiments, LOQO, a general nonlinear programming solver, was better
able to solve SOCPs than were special-purpose solvers such as SeDuMi. However, their approach
resorts to solving perturbations of the original problems.

Outline of Algorithm. Our two-phase method first computes projected-gradient steps to iden-
tify the active set of constraints, including but specially treating those £ = 1,...,m for which
z[l]n, = 0. The projected-gradient phase for this problem generalizes the projected-gradient algo-
rithm for large-scale bound-constrained QPs, for example the method of Moré and Toraldo [15].



A particular challenge of the projected-gradient phase in our case is that the Cauchy point is not
given in closed form. Consequently, the projected-gradient algorithm may revert to a projected line
search along the last segment. The projected-gradient phase is then followed by a Newton phase
in the reduced subspace defined by the free variables and the boundary of the active cones. This
allows for fast convergence to a solution once an active set is identified. If the active set appears to
be incorrect; for example, if a Lagrange multiplier is negative (i.e., of the wrong sign for the original
inequality problem) or if the EQP iterations do not appear to converge — then the algorithm may
need to revert back to the projected-gradient phase. The convergence criterion is always checked by
using the projected gradient in the gradient-projection phase, ensuring that both phases terminate
with the same optimality condition. Verifying termination in the gradient-projection phase also
serves to determine the correctness of the identified active set, and we have found it to be a more
robust alternative to evaluating the sign of the Lagrange multipliers.. The following is a high-level
outline of the method.

A sketch of the two-phase method

while not converged do
Perform a projected-gradient iteration.
if active set is settled down then
Save current iterate as z(P9),
while EQP makes progress and not optimal do
Perform EQP iteration
end while
if inactive constraints are violated then
Project onto the feasible region
end if
if objective is made worse then
Reset current iterate as z(P9).
end if
end if
end while

The algorithm has two nested loops. In the outer loop we make projected-gradient steps that
ensure convergence to a stationary point. In the inner loop, which implements the Newton’s phase,
we perform a sequence of EQP iterations for a fixed active set until we find an optimal solution or
until progress toward convergence is found to be insufficient. We restart from either the last iterate
of the projected-gradient phase or the projection of the last EQP step onto the feasible region,
depending on the objective value. The details of the method are described in Section 3.

Beyond Conic-Constrained Quadratic Programs. In practice, we are also interested in
problems that include general linear constraints of the form Az = b. A straightforward way to
adapt our approach to this class of problems would be to handle the linear constraints using an
augmented Lagrangian approach. In the bound-constrained case (a simplification of our prob-
lem), projected-gradient methods have been shown to be efficient subproblem solvers within an
augmented Lagrangian method for handling additional linear constraints; the reader is referred
to [6, 8]. Thus, our algorithm can be seen as an important step toward the development of more
general conic solvers. In particular the LANCELOT NLP solver is known to effectively solve large-
scale problems through a quadratic penalty function of the constraint violation of nonlinear and
linear constraints alike. The problem is solved through a sequence of easier bound-constrained



subproblems and a corresponding sequence of penalty parameter values. In our case, a more gen-
eral second-order cone-constrained quadratic program replaces the bound-constrained subproblem.
Our approach differs from augmented Lagrangian methods considered for the dual form of conic
optimization problems [11, 23]; instead of penalizing conic infeasibility, our method exploits the
ease of computing the projection onto the second-order cones in order to maintain feasibility with
respect to the conic constraints. The linear constraint infeasibility is penalized, and the algorithm
terminates once their feasibility is restored.

Outline. In Section 2 we introduce the details of the projected-gradient phase. In Section 2.3
we elaborate on the EQP to be solved in the second phase of the algorithm. The two-phase algo-
rithm, including the full details, is described formally in Section 3. We present our computational
experiments in Section 4 and conclude in Section 5 with a brief summary and discussion of future
work.

2 Projected-Gradient Method for Cones

A constraint is said to be active if it holds with equality. The projected-gradient algorithm is
especially efficient in identifying the set of active constraints. The projected gradient is a piecewise
curve whose pieces are defined by the active constraints. Gradient projection algorithms iteratively
step through the ordered set of breakpoints in the steepest descent direction. Despite relatively
inferior convergence properties, projected-gradient algorithms can also be effective in practice when
the projection is inexpensively computed and the computational effort of each iteration remains
low.

2.1 Projection onto Second-Order Conic Constraint Faces

For w € R™ the Euclidean projection onto a convex set S C R” is defined as

Ps(w) = axgmin{ v — ul*) (3)

It is well known that Pg, (w) can be computed in closed form for all n > 1. This result can
be derived from the positive semidefinite projection formula and eigenvalue decomposition of the
second-order cone algebra [1] or alternatively by using elementary techniques [2]. In particular the
projection onto the second-order cone is

w @] < wn,
Po, (w) = (i H |w]| < —wp, (4)
W||+wn U 1 T n T 1
il (ﬁ, 1) =1 (w (1 + Iﬁ}fl‘) ||l + wn> otherwise.

Note that the first two cases in (4) correspond to w € Q,, and w € —Q,,, respectively, where —Q,,
denotes the reflection of Q,, through the origin. Also, note that in the case of n = 1, (4) reduces
to the simple projection of w onto the nonnegative orthant:

w; w; >0
PQ1(w):{0Z wz.<0
i .



2.2 Evaluating the Breakpoints and Projected Line Search

Consider some ¢ € {1,...,m}, and for convenience let w = z[¢] and n = ny. Let d € R™ be a
direction of descent. Then, the breakpoints corresponding to intersection points with the cone’s
reflection through the origin and those corresponding to the intersection with the cone’s boundary
(excluding the origin), respectively, are

{7} =min ({t | [J@+td]| < —wn — tda } U{oc})
and
{t;}:min({t | ||@ + td|| an+tdn>0}u{oo}>.

Note that one or both of the intersection points may not necessarily exist. When an intersection
point exists, its value is given by a (finite) ¢ > 0 that solves

n—1 n—1 n—1

2 2 2 2 2
g dy —dy | 742 g wjd; — wpdy, t+g wi —w;, =
j=1 j=1 j=1

with, respectively, w, + td, < 0 or w, + td,, > 0. Otherwise if there is no such solution, by
convention, a breakpoint’s value is co. So, for £ =1,...,m

—2(wTd — wydy) £ \/4(wT¢i—wndn a(||d||” - @2)(|@||* — w2)

2 (|la* - )

The projected-gradient direction and the corresponding conic breakpoints are illustrated in Fig-
ure 1(a). The second-order conic constraint corresponds to the shaded cone on top of the unshaded
cone, which is the reflection of the feasible cone through the origin. The breakpoint tz corresponds
to the arrow at the intersection of the gradient with the shaded cone. The breakpoint ¢, corre-
sponds to the second arrowhead at the intersection of the solid line with the unshaded cone; the
arrowhead of the dotted arrow corresponds to its reflection onto the feasible (shaded) cone.

t; .t € ,00 0. (5)

The bound constraint breakpoints can be viewed as a special case where ||w|| = HJH =0in (5).
Accordingly, for £ = 1,...,my the breakpoints corresponding to nonnegativity bounds are simply
given by

i~ Jwe/ge 90> 0,
¢ o0 otherwise,

which is also consistent with the bound-constrained case as explored, for example, in [15]. Fig-
ure 1(b) illustrates the projected-gradient direction in a bound-constrained feasible region.

Next, the projected-gradient procedure sorts the breakpoint values ¢} for o € {—,+} and
£=1,...,m. Denote the ordering of their distinct values by

0< << <7 <00, (6)

and for convenience also let 7,41 = 00
For a given feasible point z = (x,y) of (1) we define the following active sets

A+(z):{£€{1, m}|H H_%>o} (7a)

Ag(z):{ﬁe{l, ,m) | H (]_%_o} (7h)
and A(z) = Ap(z) U Ay (2).



(a) A second-order cone fea- (b) A bound-constrained feasible re-

sible region Q,, its reflection gion. The breakpoints ¢,, for £ =
through the origin —Q,,, and 1,...,m, correspond to the intersection
the corresponding projected- points (shown as arrowheads) of the gra-
gradient breakpoints, ¢, ¢7. dient with the faces of the cube.

Figure 1: Ilustration of the gradient and projected gradient over a single second-order cone vs.
a bound-constrained region. The arrowheads indicate the breakpoints in the projected-gradient
direction.



Similarly, for a given, fixed € > 0, we define the following working sets:

W+(z):{€€{1,... m} | Hﬁ”>z@n—e>0}, (8a)

Wo(z):{ze{l, ,m} | H H<%ge} (8b)
and W(z) = Wh(z) UW4(2).

We observe that the working sets are supersets of the active sets: for all e > 0 A4 (2) € W4 (z) and
Ap(z) € Wh(z). Of course the working and active sets coincide for € = 0. Further, the working and
active sets coincide for a range of small € values as established by the following observation.

Observation 1. Suppose that z is feasible for (1). Then, for alle € [0,ming—y _m {2[€]n, | 2[{]n, > 0})
it follows that W4 (z) = Ay (2) and Wy(z) = Ao(2).

We use the working sets in place of the active sets for the numerical robustness of our algorithm.
Note that the definition requires z to be feasible. If we drop this requirement, then W, (z) may
also include infeasible constraints.

The tangent cone at a point of a feasible region is the closure of the cone of all feasible directions.
Specifically in our case, Bonnans and Remirez [4, Lemma 25] have shown that the tangent cone of
w € Q, is given by

R™ |w]] < wn
Tg, (w) = q Qn w=0 (9)

uweR”: @lw — upw, <0 otherwise.

Accordingly define T'(z) = To(z) = Tq,, (2[1]) x -+ x Tg,, (2[m]). The projected gradient is
defined as the projection of the gradient onto the tangent come; it is given by Pre(—Vq(z)).
The follovvlng lemma establishes a closed-form expression for evaluating the projected directional
derivative dT(PQ(Z —tVq(z))) while avoiding the use of projected-gradient components that are
known to be zero. For the relation of directional derivatives and the projected gradient, more

generally, the reader may refer to McCormick and Tapia [14].
Lemma 1.

(i) The projection of d € R™ onto the tangent cone of Q, at w € Q, is given by

d d 6 TQn (w)7
Pry, (w)(d) = { Po.(d) w=0 and d ¢ Qp, (10)
% <J+ i—”lﬂ, ;;d +d ) otherwise.

(i1) Suppose z € Q and let Vq = Vq(z). Then for all positive ¢ < minj—o {7 — 7i_1} the
projected directional derivative of (1) at z is given by

dg T T
P =tv)= S Vel P, (Ve = Y VeVl
LeWy(2): Le{1,...,m}:
V)¢ Qn,U—Qn, (EW(2)V—VqlleQn,
T
£ Y Yl Py, G (~Valt). (1)

LeEW 4 (2):—Vqll]€Qn,



Proof. (i) Let w € Q,,. Then the projected gradient is given by the (unique) optimum of

min{||d—33||2 | a:eTQn(w)}. (12)

Note that this optimum exists, and let it be denoted by x*. First consider the case that
d € Tg, (w). Then, z* = d is feasible with objective ||d — x*|| = 0, which is also optimal.
Otherwise, consider the case that w = 0 and HJH > dp. Then evidently z* = Pr, (v)(d) =
Po,, (d) by (9) with w = 0. In all other cases, for a nonnegative Lagrange multiplier A € R
consider the KKT first-order optimality conditions of (12) with 0 # ||@|| = wy,:

T—d—\w=0, Ty — dp + Aw, = 0, and MzTw — zpwy) = 0. (13)

First we observe that the optimal Lagrange multiplier A* > 0. (If \* = 0, then 2* = d with a 0
optimal objective value, but then as w € @, and d = z* € Ty, (w).) Hence, \* = d” =ty 0,

and it then follows from (13) and from the fact that |[w|| = w, that z* = % <J+ i—’;w) and
* wld

(ii) Suppose z and e that satisfy the supposition of the claim. First note that z — eVq is feasible
and thus —Vq € T'(z). Then, by [14, Proposition 1], the result of (i), and the projection
formula (4), it follows that

dgq S T T
ai, Pelz= Vo) = > Vel Pro, cy(-Vall) = > V4l Pro, (ciep(~Valt])
=1 LeWy(z)
— > Val("Valll+ > V[l PTQW(z[e])(—VQ[f])
Le{1,...mP\W(z) LeEW (z)
= Y. Vvdgto+ Y Vald'Po, (—Vald)
_ LeEWL(2): _ LeEWH(2):
|| Vald||<Vqlln, HVq[f]H>Vq[€
- > Vad'vea+ Y V" Pry, g (=Vald)
Le{1,... mP\W(z) LeEW (z)
= > Vqlt)" Po,,(—Vq[f]) - Z V()" Vqld]
LEWH(2): e{1,..
*V(I[Z]¢Qngufgng Z¢W(Z)V VQV]EQW
+ Z V(J[E]TPTQW z1ep (= Vg[f]).0

LEW (2):=Vq[l]¢Qn,

Note that since (11) is expressed in terms of the working sets in place of the active sets, the
claim of Lemma (ii) assumes that € is sufficiently small (at most the distance of the closest pair of
breakpoints according to the ordering (6)) within the corresponding projected-gradient iteration.
However, even if this assumption is violated, the additive error of (11) can be bounded in terms of
N and e.

Further, note that the projected gradient could also be derived by using elementary calculus in
cases in which the projection and ¢ are differentiable at a given point, by McCormick and Tapia [14,
Proposition 2[; it applies to (4) other than in the case of w = 0.



The projected-gradient algorithm is given by Algorithm 2. Note that in each iteration j some of
the components in Wo(z(j)) can be “masked out” and ignored in evaluating the directional deriva-
tive given by (11). Also, by using the identity (11), the projected gradient can be incrementally
determined by updating the components corresponding to the constraints Wy (z0)) \ W, (20~1)
and W(zU=D)\ W, (219)) and masking some of the components corresponding to the constraints
Wo (20 \ Woy(2U—D).

In the general case a Cauchy point cannot be determined analytically. If no (nonzero) conic
constraint is active, then the Cauchy point is given by the same closed-form solution as in the
bound-constrained case, and which is used in step 11 of Algorithm 2. Even in the general case,
however, the identification of a projected-gradient segment that contains a Cauchy point can be
used for making a line search more efficient when using the corresponding bounds on the step
size. Accordingly we apply a standard backtracking projected line search to determine the step size
a > 0 starting from a given upper bound «g [3]; in our case it is the distance to the next breakpoint
following the projected-gradient curve at which the directional derivative becomes nonnegative. The
projected backtracking line search is given by Algorithm 1.

Algorithm 1 backtrack-linesearch(z, p, ag)

Input: z,p € R", ap >0 and c € (0,1)
a < min(ag, 1)
while g(Po(z + ap)) > 4(2) — & |12 — Pa(z +ap)|[* do
a4+ ca
end while
Output: o

Lemma 2 establishes a lower bound for the step size that is the output of Algorithm 1. The
bound established by the lemma immediately implies that Algorithm 1 terminates in a finite number
of iterations.

Lemma 2. The step size o that is the output of Algorithm 1 satisfies a > min {1, o, ﬁ}
2
Proof. First observe that for every z(1), 2(2) € RN we have that the Lipschitz condition

qu(z(l)) _ Vq(z(2)H2 < H|G|(Z(2) _ Z(l))H2 < |G, HZ(Q) _ 2(1)H2

is satisfied with constant ||G||,. Hence, it follows from [3, Lemma 2] that for all o < ﬁ,
2

a>1|z— Po(z+ ap)|?/ (¢(z) — ¢(Pa(z + ap))). Then the claim follows by Steps 1 and 3 of the
algorithm. n

An advantage of having precomputed the breakpoints (6) when searching over a given projected-
gradient segment is that at most the projections onto active cones in W, (z) need to be computed
and updated at each iteration of Algorithm 1. The projection onto inactive and zero-active cones is
immediately given, respectively by the first two cases of the definition in (4). Note that Algorithm 2
may revert to the backtracking line search (Algorithm 1) over the last segment in Step 13 of the
algorithm. In particular, the last segment to be processed by Algorithm 2 is either the one starting
at the rth breakpoint following the ordering of (6) or the first segment according to the same order
over which the objective function decreases.

10



Algorithm 2 PG(2(),p)

Input: 2 feasible for (1), descent direction p
1: Generate the breakpoints t? for /=1,...,m and tj for{=mp+1,...,m.
2: Sort the (unique) breakpoint values 7 € R" according to (6).
3: forj=1,...,rdo
4 20)  Po(29) + 7p), 20+ < Po(2(0) + 7;,1p) and ¢j < q(219)), and gj41 + q(zU+D).
51 pll] < 0 for £ € Wy(z19))
6 if §L(Po(z —tVq)) > 0 then
7
8
9

e Z(])
break
:  elseif j =r or gj;1 > g; then
10: if W, (29)) =0 then
11: t* —%
12: else
13: t* «+ backtrack-linesearch(zV), p, 7541 — 7;) // invoking Algorithm 1
14: end if
15: 2"« Po(2\9) 4 t*p)
16: break
17:  end if
18: end for

Output: z*

2.3 Phase II: Newton Iterations and EQP Subproblems

Having identified the optimal active set A(z*), the reduced subspace problem is to solve (1) with
conic constraints in W, (z*) replaced by equality constraints (constraining feasible points to lie on
the boundary of the cone), and for all £ € Wy(z*) fixing z[¢] = 0. Although the reduced subproblem
may seem like a more challenging nonconvex optimization problem, typically this problem has
significantly fewer variables. Further, having identified a correct active set, then it will have only
equality constraints that are differentiable. Given an active set, we apply a Newton-like method
consisting of solving a sequence of EQPs [16, Chapter 18.2]. This method maintains the desirable
properties of the subproblem, in particular that for all £ € W, (z*), ¢y(z) is differentiable for all
z € Be(2*) = {z €RY | ||z — 2*|| < €} for some e > 0 (that is consistent with the choice of €
in (8)). Suppose that the active set A(z*) is identified in a finite number of steps. Then, there exist
an € and k < oo such that 2(¥) € B.(2*), ¢, is differentiable for all z € B.(2¥), and this method
starting at 2(k) converges at a quadratic rate; see, for example, [16, Theorem 18.4].

For a given solution 2(k) € RN the EQP step consists of solving the subproblem

mzin q(2) (14a)

subject to z[f) =0 € e Wo(z™) (14b)
@@):sz—HEEH:o 0e W, (). (14c)

For £ € W, (M) we have that HMH + € = z[{],, > €. Then, V¢i(z) = (ﬁ%n ﬂiﬁ?ﬁ 1)T

11



and

2l i#
2 celoy ., |TEE
Vie(z) = with Cj; = — |2+
0 0 K o z[£ 2
— |L ] = L (—1 + iU 2) otherwise.
[Eal 1=l [Edll

Further, define the subvector é(z) = (ce(2[€]))eew, () and 2 = N — 3 ycpy 20y ne- Let ¢ be the

reduced objective function for z € R, and let G be the corresponding reduced Hessian in R™*%.
Then, the Lagrangian of (14) can be written as L(z, ) = §(z) — ATé(2). Then at the kth Newton
k) are determined by the solution of the linear system:

iteration, p*), \(
V2L (20 ARy —we(z0)\ (pF  (—vg(z®) (15)
—Veé(zNT 0 AE) )T a2y )

Let p*) denote the extension of p*) to RN with p*)[¢] = 0 for all £ € Wy(2®)). Then the next
iterate is given by z(F+1) = z(k) (k)
To ensure convergence of the Newton phase, for a penalty constant p < 1/ MAX; (4 (k) )\Ek), we

define a merit function my(z) = u’'¢(z) + H(Ci(z))iew(z(k)) and require that the merit function

;
decrease in every EQP step, that is, for k > 2,

mk(z(k)) < mk(z(kfl)), (16)

and also, for a constant o € (0, 1),

mie(z%)) = my () > —o (u <;kaV§Zﬁp(k) + sz/Tp(k)> +

é(zkl)Hl) .an

If one of the conditions (16) or (17) is violated, then the EQP step is rejected; otherwise it is
accepted.

3 The Two-Phase Algorithm

The resulting two-phase method is given by Algorithm 3. The transition from the projected-gradient
phase to the Newton phase occurs once the working set “settles down.” The Newton phase consists
of EQP steps in a subspace that is defined by the set of active variables and constraints. For EQP
steps of the Newton phase to be effective, the starting point should also be sufficiently close to
the optimal solution. In Step 7 of the algorithm it is determined whether the working set seems
to have settled in order to switch to the Newton phase. It is determined by testing whether the
step size is smaller than a threshold parameter 7p in addition to the absence of a change to the
working set in the most recent iteration (the latter is the sole criterion used for bound-constrained
problems [15, 8]). The use of the step-size criterion is motivated by the observation that projected-
gradient iterations with no change to the working set (i.e., with no additional constraints being
identified) may be encountered before the working set settles down. This is illustrated by Example 2.
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Example 2. Let m = 2,n; = 1, and ny = 3, and consider Problem (1) with data and projected
gradient phase iterates of Algorithm 3:

1 0 0 -1 1
0 2 -1 0 1
G= 0 -1 1 0 g =1 and
1 0 9 -1
1 _3 4 45 0
0 _ |3 ©oy_ | 3 m _ |0 Wy _ | 05 () _ | 0.44
z g V=) ol * 05| Ve =1 5] and 2 0.94
5 8 0.5 —4.0 4.06

Evidently, W(20) = {2} = W(z) £ W(2?)) = {1}.

Example 2 shows that with SOCP constraints there may be projected-gradient iterates without
a change to the active set while it is not yet settled down; this situation is in contrast to the case
of active set methods for bound or linear constraints with an additional constraint being identified
in each iteration.

In Step 11, Algorithm 3 reverts back to the projected-gradient phase from the Newton phase.
This may occur when one of the following occurs:

e The inactive constraints become infeasible (beyond a predetermined tolerance), in which case
the current working set is suspected to be incorrect.

e Conditions (16) or (17) are found to be violated in which case the EQP is not showing
satisfactory progress. For example, this may be due to starting the Newton phase too far
from the optimal solution.

If the algorithm reverts back to the projected-gradient phase, then the step-size tolerance parameter
7p, which determines the switch to the Newton phase, is halved in Step 12 of the algorithm in order
to prevent undesirable oscillation between the gradient-projection and Newton phase. We note that
when we return to the gradient projection phase, we start that phase at the projection of the last
Newton step, provided that that step reduced the objective. Otherwise, we restart from the last
projected-gradient step.

Proposition 1 establishes the finite termination of the projected-gradient phase of Algorithm 3.
For its proof we use Lemma 3, which is due to Calamai and Moré [5, Lemma 3.1] in a general
context of optimization over an arbitrary convex set. Lemma 3 specializes their result to a quadratic
objective g over the (convex) feasible region Q.

Lemma 3 (Calamai and Moré [5]). Consider Problem (1) over the convex cone Q. It follows that
(i) min {Vq(z)"v | ve T(2),||v|| £1} = ~||Pre)(=Va(2))|].
(ii) If z* is optimal for (1), then PT(Z)(—Vq(Z*)) = 0.

Proposition 1. Suppose that (1) is strictly feasible (i.e., the strict interior of the feasible region is
not empty) and that strict complementarity holds (at every local minimum). Then for Algorithm 3
with Tp = 1o (i.e., omitting the Newton phase) the following holds:

(i) The sequence {z®)} of Algorithm 3 satisfies limy_oo 2%) — 2* for 2* that is optimal for (1).
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Algorithm 3 TwoPhasePg(G,g,2"): Two-Phase Projected-Gradient Method for Conic-
Constrained QPs.

Input: G € RV*N g e RN, 2(0 € Q, tolerances 7, 70, 7p € (0,1), with 7p > 70.
1: h+< 0
2: for h=1,...do

3 2z(") < PG-linesearch (z("~1), —vg(z(*=1)) // invoking Algorithm 2
4: if Hz(h) — z(h_l)H < 70 then

5: break

6: end if

7. if Hz(h) — z(h*I)H < 7p and W(zW) = W(z("=1) then

8: for k=h+1,... do

9: Perform an EQP iteration of (14), to obtain a solution (p*), \(*)) of (15).

10: Z(k) — z(k_l) _|-p(k)

11: if Hm‘ — 2z, > 7F for some i ¢ W(z(*)), or (16) is violated then

12: TP < Tp/2

13: break

14: else if HVL(z(k), )\(k))H < 170 then // possible termination

15: break

16: end if

17: end for

18: if ¢(Po(2*))) > ¢(2() then

19: 2(k)  2(h) // return to last PG iterate
20: else

21: 2(F)  Pg(2(F) // continue from projected Newton
22: end if

23: h <k

24:  end if

25: end for

Output: z*)

14



(ii) Suppose z* is optimal for (1) and 0 < € < mlnl m 12 W, | 2°[lln, > 0}. Then, there

exists a K < oo such that all k > K satisfy W(z* ) A(z*). In other words, the algorithm
determines A(z*) in a finite number of steps.

Proof.

(i)

(i)

By [3, Proposition 1] a limit point of the sequence generated by Algorithm 1 is a stationary
point. Hence, and since the line search of Algorithm 2 terminates either at an exact Cauchy
point or at a point generated by Algorithm 1, the limit point z* of the sequence {z(h)}
generated by first phase of Algorithm 3, using Algorithm 2, is a stationary point. Then,
since (1) is strictly feasible (and is convex), there exists a v* € Q so that (z*,v*) is a solution
of the optimality conditions (2) and z* is optimal for (1).

The following analysis is similar to [5, 15] for linearly and bound-constrained problems. (Note
that if ny = 1 for all ¢, then the algorithm and proof reduce to the bound-constrained case
of [15] and the correctness of the statement follows, for example from [15, Theorem 5.2].)
Consider an infinite sequence {z(k)}zo:1 that it generated through Algorithm 3. To show that
there exists some K such that W(z*) C W(z®)) for all k > K, assume for the sake of deriving
a contradiction that there is some £ € W(z*) such that £ ¢ W(z(®) for all k.

Let v* € Q be KKT dual multipliers that correspond to z* € Q, that is, (z*, ") is a solution
of (2). Further, let p € RY be defined by

pli] = {—z*[i] i=1,...,m, and i # ¢, 1)

Za A

and by (9) note that —p € To(2®) for all k; in particular —p[i] = 2*[i] € Qn, C TQ)n(z(k))
for i # ¢ and —p[i] = —v*[i] € R™ C TQni(z(k’)) for i = ¢ ¢ W(z*)). By Lemma 3(i)

Va(=")Tp < || Priey(=Vaz®)| | l1pll.
Then, it follows from limy_,4 2(*¥) = 2* and Lemma 3(ii) that
Va(z*)"p <.
By strict complementarity
LeW(2") = Le WL (V) or LeW(2") =L ¢ W), (19)
where the working sets W, (v*) and Wy (v*) are defined by (8) from the self-duality of the

second-order cone. This implies that in either case v*[¢] # 0. Then, by the KKT conditions (2)
applied to (z*,v*), (18), and complementary slackness, it follows that

Va(")p=v"p==3"vlil 2"l + I = 1417 > o,

thereby establishing a contradiction. Next, the equality of the working and active set at
optimality follows by the choice of € and Observation 1. O
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Table 2: Comparison of performance statistics of our implementation of Algorithm 3 with the
conic solver SDPT3 and nonlinear solver SQP-Filter over 30 runs using random data with well
conditioned G matrices.

N | m. | Dense Algorithm 3 SDPT3 SQP-Filter

f-eval \ V-eval \ V2-eval \ CPU sec | Iter \ CPU sec | f-eval \ V-eval \ V2-eval \ CPU sec
100 20 .1 146.1 88.6 0 .16 | 22.9 .99 | 498.7 186.4 220.2 .30
100 20 1 128.4 82.0 0 0.15 | 24.5 1.62 | 508.1 184.0 215.1 4.38
200 20 1 152.0 95.7 0 24 | 22.7 4.80 | 416.8 157.5 181.8 3.80
200 20 1 144.0 97.4 0 0.20 | 24.2 7.99 | 466.1 171.3 197.0 34.92
500 50 .1 228.0 170.3 0 .52 | 26.0 15.39 | 467.6 190.1 226.5 57.66
500 50 1| 224.97 180.0 0 72 | 26.8 25.86 | 478.8 191.8 229.0 417.0
1000 | 100 .1 359.6 303.0 0 1.97 | 28.1 202.52 | 400.6 196.5 239.7 341.1
1000 | 100 1 364.6 322.3 0 5.87 | 28.9 133.69 | 446.5 228.2 273.9 2852.6
2000 | 100 .1 431.0 | 390.23 0 3.97 | 27.1 309.44 | 429.5 207.3 241.7 1202.81
2000 | 100 1 495.0 460.0 0 23.99 | 28.1 756.13 | 374.5 178.1 212.3 | 8914.58

Proposition 1 implies that Algorithm 3 takes a finite number of iterations and invocations of
Algorithm 2. By Lemma 2 each iteration of Algorithm 2 takes finitely many steps. Therefore,
Algorithm 3 takes overall a finite number of steps to identify the active set of constraints. Fol-
lowing the convergence properties of the Newton’s phase [16, Theorem 18.4], and the discussion in
Section 2.3, Proposition 1 also establishes the quadratic convergence of Algorithm 3 for 7p > 79
(i.e., when the Newton phase is applied near the optimal solution).

4 Computational Results

We now compare the computational performance of the two-phase Algorithm 3 with the conic solver
SDPT3 and with the NLP solver SQP-Filter. The first set of well-conditioned instances is generated
randomly as follows: ¢ is generated uniformly at random from (—.5,.5)", and a set of eigenvalues is
generated uniformly at random and used to generate G for some density in {.1, 1} using the Matlab
sprandsym procedure. Next, the randomly generated entries of G and ¢ are truncated to have
six significant digits. Note that this modification of the matrix entries also tends to increase the
condition number of G. For the well-conditioned instances the intial set of eigenvalues is generated
uniformly at random from (0.5,1), and so otherwise their condition number (before truncation)
is bounded by 2. For a given m., a random number of elements is selected for each constraint in
{2,..., [(N—myp)/m.|+1}. The last constraint contains all remaining variables. The computational
results for the well-conditioned random instances are given in Table 2. The running time reported
for SDPT3 is the total run time of CVX and SDPT3. Note that CVX converts (1) into a linear
SOCP. Observe that in Table 2 the number of V? evaluations is zero for Algorithm 3, indicating
that for these instances we never compute an EQP step. The reason for this behavior is that for
this class of well-conditioned problems, the projected-gradient method converges sufficiently well
and that the steps are always larger than the switching tolerance 7p.

In Table 3 we show our results for random instances with matrices G having more challenging
condition numbers (although technically these would still be considered well conditioned): the set
of eigenvalues is initially generated uniformly at random from (0.5,50)". Since only six signifi-
cant digits of the matrix were kept, the condition number tended to increase, and in practice the
condition number varied between 90 and 400.
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Table 3: Comparison of performance statistics of our implementation of Algorithm 3 with the
conic solver SDPT3 and nonlinear solver SQP-Filter over 30 runs using random data with ”poorly
conditioned” G.

N | m. | Dense Algorithm 3 SDPT3 SQP-Filter

f-eval \ V-eval \ V2-eval \ CPU sec | Iter \ CPU sec | f-eval \ V-eval \ V2-eval \ CPU sec
100 20 .1 282.4 175.5 4.4 .89 | 23.0 1.09 | 434.4 167.1 194.5 15
100 20 1 214.2 155.2 3.7 45 | 25.2 1.70 | 462.1 175.2 202.2 4.13
200 20 1 304.5 202.5 2.3 1.0 | 24.0 5.07 | 362.9 141.2 159.8 3.33
200 20 1 266.8 200.0 2.9 1.12 | 23.7 7.9 | 368.7 144.3 164.5 26.2
500 50 .1 482.5 384.8 3.1 2.56 | 27.4 15.86 | 410.1 171.6 207.7 49.73
500 50 1 474.7 407.6 3.1 2.92 | 28.3 28.12 | 413.3 178.1 209.1 377.02
1000 | 100 .1 832.4 719.0 5.3 7.08 | 30.0 67.09 | 360.3 182.7 216.9 306.71
1000 | 100 1 829.7 759.1 3.0 14.84 | 31.1 98.77 | 353.4 188.9 225.8 | 2249.81
2000 | 100 1| 1262.6 | 1152.8 1.5 14.39 | 30.1 330.24 | 339.9 159.9 186.6 941.67
2000 | 100 1| 1323.0 | 1251.1 2.4 65.86 | 31.7 838.49 | 323.8 155.5 183.2 7679.65

The results of Tables 2 and 3 indicate that although the number of iterations and running times
of Algorithm 3 significantly increase with the condition number of GG, the running times are an
order of magnitude better that those of SDPT3 and SQP-Filter. Although the running times of
both SDPT3 and SQP-Filter significantly increase for dense G, it does not appear to be the case
for Algorithm 3, as can be expected from a first-order method. While the number of iterations
of SDPT3 appears to grow slowly in N, the running times grow rapidly, consistent with previous
results for interior-point methods [17].

5 Conclusions

In this paper we generalized the active-set methodology of bound-constrained quadratic program-
ming (e.g., that of Mofe and Toraldo [15]) to second-order cone-constrained quadratic programming.
We proved that subject to strict complementarity, our method identifies an active set in a finite
number of steps. The method is a two-phase algorithm that inherits the convergence properties
of the second-phase method; Newton-like EQP steps that quadratically converge to an optimal so-
lution. Computational experiments confirm that our method outperforms the conic interior-point
solver SDPT3 and the nonlinear programming solver SQP-Filter. The relative advantage of our
method increases with the dimension of the problem and the density of the objective’s Hessian.
The computational advantage of our method decreases with the condition number of the Hessian
but remains significant even with condition numbers that exceed several hundreds.

We plan to extend our method to solve more general problems with additional linear constraints.
In particular we will deploy the two-phase algorithm to solve the subproblem within an augmented
Lagrangian method. We will also investigate cases in which specially structured linear constraints
can be more directly incorporated within the projection steps of the algorithm. Moreover, we will
extend the method for solving nonconvex conically constrained QPs.
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A

Small SOCP Examples that Challenge NLP Solvers

Here we consider four basic four-dimensional examples of the form

max ( v v y3)G(z y1 w2 ys)T +(z vy Y2 y3)g
subject to ly1 + y2|| < ys
x > 0.

In all four we have

1 0 -1 0
0 1 0 -1
G = -1 0 1 0
0o -1 0 2

1. g= (0 0 —1 —1), for this example the conic constraint is active in the optimal solution.

(0 00 —1), in which case the optimal solution is degenerate.
g = (1 1 0 —2), in which case the conic constraint is inactive in the optimal solution.

0 0 1 0) for which the solution (z,y”) = 0 is optimal.
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