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Abstract

We address the problem of identifying critical contingencies in an electric grid network. The critical
contingency identification is modeled as a nonconvex robust optimization problem, where the upper level
must choose the most damaging attack that anticipates the lower-level decision to minimize the damage
from the attacks. In general, nonconvex robust optimization problems are NP-hard, and effective solution
approaches make use of the problem structure. Initially, we consider a single-level reformulation to the
original problem, but we note that its convexity properties do not allow for tractable solution approaches.
To address this issue, we pose a Lagrangian-based reformulation that preserves the modeling of nonlinear
aspects of the power network operation, while having the desired structure amenable to the application
of standard solution approaches in mixed-integer convex programming. We present computational ex-
periments based on IEEE and Pegase cases, discuss the effectiveness of the new approach, and conclude
with questions arising from the experiments that can be addressed in the future.
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convex programming
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1 Introduction

We present solution methods for application to the problem of identifying the critical contingencies in an
alternating current power system. We model the problem as a Stackelberg game, where the attacker (i.e.,
leader) aims to compromise the functionality of a small subset of components whose failure or malfunction
results in a system disruption that cannot be adequately remedied with available defensive measures by a
defender (i.e., follower). An attack need not come from a malevolent adversary but may come from a “perfect
storm” of naturally occurring component failures. One example of where a small number of component
failures had significant consequence was during the large-scale blackout in the northeastern United States
and neighboring parts of Canada in the summer of 2003 [U.S04, NER04].

We consider a power system network with sets of buses and lines, whose index sets are denoted by N and
L, respectively. We focus on the contingencies associated with the cutting of network lines. For each line
l ∈ L, let xl be the binary decision variable indicating whether the line l is cut (xl = 1) or not (xl = 0). We
model the bilevel contingency identification problem as follows:

Φ := max
x

{
φ(x) s.t.

∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L

}
, (1)

where x 7→ φ(x) for a given x := (xl)l∈L ∈ {0, 1}|L| is a nonnegative-valued function whose value is determined
by solving a lower-level optimization for the minimal value of system infeasibility due to a defender’s optimal
response to attack x. In the upper-level problem (1), the attacker is restricted by the budget

∑
l∈L xl ≤ K

for nonnegative integer K. Problem (1) is given as the optimal value transformation of a bilevel optimization
problem (see [DKPVK15], Sections 1.4 and 3.6, and references therein). When the underlying network

∗Argonne National Laboratory, bdandurand@anl.gov
†Argonne National Laboratory, kimk@anl.gov
‡Argonne National Laboratory, leyffer@mcs.anl.gov

1



model includes the AC power flow equations, we set φ = φAC , and the optimal value to (1) with φ = φAC

is denoted by ΦAC . Aside from its bilevel nature, problem (1) with φ = φAC is challenging because the AC
electric system of the lower-level problem is nonlinear and nonconvex. Correspondingly, x 7→ φAC(x) and
its associated defender subproblem have no identifiable convexity structure. Without such structure, any
solution approach to (1) cannot skip the combinatorial enumeration of the feasible solution set.

Consequently, we consider convex relaxations of the AC power balance constraints. For the semidefinite
programming (SDP) relaxation [BWFW08, LL12] of the defender subproblem, we set φ = φSDP . Analo-
gously, for the second-order cone (SOC) relaxation [Jab06], we set φ = φSOC . The corresponding optimal
values to (1) with φ = φSDP and φ = φSOC are denoted by ΦSDP and ΦSOC , respectively.

Earlier efforts involved developing methods applied to linearizations and/or direct current approximations
of the underlying AC network (e.g., [SWB09, Arr10, ZZ13, Kim17, BV10]). We avoid these approaches,
because they oversimplify the AC power flow balance equations, resulting in inaccurate assessments of network
vulnerabilities.

Other approaches that address nonlinear models of the AC network rely on other simplifying assumptions.
These assumptions allow for solution approaches based on solving the Karush-Kuhn-Tucker (KKT) reformu-
lation and/or allow for the approximation of the problem in mixed-integer linear programming [PMDL10].
However, such KKT-reformulated problems are well known to violate constraint qualification at every feasible
point. Mixed-integer linear reformulations of the complementarity constraints within the KKT system may
be employed to overcome this issue. However, the continuous relaxation to such reformulations does not
provide good bounds for the effective use of a branch-and-bound approach.

Most recently, Wu et al. [WCA18] posed a dual-solution approach based on SOC relaxation [Jab06]. SOC
relaxations of the AC power flow balance equations are substantially more accurate than DC or other linear
relaxations or approximations, but they are not as accurate as SDP relaxations. Solution approaches applied
to SOCs tend to scale better than those applied to SDPs but do not scale as well as linear solution approaches.
Our research goal, therefore, is to improve the accuracy of the SOC relaxation approach of [WCA18] by
employing other relaxations that are nevertheless amenable to linear solution approaches for improving
scalability.

In this paper we present a new solution approach to solving problem (1). The key contributions of this
paper are summarized as follows:

1. We present a new single-level reformulation of (1) based on the Lagrangian dual of φAC using techniques
simimlar to those described in [Pha12].

2. We prove that the Lagrangian relaxation of φAC provides a dual bound of φAC that is as tight as that
of φSDP and hence tighter than that of φSOC .

3. We develop a method by applying a single-tree variant of the extended cutting plane (ECP) algo-
rithm [WP95a, EMW14] to our single-level reformulation with the proof of its finite, globally optimal
convergence.

4. We develop a new structured relaxation of the optimal power flow defender subproblem that allows for
the development of a new method that scales to larger test instances than previous methods do.

The single-level reformulation for the first contribution is a mixed-binary concave maximization problem
having only one nonlinear nonsmooth constraint. As needed for implementing the third contribution, values
and subgradients associated with the corresponding constraint function are obtained by solving a quadratic
trust-region subproblem that, although nonconvex, can be solved to global optimality using well-known ap-
proaches; see, for example, [Hag01]. The new structure-based relaxation of the fourth contribution relaxes
the equations governing the AC power flows between two buses connected by an active line given bus volt-
ages, while maintaining power flow balance as required by Kirchoff’s Law. We propagate this relaxation into
the single-level reformulation described above, resulting in a modified single-level reformulation. Compu-
tational results show that the new method resulting from the application of the single-tree ECP algorithm
to the modified single-level reformulation scales to larger instances than does the SOC relaxation approach
in [WCA18], while maintaining the accuracy of the SOC relaxation approach for most test instances.

For baseline comparison purposes, we also implement the single-level reformulations based on the SDP and
SOC relaxations of the lower-level subproblem (i.e., φSDP and φSOC , respectively). For the SDP approach, we
implement a simple branch-and-bound approach applied to the SDP-based reformulation. The branching rule
is informed by the guidelines in [GPU18, Section 8.2]. We steer away from using only maximum fractionality
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for the branching rule, because of the typically big search tree that is generated. For our application of
interest, the solution of each SDP node subproblem is expensive, so strong branching is not practical. Hence,
our own branching rule tries to emulate pseudocost branching using the physical information present in
the line flow admittance parameters. For the SOC approach, we apply a conic solver to the SOC-based
reformulation as done in [WCA18].

This paper is organized as follows. In Section 2, we present the bilevel model formulation with the
lower-level problem φ(x) of AC optimal power flow and develop the single-level reformulation based on the
Lagrangian dual of φ(x). In Section 3, we analyze the strength of our Lagrangian dual subproblem by
comparing it with the SDP and SOC relaxations of the underlying AC power system. Additionally, we
describe the structured relaxation of the fourth contribution and the modified single-level reformulation
that is obtained from it. In section 4, we describe the single-tree generalized ECP algorithm, analyze its
convergence properties, and justify its application to the Lagrangian dual-based reformulation of problem (1).
We additionally describe the methods resulting from the application of conic optimization solvers to the SDP-
and SOC-based reformulations, where we provide a simple branch-and-bound framework to the former.
Section 5 reports the numerical results from the different methods on different power grid instances. We
present and comment on numerical results from the different approaches with respect to the various profiles
related to solution times, solution qualities, number of branch-and-cut nodes, and number of applied cutting
planes. In Section 6, we summarize our conclusions and describe future work

2 Single-Level Reformulation

In this section, we present single-level reformulations of problem (1) based on Lagrangian relaxations of
the lower-level problem with respect to some of the constraints. To begin, we specify the lower-level AC
optimal power flow (ACOPF) with details of the power flow physics. We follow the development of Chapter
3 in [ZMS18].

2.1 Nonconvex Lower-Level ACOPF Problem

For each line (i, j) = l ∈ L connected from bus i to bus j, we define the complex-valued line admittance z−1l ,
which is the inverse of the line impedance zl := (rl + iχl) for a given resistance rl and reactance χl. The

imaginary component of any complex number is denoted i :=
√
−1. We denote complex current flows by ιfl

and ιtl , where the superscripts f and t indicate the forward and backward direction of flows, respectively.
Given complex bus voltages vi, i ∈ N , the current flows are determined by[

ιfl
ιtl

]
:=

[
Y ffl Y ftl
Y tfl Y ttl

] [
vi
vj

]
, (2)

where

Yl :=

[
Y ffl Y ftl
Y tfl Y ttl

]
:=

[
(z−1 + i bl2 ) 1

τ2
l
−z−1l

1
τle
−iψl

−z−1l
1

τle
iψl

z−1l + i bl2

]
(3)

after defining, for each line l ∈ L, the charging susceptance bl, the tap ratio τl, and the phase angle shift ψl.
At each line (i, j) = l ∈ L, complex power flows from bus i and to bus j are respectively given by

sfl := vi(ι
f
l )∗ = viv

∗
i (Y ffl )∗ + viv

∗
j (Y ftl )∗, stl := vj(ι

t
l)
∗ = vjv

∗
i (Y tfl )∗ + vjv

∗
j (Y ttl )∗, (4)

where the ∗ operator applied to the vector corresponds to componentwise conjugacy in complex arithmetic
and vi is a complex voltage at bus i. We introduce W ∈ C|N |×|N |, where each element Wij = viv

∗
j , i, j ∈ N .

By defining v := [vi]i∈N ∈ C|N |, we may also write W = vv∗, which is a rank 1 matrix. For each line
(i, j) = l ∈ L, we define the following 2× 2 submatrices of W :

Wl :=

[
Wii Wij

Wji Wjj

]
. (5)

In light of these definitions, we write each line (i, j) = l ∈ L complex power flow as linear functions of Wl

given by
sfl (Wl) = Wii(Y

ff
l )∗ +Wij(Y

ft
l )∗, stl(Wl) = Wji(Y

tf
l )∗ +Wjj(Y

tt
l )∗. (6)

3



Denoting vRi := <{vi} and vIi := ={vi}, i ∈ N , we define

WR
ij := <{Wij} = vRi v

R
j + vIi v

I
j , W I

ij := ={Wij} = vRj v
I
i − vRi vIj , i, j ∈ N. (7)

Note that WR
ii = (eRi )2 + (eIi )

2 = |Vi|2 and W I
ii = 0, so that Wii = WR

ii for each bus i ∈ N . Also, we define
for each line l ∈ L

pfl (Wl) := <{sfl (Wl)}, ptl(Wl) := <{stl(Wl)} (8a)

qfl (Wl) := ={sfl (Wl)}, qtl (Wl) := ={stl(Wl)}. (8b)

For each bus i ∈ N , the shunt power injection is given by the linear function of Wii,

pshi (Wii) := Y shRi Wii, qshi (Wii) := −Y shIi Wii, (8c)

where Y shRi and Y shIi are, respectively, the real and imaginary components of the shunt admittance at bus
i ∈ N .

We present the defender’s lower-level problem that seeks to enforce power flow balance. Let pNi and qNi
be the net active and reactive power injections, respectively, to each bus i ∈ N , given by

pNi (W,x) := pshi (Wii) +
∑
l∈Lfi

(1− xl) pfl (Wl) +
∑
l∈Lti

(1− xl) ptl(Wl), (9a)

qNi (W,x) := qshi (Wii) +
∑
l∈Lfi

(1− xl) qfl (Wl) +
∑
l∈Lti

(1− xl) qtl (Wl), (9b)

where Lfi is the set of lines with the origin of bus i and Lti is the set of lines with the destination of bus i.
Active power generation and reactive power generation at bus i ∈ N are denoted by pGi and qGi , respectively,
while active and reactive power demands at bus i ∈ N is denoted by PDi and QDi . Power generation is
constrained to the bounds

Pmini ≤ pGi ≤ Pmaxi , Qmini ≤ qGi ≤ Qmaxi , i ∈ N. (10)

With these definitions, the power flow balance equations are given by

pNi (W,x) = pGi − PDi (11a)

qNi (W,x) = qGi −QDi . (11b)

The defender attempts to enforce the power flow balance equations (11) by adjusting power flow control
W and power generations pG := (pGi )i∈N , qG := (qGi )i∈N for a given line contingency x. Note, however, that
for a given attack x, it may not be possible to enforce constraints (11) by feasible adjustments of W , pG, and
qG. That is, load shedding or excessive power generation might be unavoidable. Consequently, we model the
lower-level defender subproblem to minimize the use of load shedding and/or excessive power generation to
enforce the power flow balance equations (11). The lower-level defender’s subproblem is modeled by

φAC(x) := min
v,W,pG,qG,u

∑
i∈N

(upi + uqi + umi ) (12a)

s.t. W = vv∗ (12b)

u := (upi , u
q
i , u

m
i )i∈N ≥ 0 (12c)

Pmini ≤ pGi ≤ Pmaxi , Qmini ≤ qGi ≤ Qmaxi , i ∈ N (12d)

− upi ≤ p
N
i (W,x)− pGi + PDi ≤ u

p
i , i ∈ N, (12e)

− uqi ≤ q
N
i (W,x)− qGi +QDi ≤ u

q
i , i ∈ N, (12f)

(V mini )2 − umi ≤Wii ≤ (V maxi )2 + umi , i ∈ N, (12g)

where v,W, pG, qG, u are decision variables. In (12), power flow balance constraints (12e)–(12f) and the
voltage bound constraint (12g) are treated as soft constraints with auxiliary variables ui := (upi , u

q
i , u

m
i ) that

are penalized in the objective function. The auxiliary variables upi and uqi can be interpreted as either demand
load shedding or excess power generation at each bus i ∈ N . For constraint (12g), recall that Wii = |vi|2.
Hence, the lower-level problem minimizes the constraint violations of (12e)–(12g). Note that for x = 0,
φAC(x) solves the ACOPF feasibility problem under ordinary (i.e., noncontingent) operating conditions.
The resulting lower-level problem is a nonconvex nonlinear program due to the quadratic rank 1 constraint
W = vv∗, while all the other constraints are linear.
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2.2 Mixed-binary Lagrangian Relaxation

Problem (1) with the nonconvex lower-level problem (12) is nonsmooth and discrete. We develop a single-
level reformulation based on the Lagrangian relaxation of the lower-level problem with respect to the soft
constraints (12e)-(12g) (i.e., power flow constraints and voltage magnitude bounds) and the power generation
bounds (12d). Introducing the corresponding nonnegative Lagrange multipliers α+

i , α
−
i , β

+
i , β

−
i , γ

+
i , γ

−
i ≥ 0,

and δp,+i , δp,−i , δq,+i , δq,−i ≥ 0 for i ∈ N , the Lagrangian dual problem is given by

ΦACD := max
x,α,β,γ,δ

φACD (x) (13a)

s.t.
∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L (13b)

α+
i , α

−
i , β

+
i , β

−
i , γ

+
i , γ

−
i ≥ 0, i ∈ N (13c)

δp,+i , δp,−i , δq,+i , δq,−i ≥ 0, i ∈ N, (13d)

where φACD (x) represents the Lagrangian relaxation of φAC(x) with respect to constraints (12e)-(12g) and (12d)
and is given by

φACD (x) = min
pG,qG,v,W,u

∑
i∈N

[
(α+
i − α

−
i )(pNi (W,x)− pGi + PDi )

]
(14)

+
∑
i∈N

[
(β+
i − β

−
i )(qNi (W,x)− qGi +QDi )

]
+
∑
i∈N

[
(1− α+

i − α
−
i )upi + (1− β+

i − β
−
i )uqi

]
+
∑
i∈N

[
γ+i (Wii − (V maxi )2) + γ−i ((V mini )2 −Wii)

]
+
∑
i∈N

[
(1− γ+i − γ

−
i )umi

]
+
∑
i∈N

[
δp,+i (pGi − Pmaxi )− δp,−i (pGi − Pmini )

]
+
∑
i∈N

[
δq,+i (qGi −Qmaxi )− δq,−i (qGi −Qmini )

]
s.t. W = vv∗, up, uq, um ∈ R|N |+ .

Note that by weak duality, ΦAC ≥ ΦACD .
The variables u, pG, and qG appear only in the objective function of (14), and the following conditions

are necessary for the problem (14) to be bounded from below (i.e., the boundedness of the Lagrangian dual
problem):

1− α+
i − α

−
i ≥ 0, 1− β+

i − β
−
i ≥ 0, 1− γ+i − γ

−
i ≥ 0, i ∈ N (15a)

−α+
i + α−i + δp,+i − δp,−i = 0, −β+

i + β−i + δq,+i − δq,−i = 0, i ∈ N. (15b)

With the conditions (15), the terms in u, pG, and qG can be dropped from the objective function of the inner
minization problem. Moreover, by substituting

αi = α+
i − α

−
i and βi = β+

i − β
−
i , (16)
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the Lagrangian dual problem (13) is equivalent to

max
x,α,β,γ,δ

min
v,W

{ ∑
i∈N

[
αi(p

N
i (W,x) + PDi ) + βi(q

N
i (W,x) +QDi )

]
+
∑
i∈N

[
(γ+i − γ

−
i )Wii

]
s.t. W = vv∗

}
(17a)

+
∑
i∈N

[
−δp,+i Pmaxi + δp,−i Pmini − δq,+i Qmaxi + δq,−i Qmini

]
+
∑
i∈N

[
γ−i (V mini )2 − γ+i (V maxi )2

]
s.t.

∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L (17b)

− 1 ≤ αi ≤ 1, −1 ≤ βi ≤ 1, γ+i + γ−i ≤ 1, γ+i , γ
−
i ≥ 0 i ∈ N, (17c)

δp,+i − δp,−i = αi, δq,+i − δq,−i = βi, δp,+i , δp,−i , δq,+i , δq,−i ≥ 0, i ∈ N. (17d)

The inner minimization problem in (17) is not convex because of the bilinear objective function and

nonconvex quadratic constraints W = vv∗. Introducing auxiliary variables λfl , λ
t
l , µ

f
l , µ

t
l , we linearize the

bilinear terms by substituting

λfl = (1− xl)αi, λtl = (1− xl)αj , µfl = (1− xl)βi, µtl = (1− xl)βj . (18)

Using the McCormick [McC76] inequalities, we can rewrite the bilinear constraints (18) equivalently as
the linear set of inequalities

αi − xl ≤ λfl ≤ αi + xl, αj − xl ≤ λtl ≤ αj + xl (19a)

βi − xl ≤ µfl ≤ βi + xl, βj − xl ≤ µtl ≤ βj + xl (19b)

−(1− xl) ≤ λfl ≤ (1− xl), −(1− xl) ≤ λtl ≤ (1− xl) (19c)

−(1− xl) ≤ µfl ≤ (1− xl), −(1− xl) ≤ µtl ≤ (1− xl). (19d)

Note that under the assumption xl ∈ {0, 1}, l ∈ L, the inequalities (19) equivalently represent the bilinear
terms (18) and are not mere relaxations of (18). We define a polytope

Π :=
{

(x, π) ∈ [0, 1]|L| × R8|N | × R4|L| : (17c)− (17d), (19)
}
, (20)

where π := (α, β, γ, δ, λ, µ). Substituting W = vv∗ and collecting the vv∗ terms, we rewrite the dual
problem (17) as

ΦACD = max
x,π

∑
i∈N

[
αiP

D
i + βiQ

D
i − γ+i (V maxi )2 + γ−i (V mini )2

]
(21)

+
∑
i∈N

[
−δp,+i Pmaxi + δp,−i Pmini − δq,+i Qmaxi + δq,−i Qmini

]
+ min
v∈C|N|

v∗H(π)v

s.t.
∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L, (x, π) ∈ Π

where the Hermitian matrix H(π), parameterized by π, is given by

Hii(π) = γ+i − γ
−
i + αiY

shR
i − βiY shIi (22a)

+
∑
l∈Lfi

(
λfl Y

ffR
l − µfl Y

ffI
l

)
+
∑
l∈Lti

(
λtlY

ttR
l − µtlY ttIl

)
i ∈ N

Hij(π) = 0.5
(
λfl Y

ftR
l − µfl Y

ftI
l + λtlY

tfR
l − µtlY

tf
l

)
(22b)

− 0.5i
(
λfl Y

ftI
l + µfl Y

ftR
l − λtlY

tfI
l − µtlY

tfR
l

)
(i, j) = l ∈ L

Hij(π) = H∗ji(π) i, j ∈ N, Hij(π) = 0 for all (i, j) 6∈ L, (22c)

where H∗ij is the complex conjugate of Hij .
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Proposition 1. For the inner minimization problem of (21), we have

inf
v∈C|N|

v∗H(π)v =

{
0 Λmin(π) ≥ 0

−∞ Λmin(π) < 0,

where Λmin(π) is the smallest eigenvalue of H(π) for any given π.

Proof. Note that the Hermitian matrix H(π) has real eigenvalues for any given π. Where Λmin(π) < 0, there
is an eigenvector v of H(π) with a negative eigenvalue that specifies a direction of unbounded descent toward
−∞, and so the infimum of −∞ is evident. Otherwise, for Λmin(π) ≥ 0, H(π) is positive semidefinite, and
the infimum is realized with value 0 by taking, for example, v = 0.

Hence, the minimization problem is viewed as an indicator function for the constraint η(π) ≥ 0 where

η(π) := min
v∈C|N|

{v∗H(π)v : ‖v‖2 ≤ 1} , (23)

which is a quadratic trust-region subproblem for which finding an optimal solution corresponds to finding an
eigenvector of H(π) of minimum eigenvalue. In the sequel, we work with the following concave, nonsmooth
dual problem:

ΦACD = max
x,π

∑
i∈N

[
αiP

D
i + βiQ

D
i − γ+i (V maxi )2 + γ−i (V mini )2

]
(24a)

+
∑
i∈N

[
−δp,+i Pmaxi + δp,−i Pmini − δq,+i Qmaxi + δq,−i Qmini

]
s.t.

∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L, (x, π) ∈ Π (24b)

η(π) ≥ 0. (24c)

3 Analysis of the Lagrangian Dual Bound of the Lower-Level Prob-
lem

We analyze the dual bound obtained by the Lagrangian relaxation of the lower-level problem φAC . In
particular, we compare the Lagrangian dual bound with those from the SDP and SOC relaxations of the
underlying ACOPF. In addition, we introduce a relaxation of the power flows (11), which exploits the power
system network topology and physics. This structured relaxation can be applied to the SDP and SOC
relaxations as well as the ACOPF subproblem.

3.1 SDP Relaxation of the Lower-Level Problem

We present the SDP relaxation of φAC(x) that can be obtained by replacing constraint (12b) by the SDP
constraint W � 0 (e.g., [BWFW08, LL12]), as follows:

φSDP (x) := min
W,pG,qG,u

{∑
i∈N

(upi + uqi + umi ) s.t. W � 0, (12c)− (12g)

}
. (25)

Taking the Lagrangian relaxation of φSDP (x) with respect to constraints (12d)–(12g) as in (21), the SDP-
based single-level reformulation is given by

ΦSDPD := max
x,π

∑
i∈N

[
αiP

D
i + βiQ

D
i − γ+i (V maxi )2 + γ−i (V mini )2

]
(26)

+
∑
i∈N

[
−δp,+i Pmaxi + δp,−i Pmini − δq,+i Qmaxi + δq,−i Qmini

]
+ inf

W
{〈H(π),W 〉 s.t. W � 0}

s.t.
∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L, (x, π) ∈ Π,
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where 〈·, ·〉 is the Frobenius inner product over Hermitian matrices and H(π) is given in (22). In the
following proposition we show that ΦACD = ΦSDPD In words, the Lagrangian dual bound ΦACD is as strong as
the Lagrangian dual bound ΦSDPD while the computations of the two bounds are distinct.

Proposition 2. The following equalities hold:

inf
v
{v∗H(π)v} = inf

v,W
{〈H(π),W 〉 s.t. W = v∗v} = inf

W
{〈H(π),W 〉 s.t. W � 0}.

Thus, problems (21) and (28) are equivalent, and

ΦACD = ΦSDPD . (27)

Proof. The first equality is straightforward. To verify the second equality, we start by defining the sets

WAC := {W ∈ C|N |×|N | : W = vv∗ for some v ∈ C|N |}

and
WSDP := {W : W � 0}.

Since the objective 〈H(π),W 〉 is linear, we need only to show that conv(WAC) =WSDP . Noting that

WAC = {W : W ∈ WSDP and rank(W ) = 1},

we have that WAC ⊆ WSDP . The set WSDP is also convex; and by the characterization of the convex hull
being the smallest convex set containing a set, we have also

WAC ⊂ conv(WAC) = cone(WAC) ⊆ WSDP ,

where the middle equality holds since WAC is a pointed convex cone. We show that in fact cone(WAC) =
WSDP , by appealing to the characterization of a conic hull of a set as all finite conic combinations of elements
in the set

cone(WAC) = {
m∑
k=1

akW
k : m ∈ Z++, W k ∈ WAC , ak ≥ 0 k = 1, . . . ,m}.

In terms of matrices, and using the definition of WAC , we have

cone(WAC) =


∑m
k=1 ak(vk)(vk)∗ : m ∈ Z++

vk ∈ C|N |×1 are column vectors of complex bus voltages
ak ≥ 0, k = 1, . . . ,m

 .

Note that each W k := (vk)(vk)∗ is a complex rank 1 |N |× |N | matrix. Each W ∈ WSDP can be diagonalized
with |N | complex mutually orthonormal eigenvectors υ1, . . . , υ|N | ∈ C|N | with real nonnegative eigenvalues
0 ≤ ν1 ≤ · · · ≤ ν|N |. One can easily verify from the diagonalization that W =

∑n
k=1 νk(υk)(υk)∗. Thus,

W ∈ cone(WAC), so that WSDP = cone(WAC) has been established.

The inner minimization of (26) implies the dual feasibility requirement that H(π) � 0 (see, e.g., [Hel02,
Theorem 2.4(4)]), and so (26) can also be written as

ΦSDPD = max
x,π

∑
i∈N

[
αiP

D
i + βiQ

D
i − γ+i (V maxi )2 + γ−i (V mini )2

]
(28)

+
∑
i∈N

[
−δp,+i Pmaxi + δp,−i Pmini − δq,+i Qmaxi + δq,−i Qmini

]
s.t.

∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L, (x, π) ∈ Π, H(π) � 0.

Note that although H(π) is given as a complex matrix, its translation into a form that is suitable for a
modeling language is straightforward, where H(π) � 0 is equivalent to[

<{H(π)} ={H(π)}
={H(π)} <{H(π)}

]
� 0. (29)
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3.2 SOC Relaxation of the Lower-Level Problem

It is also well known that the SOC relaxation of φSDP (x) is obtained by replacing the SDP constraint with
a second-order cone constraint as follows:

φSOC(x) := min
W,pG,qG,u

∑
i∈N

(upi + uqi + umi ) (30)

s.t.

∥∥∥∥∥∥
0.5(Wii −Wjj)

WR
ij

W I
ij

∥∥∥∥∥∥
2

≤ 0.5(Wii +Wjj), (i, j) = l ∈ L

(12c)− (12g).

Following the analogous development from (30) as done in Sections 2.2 and 3.1 and applying the SOC duality
theory, we obtain the following SOC dual problem:

ΦSOCD := max
x,π,ξ
ν,ω

∑
i∈N

[
αiP

D
i + βiQ

D
i − γ+i (V maxi )2 + γ−i (V mini )2

]
(31)

+
∑
i∈N

[
−δp,+i Pmaxi + δp,−i Pmini − δq,+i Qmaxi + δq,−i Qmini

]
s.t.

∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L

Hii(π) + 0.5
∑
l∈Lfi

(ξDl − νl)− 0.5
∑
l∈Lti

(ξDl + νl)− ωi = 0, i ∈ N

2HR
ij (π) + ξRl = 0, 2HI

ij(π) + ξIl = 0, l ∈ L∥∥∥∥∥∥
ξDl
ξRl
ξIl

∥∥∥∥∥∥ ≤ νl, l ∈ L

(x, π) ∈ Π, νl ≥ 0, l ∈ L, ωi ≥ 0, i ∈ N.

The formulation (31) is similar to the one developed in [WCA18] except that the corresponding formulation
in [WCA18] also accounts for line flow bounds in the defender subproblem, which we relax in all formulations.

3.3 A Structured Relaxation of the Power Flows Equations

We introduce a new relaxation to the defender subproblem (12), whose formulation is obtained with the
addition of auxiliary variables

h := (hp,fl , hp,tl , hq,fl , hq,tl )l∈L ∈ H ⊂ R4|L|

to the corresponding line flow values in (8). We assume that set H has a linear subspace structure. This
corresponds to altering the net power injections (9) as follows:

pHi (W,x, h) := pNi (W,x) +
∑
l∈Lfi

(1− xl)hp,fl +
∑
l∈Lti

(1− xl)hp,tl , (32a)

qHi (W,x, h) := qNi (W,x) +
∑
l∈Lfi

(1− xl)hq,fl +
∑
l∈Lti

(1− xl)hq,tl . (32b)

Consequently, we consider the lower-level problem of the form

φACH (x) := min
v,W,pG,qG,u,h

∑
i∈N

(upi + uqi + umi ) (33)

s.t. (12b)− (12d), (12g), h ∈ H
− upi ≤ p

H
i (W,x, h)− pGi + PDi ≤ u

p
i , i ∈ N,

− uqi ≤ q
H
i (W,x, h)− qGi +QDi ≤ u

q
i , i ∈ N.
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The dual single-level problem analogous to (24) is given by

ΦACD,H := max
x,π

∑
i∈N

[
αiP

D
i + βiQ

D
i − γ+i (V maxi )2 + γ−i (V mini )2

]
(34a)

+
∑
i∈N

[
−δp,+i Pmaxi + δp,−i Pmini − δq,+i Qmaxi + δq,−i Qmini

]
s.t.

∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L, (x, π) ∈ Π, 0 ≤ η(π) (34b)

(λf , λt, µf , µt) ∈ H⊥, (34c)

where H⊥ is the orthogonal complement to the subspace H. The constraint (34c) is necessary for dual
feasibility and the subsequent vanishing of the h terms in the Lagrangian.

For SDP, we analogously obtain

φSDPH (x) := min
v,W,pG,qG,u,h

∑
i∈N

(upi + uqi + umi ) (35)

s.t. W � 0, up, qq, um ∈ R|N |+ , h ∈ H
Pmini ≤ pGi ≤ Pmaxi , Qmini ≤ qGi ≤ Qmaxi , i ∈ N
− upi ≤ p

H
i (W,x, h)− pGi + PDi ≤ u

p
i , i ∈ N

− uqi ≤ q
H
i (W,x, h)− qGi +QDi ≤ u

q
i , i ∈ N

(V mini )2 − umi ≤Wii ≤ (V maxi )2 + umi , i ∈ N

and

ΦSDPD,H := max
x,π

∑
i∈N

[
αiP

D
i + βiQ

D
i − γ+i (V maxi )2 + γ−i (V mini )2

]
(36a)

+
∑
i∈N

[
−δp,+i Pmaxi + δp,−i Pmini − δq,+i Qmaxi + δq,−i Qmini

]
s.t.

∑
l∈L

xl ≤ K, xl ∈ {0, 1}, l ∈ L, (x, π) ∈ Π (36b)

H(π) � 0, (λf , λt, µf , µt) ∈ H⊥.

Furthermore, Proposition 2 implies the following corollary.

Corollary 1. For a given linear subspace H ⊂ R4|L|, both problems (34) and (36) have the same optimal
value; that is,

ΦACD,H = ΦSDPD,H . (37)

We now introduce a structured relaxation of the nodal power balance by defining an instance of the linear
subspace H as follows:

H :=

{ (
hp,f , hp,t, hq,f , hq,t

)
:

hp,fl = −hp,tl , hq,fl = −hq,tl , l ∈ L

}
. (38)

The relaxation is partial and structured, because this manner of controlling h ∈ H allows for the free, but
balanced, exchange of power between two connected buses i, j ∈ N by line (i, j) = l ∈ L while preserving the
network topology under contingency. The exchange is free in the sense that it is not restricted by the bus
voltage settings as would normally be the case in AC power flow due to (6).

For H as given in (38), the dual feasibility constraint (34c) takes the form

(λf , λt, µf , µt) ∈ H⊥ =

{ (
λfl , λ

t
l , µ

f
l , µ

t
l

)
l∈L

:

λfl = λtl , µfl = µtl l ∈ L

}
. (39)

Note that this relaxation can be applied to φAC(x), φSDP (x), and φSOC(x) in addition to the relaxations to
the rank 1 power flow constraints (12b).
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3.4 Relationships Between the Relaxations

We have shown that ΦSDPD = ΦACD and ΦSDPD,H = ΦACD,H, respectively, from Propositions 2 and 1. Recall that

we denote by ΦAC , ΦSDP , and ΦSOC , respectively, the optimal objective value of (1) with φ = φAC(x),
φSDP (x), and φSOC(x). The following proposition is immediate from the well-known relations of the SDP
and SOC relaxations of ACOPF.

Proposition 3. ΦAC ≥ ΦSDP ≥ ΦSOC .

Proof. It is derived from the relations φAC(x) ≥ φSDP (x) ≥ φSOC(x) for any x (e.g., [CHH16]).

In addition, we show that the strong duality holds for each relaxation in the following proposition.

Proposition 4. The relaxations (25), (30), and (35) satisfy Slater’s condition. Consequently, we have

ΦSOCD = ΦSOC , ΦSDPD = ΦSDP , and ΦSDPD,H = ΦSDPH .

Proof. We verify the satisfaction of Slater’s condition by setting

Wii = 1, i ∈ N, Wij = 0, i 6= j ∈ N

pGi =
Pmaxi − Pmini

2
, qGi =

Qmaxi −Qmini

2
i ∈ N

and choosing upi > 0, uqi > 0, umi > 0 such that

− upi < pNi (W,x)− pGi + PDi < upi , −uqi < qNi (W,x)− qGi +QDi < uqi , i ∈ N
(V mini )2 − umi < Wii < (V maxi )2 + umi , i ∈ N,

and in the case of (35), additionally setting h = 0. W is set to the identity matrix, so clearly W � 0.

Note that the weak duality ΦACD ≤ ΦAC and ΦACD,H ≤ ΦACH also hold. Thus, from the reasoning of this
subsection and from Proposition 4, we conclude this section with the following proposition.

Proposition 5. The following chains of relations hold:

1. ΦSOCD = ΦSOC ≤ ΦSDPD = ΦSDP = ΦACD ≤ ΦAC

2. ΦSDPD,H = ΦSDPH = ΦACD,H ≤ ΦSDPD = ΦSDP = ΦACD

3. ΦSDPD,H = ΦSDPH = ΦACD,H ≤ ΦACH .

No relationship between ΦSDPH and ΦSOC or between ΦSDPD,H and ΦSOCD is evident.

4 Algorithms and Methods

In this section, we present the single-tree extended cutting plane (1T-ECP) algorithm for solving the La-
grangian dual problems (24) and (34), and we provide an analysis of convergence. The algorithm is a variant
of the ECP algorithm [WP95b], which adds the cutting planes at each integer feasible solution within one
branch-and-cut tree, whereas the ECP algorithm solves a mixed-integer nonlinear program for each cutting
plane that is added (i.e., solving over multiple branch-and-cut trees). This single-tree aspect also appears in
the approach of [QG92], where each node subproblem is a nonlinear program.

11



4.1 Single-Tree Extended Cutting Plane Algorithm

We describe the 1T-ECP algorithm for problem of the form

max
y
{θ(y) : gA(y) ≤ 0, gN (y) ≤ 0}, (40)

where θ : RnR × {0, 1}nI 7→ R is an affine function; gA : RnR × {0, 1}nI 7→ RmA define affine constraints;
and gN : RnR × {0, 1}nI 7→ R is a nonsmooth, nonlinear, and convex function. For convenience, we write
y = (yR, yI) when distingushing between the continuous (yR) and integer-restricted (yI) components of y.
We assume that (40) is feasible and that the set {y : gA(y) ≤ 0} is bounded, implying the boundedness
of (40).

For the sake of nontriviality, we assume that gN cannot be written as the supremum or infimum of a
finite number of differentiable functions. Within the cutting plane methodology, we iteratively add linear
inequalities to lower-approximate the function gN using information including function values gN (yj) and
subgradients sj ∈ ∂(yj) generated during the iterations j = 0, . . . , k.

Next, we introduce the notation for the branch-and-cut process in the 1T-ECP algorithm. Let T be a
branch-and-cut tree that consists of a set of tree nodes N solved in the 1T-ECP algorithm, and let Ck be
the set of indices for the linear inequalities added to lower-approximate the function gN at iteration k. At
each tree node N ∈ T , the algorithm may fix some of the binary variables yI to either 0 or 1 as part of the
branching process. We denote by BN0 the set of indices of yI components that are fixed to 0 at node N ,
and we denote by BN1 the set of indices of yI components that are fixed to 1 at node N . The upper bound
associated with each node is θNUB , and the incumbent lower bound associated with the best-known feasible
solution is θLB . We now define BN for a given node N as

BN :=
{
yI ∈ [0, 1]

nI : yI,i = 0 ∀i ∈ BN0 , yI,i = 1 ∀i ∈ BN1
}
,

The 1T-ECP algorithm solves the following node subproblem at node N at iteration k,

θN = max
y

θ(y)

s.t. gA(y) ≤ 0, yI ∈ BN (41a)

gN (yc) + (sc)>(y − yc) ≤ 0 ∀c ∈ Ck, (41b)

where sc ∈ ∂θ(yc). We emphasize that all cuts of the form (41b) are valid for any tree node N ∈ T and
for (40).

1T-ECP is summarized in Algorithm 1. The algorithm initializes the branch-and-cut tree T , the index
set Ck for cutting planes, and the iteration counter k (line 1). The root node is created (line 2) and added
to the tree T (line 3). At each node, the inner node processing loop repeats whenever any cuts are added
(line 21). The outer loop runs until no tree node exists in T (lines 4 – 37). Note that one can easily add
additional criteria such as time limit and node limit.

The inner loop of lines 9–35 terminates if one of the following three criteria is satisfied:

1. Fathoming due to either bound or infeasibility at line 15

2. Branching on a fractional variable value yk+1 at lines 28–32

3. After updating the node subproblem solution yk+1 at line 10, it is verified that

gN (yk+1) ≤ ε, and yk+1
I ∈ {0, 1}nI , (42)

that is, yk+1 is feasible to (40) (with tolerance ε), and feasible (with tolerance ε) and optimal for
the node N subproblem (41) (line 26), in which case, node N is fathomed by optimality, and, as
appropriate, incumbent solution and value are updated.

We show that the inner loop at lines 9–35 must terminate after finitely many iterations for feasibility
tolerance ε > 0.

Lemma 1. Let ε > 0, and let N ∈ T be a node whose processing reaches the inner loop of lines 9–35. Then
after a finite number of inner loop iterations (lines 9–35), the processing of node N must finish because of
one of the following three criteria:
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Algorithm 1 Single-tree extended cutting plane algorithm applied to (40)

1: Initialize T ← ∅, k ← 0, Ck ← ∅, ε ≥ 0, θLB ← −∞, yLB ← y0

2: Create a root node N such that BN0 ← ∅, BN1 ← ∅, and θNUB ←∞
3: Set T ← {N}
4: while T 6= ∅ do
5: Choose a node N ∈ T , and update T ← T \{N}
6: if θNUB ≤ θLB then
7: Fathom node N due to bound and set Ck+1 ← Ck

8: else
9: repeat

10: Solve the node subproblem (41)
11: If (41) is optimally solved, let yk+1 be an optimal solution
12: and set θNUB to the optimal value
13: Set cutNotAdded← true.
14: if node subproblem (41) is infeasible or θNUB ≤ θLB then
15: Set Ck+1 ← Ck {fathom due to infeasibility or bound}
16: else
17: if yk+1

I ∈ {0, 1}nI then
18: if gN (yk+1) > ε then
19: Compute subgradient sk+1 ∈ ∂gN (yk+1) for adding a cut of form (41b)
20: Update Ck+1 ← Ck ∪ {k + 1}
21: cutNotAdded ← false
22: else
23: if θNUB > θLB then
24: θLB ← θNUB , yLB ← yk+1 {update incumbent solution and value}
25: end if
26: Set Ck+1 ← Ck {fathom due to optimality}
27: end if
28: else
29: Choose some index i such that yk+1

I,i /∈ {0, 1}.
30: Create two nodes N0 and N1 such that

1. BN0
0 ← BN0 ∪ {i}, BN0

1 ← BN1 , θN0

UB ← θNUB

2. BN1
0 ← BN0 , BN1

1 ← BN1 ∪ {i}, θN1

UB ← θNUB

31: Set T ← T ∪ {N0,N1} and Ck+1 ← Ck {Branching on yk+1
I,i }

32: end if
33: end if
34: Set k ← k + 1
35: until cutNotAdded
36: end if
37: end while
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1. fathoming the node due to either bound or infeasibility at line 15;

2. fathoming the node due to optimality at line 26; or

3. branching on a fractional variable value yk+1 at line 31.

Proof. Note that every iteration of the inner loop (lines 9–35) should visit line 15, line 21, line 26, or line 31.
The inner loop terminates unless line 21 is visited at every inner loop iteration.

Suppose that at the given node N ∈ T , the inner loop of lines 9–35 infinitely visits line 21 only. Let
{yk}k=1..∞ be the sequence generated by this loop, and let ȳ be an accumulation point. By the assumption,
we have gA(yk) ≤ 0 and gN (yk) > ε, k ≥ 1, for a given tolerance ε > 0. Also, the continuity of gA and
gN implies that gA(ȳ) ≤ 0 and gN (ȳ) ≥ ε. Let δ > 0 be small enough that a local Lipschitz condition with
constant L holds for gN in the ball B(ȳ, δ) := {y : ‖y − ȳ‖2 ≤ δ}. Denote ε̂ = min{ ε

3L , δ}. Since ȳ is an
accumulation point, there exist indices k > j such that yj , yk ∈ B(ȳ, ε̂) for the node subproblem solutions yj

and yk, respectively, at iterations j and k. Since k > j, we have the satisfaction of the (41b) inequality

gN (yj) + (sj)T (yk − yj) ≤ 0,

and thus the inequalities

ε ≤ gN (ȳ) ≤ |gN (ȳ)− gN (yj)− (sj)T (yk − yj)| (43a)

≤ |gN (ȳ)− gN (yj)|+ ‖sj‖‖yk − yj‖ (43b)

≤ L‖ȳ − yj‖+ L‖yk − ȳ‖+ L‖ȳ − yj‖ (43c)

also hold, where the inequalities (43b) and (43c) hold due to the Cauchy-Schwartz inequality and the Lipschitz
continuity, respectively. Moreover, because of yj , yk ∈ B(ȳ, ε̂), we have

L‖ȳ − yj‖+ L‖yk − ȳ‖+ L‖ȳ − yj‖ < ε

and thus gN (ȳ) < ε, which contradicts the assumption. Therefore, the inner loop should visit line 15, line 26,
or line 31 after a finite number of visits to line 21.

We now show the finite termination of Algorithm 1 with a global optimal solution of problem (40).

Theorem 1. For any feasibility tolerance ε > 0, Algorithm 1 applied to any feasible instance of problem (40)
terminates with a globally optimal solution for problem (40).

Proof. Algorithm 1 processes a finite number of nodes, and each node subproblem is guaranteed to be
processed within a finite number of iterations of the inner loop of lines 9–35 because of infeasibility, bound,
or optimality (by Lemma 1). (The application of Lemma 1 is needed only for those nodes that are not
immediately fathomed due to bound at line 7.) Since problem (40) is feasible by assumption, there must be
at least one node processed to optimality. Of these nodes, at least one must have been identified as having
a globally optimal solution.

4.2 Methods for Solving Relaxations of Problem (1)

Although problem (23) is nonconvex, its quadratic trust-region subproblem structure guarantees that a
globally optimal solution can be found. Recall that H(π) is defined in (22).

Proposition 6. If, for fixed π, H(π) is positive semidefinite, then v = 0 is an optimal solution to prob-
lem (23). Otherwise, if H(π) has at least one negative eigenvalue, then a global optimal solution of (23) is
given by any eigenvector of H(π) associated with the minimal eigenvalue.

Proof. This is a well-known result for quadratic trust-region subproblems. See, for example, [Hag01, GLRT99].

Furthermore, the following proposition derives subgradients σ ∈ ∂η(π) of the function (23).
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Proposition 7. The value function η defined in (23) is concave. Given an optimal solution v̂ to problem (23)
with π = π∗ ∈ R8|N |+4|L|, subgradients σπ ∈ ∂η(π∗) are given by

σα,i = pshi (Ŵii), σβ,i = qshi (Ŵii), σγ−,i = −Ŵii, σγ+,i = Ŵii ∀i ∈ N (44a)

σλf ,l = pfl (Ŵl), σλt,l = ptl(Ŵl), σµf ,l = qfl (Ŵl), σµt,l = qtl (Ŵl), ∀l ∈ L, (44b)

where we set Ŵ = v̂v̂∗.

Proof. The feasible set in problem (23) is compact; its objective function is continuous in v and linear in π.
From [Cla90, Corollary 1 of Section 2.8], π 7→ η(π) is concave, and σπ ∈ ∂η(π∗).

Thus, the applications of Algorithm 1 to problem (1) via formulations (24) and (34) are implementable.

5 Computational Experiments

In this section, we present computational experiments by applying Algorithm 1 to (24) and (34). In particular,
we call the method of applying Algorithm 1 to (24) 1T-ECP-AC and call the method of applying Algorithm 1
to (34) 1T-ECP-R. Moreover, we call the methods for solving the SDP and SOC relaxations (28) and (31) with
known algorithms miSDP and miSOC, respectively. Note that miSOC is similar to the method developed
in [WCA18] except that the formulation in [WCA18] also accounts for line flow bounds, which we relax
in all of our formulations. We report the computational performance of the four methods: 1T-ECP-AC,
1T-ECP-R, miSDP, and miSOC. The methods were run with the time limit of 24 wall-clock hours (86,400
seconds).

5.1 Test Instances

The test problem instances include the IEEE 30-, 57-, 118-, and 300-bus test systems and Pegase 1354-, and
2869-bus systems [oWDoEE99]. For each test case, we consider attack budgets K ∈ {1, 2, 3, 4}. Table 1
provides a profile of the number of components for each test case.

Table 1: Data associated with each of the test problems.
Number of Components by Type IEEE Case Pegase Case
Type Index Set 30 57 118 300 1354 2869

Buses N 30 57 118 300 1354 2869
Generators G 6 7 54 69 260 510
Loads (fixed) 20 42 99 201 673 1491
Shunts 2 3 14 29 1082 2197
Branches L 41 80 186 411 1991 4582
Transformers 0 17 9 107 234 496

5.2 Implementation

The modeling and solver parameterizations for the tests of the methods 1T-ECP-AC, 1T-ECP-R, miSDP,
and miSOC are implemented in Julia 0.6, using the JuMP [DHL17] modeling interface. CPLEX 12.7 [IBM] is
used as the solver for the master problem updates (41) for the 1T-ECP-AC and 1T-ECP-R methods, where
the mixed-integer linear problem instances are solved by CPLEX with lazy constraints added via callback
to approximate the value function η defined in (23). This callback is invoked whenever an integer-feasible
solution is encountered anywhere in the search tree. CPLEX parameterizations are nearly default, except
that we modified the purgeable option in setcallbackcut method, as invoked in the cblazy method in
cpx callbacks.jl, to take the value CPX USECUT PURGE. The subproblems (23), corresponding to eigenvalue
minimization problems, are solved with the Julia LinearAlgebra eigs function with nondefault arguments
which=:SR, maxiter=100000, and tol=1e-8.

For the miSDP method tests, Mosek [MOS19] is used to solve the continuous SDP relaxations, while a
simple branch-and-bound framework is implemented by using Julia JuMP. In particular, node selection is
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based on best bound, and the branching variable index is chosen by argmaxl{min{|1− xl|, xl}(1 + ‖Yl‖F )},
where ‖ · ‖F is the Frobenius norm on the 2 × 2 matrices Yl, l ∈ L, which are defined in (3). We note
that the SDP relaxation can potentially be improved by exploiting the sparsity structure (e.g., chordal
graph [ZFP+17, MHLD13]), which is not implemented in our miSDP method. We do not use a primal
heuristic to obtain incumbent bounds; we obtain only potential incumbent bounds when fathoming due to
optimality occurs at a node. Since implementing such advanced algorithmic features is not the focus of this
paper, we leave that as future work. Mosek has built-in support for solving mixed-integer SOC problems,
and so Mosek is used to solve the instances in the tests of the miSOC method. Parameter settings for the
use of Mosek are nearly default, except for enforcing the use of one thread.

Each of the computational tests is carried out on a single core of a single node of the Argonne National
Laboratory Bebop cluster, each consisting of an Intel R© Xeon R© CPU E5-2695 v4 @ 2.10 GHz processor. We
use the GNU Parallel utility [Tan11] in submitting jobs in parallel using one core per job. Appropriate
parameters for enforcing the use of one thread are set either automatically (multithreading is disabled with
the use of the lazy constraint callback feature of CPLEX) or explicitly in the instantiation of the Mosek
solver object.

For all experiments, we report the following in Tables ??:

1. number of nodes (Nodes);

2. average time (in seconds) spent solving each node (Secs/N);

3. total running time for solving the instance, in seconds (Secs);

Additionally, the following information about the lazy cuts is provided in Tables ?? for the 1T-ECP-AC and
1T-ECP-R method tests:

1. number of user cuts applied (Cuts) and

2. percentage of the total run time spent generating the lazy cuts (% Time).

Incumbent solutions x, incumbent objective values, and gaps between upper and lower bound values at
termination are reported in Tables ??. Furthermore, Figure 1 provides plots of φSOC values from Table 5
against the wall times from Table 4 obtained from the 1T-ECP-R and miSOC tests.

5.3 Comparison between 1T-ECP-AC and miSDP

Qualitatively, we may compare the 1T-ECP-AC and miSDP methods as follows. For method miSDP each
node is processed by solving a continously relaxed SDP problem exactly, while for method 1T-ECP-AC each
node is processed by solving a cutting plane approximation of the corresponding continously relaxed SDP
subproblem, and improvements in this approximation are enforced only while the approximate solution is
integer feasible. Consequently, we expect for larger problems that (1) the processing of each node usually takes
less time in the 1T-ECP-AC test than in the miSDP test, but that (2) the node bounds in the miSDP tests
are usually tighter in comparison with the corresponding node bounds computed in the 1T-ECP-AC tests.

In Table 2, we observe that the 1T-ECP-AC tests have always processed more nodes than the miSDP tests
for the Case 118 instances have. On the other hand, processing each node takes much less time in 1T-ECP-
AC than for miSDP, where the poor scalability of the SDP solver starts becoming evident. Times to generate
cuts in the 1T-ECP-AC tests take smaller percentages of the total run time for larger instances. This result
implies that most computational effort for the application of 1T-ECP-AC is in updating the master problem
solution.

Table 3 reports the solutions found by the two methods. In the allotted time, the miSDP tests usually
show a smaller gap between the upper and lower bound than for 1T-ECP-AC; also, the miSDP tests almost
always produce solutions at least as good as, and often better than, those produced in the 1T-ECP-AC tests.
The exception appears for the IEEE Case 118 test with K = 4, which fails to find an integer feasible solution
because of the search tree not getting large enough to discover a node that is fathomed by optimality. Note
that if we ignore numerical error, both methods should produce the same optimal values when termination
due to convergence is achieved.

As a proof of concept, 1T-ECP-AC may be regarded as a potential alternative to miSDP, which requires
the solutions of large SDP problems. The main bottleneck to the 1T-ECP-AC approach is the need to
generate many cuts, thus increasing the time to process each node. Improvement may be found, for example,
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Table 2: Computational performance of 1T-ECP-AC and miSDP for smaller test instances (IEEE 30-, 57-,
118-bus systems with K = 1, 2, 3, 4)

1T-ECP-AC miSDP
Case K Cuts % Time Nodes Secs/N Secs Nodes Secs/N Secs

30 1 3053 8.00 83 0.84 69 57 1.4 80
2 4134 3.80 562 0.32 182 37 1.6 59
3 6930 1.71 979 0.77 756 223 1.5 325
4 8137 1.44 2608 0.62 1613 317 1.6 506

57 1 24747 0.58 118 230.61 27212 69 44.9 3094
2 28238 0.41 592 67.28 39827 303 53.3 16149
3 37619 0.33 1816 47.58 86400 1757 49.2 86400
4 38521 0.33 1398 61.80 86400 2223 38.9 86400

118 1 14167 0.35 372 60.47 22495 5 2632.9 13164
2 17656 0.15 12965 5.63 72981 35 2470.9 86400
3 17939 0.13 12089 7.15 86400 22 3927.3 86400
4 20727 0.14 4946 17.47 86400 20 4320.0 86400

Table 3: IEEE Case 30, 57, 118 tests: solutions, values, and gaps. Values of φSDP with ∗ superscript indicate
possibly suboptimal values due to the test reaching the allotted time limit.

1T-ECP-AC miSDP
Case K Lines Cut φSDP % Gap Lines Cut φSDP % Gap

30 1 34 0.058 0.0 34 0.058 0.0
2 10 40 0.600 0.0 10 40 0.600 0.0
3 10 34 40 0.658 0.0 10 34 40 0.658 0.0
4 8 9 10 40 0.937 0.0 8 9 10 40 0.937 0.0

57 1 41 0.372 0.0 41 0.368 0.0
2 41 80 0.780 0.0 41 80 0.777 0.0
3 28 33 41 0.623∗ 440.3 33 41 80 1.024∗ 7.9
4 41 61 66 72 1.092∗ 525.7 60 65 66 72 1.600∗ 29.5

118 1 183 0.840 0.0 183 0.840 0.0
2 121 125 1.448 0.0 121 125 1.448∗ 4.7
3 90 121 125 1.448∗ >1000.0 121 125 183 2.288∗ 5.3
4 78 160 162 183 1.210∗ >1000.0 NA 0.000∗ >1000.0

by introducing proximal point methodologies such as from [dO16] into the single-tree ECP framework and
by employing concepts from spectral bundle methods [HR00].

5.4 Comparison between 1T-ECP-R and miSOC

Next, we compare the 1T-ECP-R tests and the miSOC tests. Qualitatively, the underlying defender subprob-
lems associated with each of these tests are diffferent relaxations for the SDP-relaxed defender subproblem,
and consequently, ΦSDPD ≥ ΦSDPD,H and ΦSPDD ≥ ΦSOCD , but no such bounding relationship is known to exist

between ΦSDPD,H and ΦSOCD .

To aid in the discussion that follows, we denote x〈Method〉,〈Case〉,〈K〉 to be the solution generated in the
test using a given method applied to a given case instance with budget K. Furthermore, we note that when
1T-ECP-R terminates with optimality, the optimal values computed have value ΦSDPH due to Proposition 5
and Theorem 1. For comparison with the miSOC experiments, however, we report in the 1T-ECP-R section
of Table 5 the incumbent value of φSOC .

We draw the following conclusions from Tables 4 and 5 and Figure 1 regarding the 1T-ECP-R and
miSOC tests. First, the entries of Table 4 and the plots of Figure 1 suggest that 1T-ECP-R is consistently
faster in reaching optimal convergence than is miSOC for the test instances with budget K > 2. However,
this speedup comes with the following tradeoff. We see from Table 5 and Figure 1 the tendency (though not
theoretically established) for φSDPH to underestimate φSDP more severely than φSOC . For the IEEE Case 57
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Table 4: Computational performance of 1T-ECP-R and miSOC for all the test instances (IEEE Case 30, 57,
118, 300; Pegase 1354, 2869

Case 1T-ECP-R miSOC
K Cuts % Time Nodes Secs/N Secs Nodes Secs/N Secs

30 1 4 33.3 23 0.13 3 52 0.02 1
2 4 33.3 1 3.00 3 92 0.01 1
3 4 33.3 35 0.09 3 574 0.01 8
4 4 47.4 7 0.43 3 1012 0.01 15

57 1 4 33.3 65 0.05 3 88 0.02 2
2 4 33.3 143 0.02 3 982 0.03 25
3 180 40.0 357 0.01 5 5324 0.03 140
4 313 68.8 695 0.02 16 9350 0.03 282

118 1 224 28.6 34 0.21 7 26 0.12 3
2 234 11.1 1071 0.02 18 128 0.09 12
3 235 20.0 288 0.03 10 278 0.10 29
4 246 4.5 3698 0.01 44 1526 0.10 149

300 1 217 36.0 37 0.68 25 44 0.36 16
2 599 13.7 1568 0.09 139 778 0.29 226
3 485 3.4 8122 0.06 500 8276 0.33 2766
4 576 2.5 10056 0.09 917 12809 0.36 4628

1354 1 406 18.8 530 0.28 151 NA NA NA
2 352 4.3 3770 0.20 738 NA NA NA
3 405 8.9 2287 0.15 334 NA NA NA
4 43000 2.1 2385 36.23 86400 NA NA NA

2869 1 1069 8.5 732 4.66 3410 NA NA NA
2 1129 0.4 63218 1.22 77300 NA NA NA
3 1213 0.39 57900 1.49 86400 NA NA NA
4 1143 0.36 97840 0.88 86400 NA NA NA

instances, whereas some attacks are evaluated consistently,

0.057 = φSOC(x1T-ECP-R,57,1) = φSDPH (x1T-ECP-R,57,1)

0.548 = φSOC(x1T-ECP-R,57,2) = φSDPH (x1T-ECP-R,57,2)

0.820 = φSOC(x1T-ECP-R,57,3) = φSDPH (x1T-ECP-R,57,3)

1.235 = φSOC(x1T-ECP-R,57,4) = φSDPH (x1T-ECP-R,57,4),

we have other attacks

0.343 = φSOC(xmiSOC,57,1) > φSDPH (xmiSOC,57,1) = 0

0.759 = φSOC(xmiSOC,57,2) > φSDPH (xmiSOC,57,2) = 0

1.017 = φSOC(xmiSOC,57,3) > φSDPH (xmiSOC,57,3) = 0

1.579 = φSOC(xmiSOC,57,4) > φSDPH (xmiSOC,57,4) = 0

that illustrate the tendency of φSDPH to underestimate the values of attacks for this test instance that were
otherwise identified as having optimal value with respect to φSOC . A similar effect can be observed for
the IEEE Case 300, K = 3, 4 instances, where the attacks computed in the miSOC test xmiSOC,300,3 and
xmiSOC,300,4 are different from corresponding attacks x1T-ECP-R,300,3 and x1T-ECP-R,300,4 computed in the
1T-ECP-R tests. These observations motivate the need to tighten the relaxation of formulation (33) that
is used in deriving the single-level reformulation (34). Nevertheless, for all other instances where both 1T-
ECP-R and miSOC produce solutions, the solutions and their values are the same. Furthermore, for the
two Pegase instances under consideration for all budgets, the application of Mosek to (31) terminates early
because of running out of memory, and no solution is generated. This is indicated in Tables 4 and 5 as NA
for the corresponding miSOC test entries. In contrast, 1T-ECP-R tests are able to produce solutions with
substantial attack value for the larger 1354 and 2869 Pegase instances.

The use of the relaxed defender subproblem function φACH reduces the dimension of the solution space for
problem (24) by 2|L| and allows for the elimination of some of the McCormick inequality constraints; this is
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Solutions, Values, and Gaps

Table 5: IEEE Case 30, 57, 118, 300; Pegase 1354, 2869 tests. Values of φSOC with ∗ superscript indicate
possibly suboptimal values due to the test reaching the allotted time limit.

Case 1T-ECP-R miSOC
K Lines Cut φSOC % Gap Lines Cut φSOC % Gap

30 1 34 0.058 0.0 34 0.058 0.0
2 10 40 0.600 0.0 10 40 0.600 0.0
3 10 34 40 0.658 0.0 10 34 40 0.658 0.0
4 8 9 10 40 0.937 0.0 8 9 10 40 0.937 0.0

57 1 45 0.057 0.0 41 0.343 0.0
2 63 65 0.548 0.0 41 80 0.759 0.0
3 38 41 80 0.820 0.0 33 41 80 1.017 0.0
4 33 41 48 80 1.235 0.0 60 65 66 72 1.579 0.0

118 1 183 0.84 0.0 183 0.840 0.0
2 121 125 1.448 0.0 121 125 1.447 0.0
3 121 125 183 2.288 0.0 121 125 183 2.288 0.0
4 121 125 183 184 2.568 0.0 121 125 183 184 2.567 0.0

300 1 208 8.047 0.0 208 8.047 0.0
2 208 316 12.567 0.0 208 316 12.568 0.0
3 208 258 263 17.239 0.0 208 224 404 17.412 0.0
4 268 305 308 309 22.408 0.0 177 181 182 208 23.294 0.0

1354 1 601 6.667 0.0 NA 0.000 NA
2 206 207 21.746 0.0 NA 0.000 NA
3 206 207 452 28.413 0.0 NA 0.000 NA
4 206 207 455 922 35.079∗ 35.2 NA 0.000 NA

2869 1 4525 11.541 0.0 NA 0.000 NA
2 4522 4525 19.706 0.0 NA 0.000 NA
3 2176 4522 4525 26.372∗ 667.5 NA 0.000 NA
4 1475 1706 4522 4525 33.039∗ 255.6 NA 0.000 NA

the cause both for the improved tractability and for the potential underestimation in evaluating each attack
as compared with the miSOC solution approach.

Note that the relaxation employed in the 1T-ECP-R tests as developed in Section 3.3 may be applied to
the miSDP or miSOC approaches also. Preliminary tests, which are not reported here, suggest that these
relaxations have little to no significant benefit in terms of running time for the miSDP and miSOC approaches.
The reason is likely attributable to the relative lack of maturity in presolving technology for SOC and SDP
solvers, whereas for the linear mixed-integer instances of the master problem in the 1T-ECP-AC approach,
the presolver can effectively allow for a reduction in the dimension of the solution space.

6 Conclusions

We make contributions toward the problem of identifying substantial contingencies of an AC power flow
network. The problem is modeled as a maximin problem, where the lower-level problem seeks to opti-
mally respond to a parameterized attack, which is a decision variable in the upper-level attacker’s maxi-
mization problem. The method is based on a single-tree variant of the generalized extended cutting plane
method [EMW14] applied to a single-level Lagrangian dual reformulation of the maximin problem. The ECP
analysis accommodates the presence of integer-restricted variables and constraints that cannot be defined
with a finite number of smooth functions. Our application of ECP requires solving only mixed-integer lin-
ear subproblems and minimum eigenvalue/eigenvector problems. We demonstrate the implementation and
application of ECP to the dual single level reformulation.

We show that the Lagrangian dual reformulation of the defender subproblem has a zero duality gap
(under mild constraint qualifications) to the corresponding maximin problem with SDP relaxation applied to
the lower-level AC power flow problem. The resulting dual problem is an SDP problem that is substantially
more difficult than its second-order cone relaxation analog developed in [WCA18].

The generalized ECP approach encounters the same drawbacks of any cutting plane method, such as
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Figure 1: Comparing attack values against runtime for 1T-ECP-R and miSOC tests.

requiring an exponential number of cuts to adequately model the nonlinear, nonsmooth function that requires
approximation. Nevertheless, this approach has potential for improvement, which may be found in utilizing
proximal point bundle methodologies, cut aggregation, and improvement in branching rules.

The generalized ECP approach pairs particularly well with a new type of relaxation to the defender
subproblem, which relaxes the restriction that complex voltage settings place on the determination of complex
line flow. This relaxation is applied to the active lines only or a subset thereof. Such a relaxation is
fundamentally different from relaxations such as SDP and SOC that are based on the structure of the
allowable product values of bus voltages. Combining the generalized ECP approach with the line power flow
relaxations yields an approach that is fundamentally different from, yet competitive with, the SOC approach
developed in [WCA18], and also scales to larger problem instances.

Future work is as follows. First, better management of the generation of cutting planes is needed, since
the increasing number of cuts, most of them dense, is a substantial reason for the observed increase in the
master problem solution update time. In particular, cut aggregation can help. Second, the incorporation
of proximal point methodologies such as spectral bundle methods, although they introduce nonlinearity, is
worth analyzing within the ECP framework. Third, refinement in the process by which the master problem
branch-and-cut tree develops can be motivated by the observation that the mixed-integer SDP tests require
few nodes and usually produce better quality solutions within the allowed time frame. Analyzing approaches
that interpolate the features of the generalized ECP approach and the mixed-integer SDP approach may
help. More development and understanding of the relaxations based on the structure of the line power flows
also may allow for tightened relaxations, while keeping the improved tractability obtained for the application
of generalized ECP.
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