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Abstract

We consider the problem of designing an electromagnetic cloak from an integer program-

ming point of view. The problem can be modeled as a PDE-constrained optimization problem

with integer-valued control inputs that are distributed in the computational domain. A first-

discretize-then-optimize approach results in a large-scale mixed-integer nonlinear program that

is in general intractable because of the large number of integer variables that arise from the

discretization of the domain. Instead, we propose an efficient algorithm that is able to approxi-

mate the local infima of the underlying non convex infinite-dimensional problem arbitrarily close

without the need to solve the discretized finite-dimensional integer programs to optimality. We

optimize only the continuous relaxations of the approximations for local minima and then ap-

ply the sum-up rounding methodology to obtain integer-valued controls. These controls are

shown to converge and exhibit the desired approximation properties under suitable refinements

of the involved discretization grids. Our results use familiar concepts arising from the analytical

properties of the underlying PDE and complement previous results, derived from a topology

optimization point of view.

1 Introduction

The problem of designing electromagnetic cloaks can be described as follows (see, e.g., [25]). For a

given incident wave, we design a scatterer in a predefined region Ds such that an object in another

region Do is hidden (i.e. protected) from the incident wave. This means that the scatterer is

designed such that the scattered wave cancels the incident wave in this region; in other words, the

amplitude of the superposition of the two fields is as small as possible. A 2D scenario is sketched in

Figure 1. The problem has been cast and treated as a topology optimization problem in [11] and

as a mixed-integer PDE-constrained optimization (MIPDECO) problem in [27]. We analyze and

investigate the latter formulation. Specifically, we optimize for a discrete-valued function, which

assigns the material of the scatterer to each point in the region Ds such that it minimizes the

superposition of the scattered electromagnetic field and the incident wave in the region Do in a

least-squares sense. Although we take the MIPDECO point of view, we will make use of the same
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Ds

Do

Figure 1: Illustration of our cloaking scenario. The violet arrow indicates the angle of the incident

wave, the scatterer’s region Ds is colored blue, and the protected object’s region Do is colored olive.

analytical properties of the Helmholtz equation as in [11] and thus derive MIPDECO counterparts

of the results from [11].

From the computational point of view, the authors of [11] present a radial-basis function-

based level-set method that uses a relaxed (i.e., fractional) formulation but produces designs of

the scatterer such that fractional (i.e. non-physical) material placement occurs only in a small

part of the domain. In contrast to their approach, we solve the relaxed problem directly and

execute a computationally efficient rounding algorithm that computes a weak approximation to the

relaxed control. We employ the sum-up rounding (SUR) algorithm, introduced in [22] and whose

approximation properties have been analyzed in [10, 14, 18, 23]. Recently, these results have been

transferred from one-dimensional problems to multidimensional problems [17, 31]. We emphasize

that the runtime complexity of SUR is O(N), where N is the number of cells that discretize the

domain of the control input function.

We show that by using compactness properties of the control-to-state operator of the Helmholtz

equation, we obtain an approximation of the electromagnetic field and the optimized objective value

in the norm topology. Our method, however, suffers from the drawback that the design may exhibit

a lot of chattering and therefore may not be implementable in reality. We demonstrate computa-

tionally that applying a median filtering as a postprocessing step can improve the implementability

of the resulting control considerably while increasing the objective value moderately. However, the

filtering step is a heuristic, and we cannot guarantee that the approximation properties of the SUR

approximation are conserved.

We also observe in our computational results that the objective value of the local minimizers

of the continuous relaxation converges to zero, which suggests that it may be possible to cloak the

incident wave entirely.

We note that the relaxation we solve is a bilinear optimal control problem, and we refer the

reader to [13, 30] for general studies of bilinear optimal control problems concerned with (electro-

magnetic) wave phenomena.

1.1 Structure of the Paper

We introduce the Helmholtz equation and summarize its solution theory in Section 2. We state

the investigated optimal problem formally and derive the first-order optimality conditions of its
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continuous relaxation in Section 3. We investigate the approximation algorithm in Section 4, and

we present the computational results in Section 5. We summarize our conclusions in Section 6.

1.2 Notation

For an optimization problem (P), we denote its feasible set by F(P). For a domain D and k ≥ 1,

Hk(D) denotes the Sobolev space of all functions in L2(D) (i.e., square-integrable functions) with

distributional derivatives up to order k in L2(D)). The space L2
loc(D) is the space of locally square-

integrable functions that is functions that are square integrable over compact sets. Similarly,

Hk
loc(D) is the space of functions in L2

loc(D) with distributional derivatives up to order k in L2
loc(D).

The Borel sigma algebra for a set D ⊂ R
d is denoted by B(D). The inner product of a Hilbert space

H is denoted by (·, ·)H . We denote the compact embedding of a Hilbert spaceH into another Hilbert

space K by H →֒c K. For a Banach space X, we denote convergence of a sequence (xn)n ⊂ X to

a limit x ∈ X in the norm topology by xn → x; convergence in the weak topology by xn ⇀ x; and

convergence in the weak∗ topology by xn ⇀∗ x. For further background on concepts from PDE

theory, see [21]. In the interest of a less distracting presentation, we will sometimes abbreviate

Lp(Rd) by Lp, in particular for constant quantities.

2 State Equation

We begin by stating the main assumptions on the regularity of the domain and the given data,

which we tacitly assume to hold throughout the remainder of the paper.

Assumption 2.1 (Domain and boundary). Let D ⊂ R
d, d ∈ {2, 3}, be a bounded domain with a

sufficiently smooth boundary such that the following assumptions hold:

1. In the case of d = 2, the trace operator ·|∂D : H1(D)→ L2(∂D) exists and is continuous.

2. In the case of d = 3, the bounded trace operators ·|∂D : H2(D) → H3/2(∂D), ∂ · /∂n|∂D :

H2(D)→ H1/2(∂D) as well as the bounded extension operator E : H2(D)→ H2(Rd) exist.

Assumption 2.2 (Given data). Let D ⊂ R
d, d ∈ {2, 3}, satisfy Assumption 2.1. We assume

that the scatterer q ∈ L∞(D) is non-negative (i.e., q ≥ 0 a.e. in D) and that the incident field

u0 ∈ H2
loc(R

d) satisfies the homogeneous equation

−∆u0 − k2
0u0 = 0 on R

d.

We develop our theoretical results in the context of the two state equations described next.
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2.1 Helmholtz Equation with Sommerfeld Radiation Condition

The first state equation is the Helmholtz equation with a Sommerfeld radiation condition in di-

mension d = 3:

−∆u− k2
0(1 + qw)u = k2

0qwu0 in D,

−∆u− k2
0u = 0 in R

3\D,

[u]∂D = 0 and

[

∂u

∂n

]

∂D
= 0,

lim
r→∞

√
r sup

ξ∈S2

∣

∣

∣

∣

∂u(rξ)

∂r
− ik0u(rξ)

∣

∣

∣

∣

= 0.

(2.1)

Here, the state variable is denoted by u, and we have an essentially bounded control input w,

that is w ∈ L∞(D), with w(x) ∈ [wℓ, wu] for almost all (a.a.) x ∈ D and real positive scalars

0 ≤ wℓ < wu < ∞. The third line of (2.1) contains the so-called transmission conditions at

the boundary of the domain D due to the smoothness of the incident wave u0, where the jumps

of u and ∂u/∂n for x ∈ ∂D are defined by [u]∂D(x) := limD
c
⊃xn→x u(xn) − limD∋yn→x u(yn)

and [∂u/∂n]∂D(x) := n(x)T
(

limD
c
⊃xn→x∇u(xn)− limD∋yn→x∇u(yn)

)

. The fourth line contains

the so-called Sommerfeld radiation condition, which ensures that the field (wave) u is outgoing;

see [7, Chap. 1].

We summarize the existence and uniqueness of solutions of the state equation (2.1) along the

lines of [7, Chap. 8]. We define the operator K : L2(D)→ H2(D) as

K : L2(D) ∋ ψ 7→ k2
0

∫

D
Φ(x, ·)ψ(x)dx ∈ H2(D),

where Φ denotes the fundamental solution of the Helmholtz equation in R
3; see [7, Sect. 2.1].

Proposition 2.3 ( [7, Theorem 8.2]). Let Assumption 2.2 be satisfied for d = 3. If u ∈ H2
loc

(R3)

solves (2.1), then u solves the Lippmann–Schwinger equation

u−K
(

(1 + qw)u
)

= K(u0qw). (2.2)

Moreover if u ∈ C(R3) solves (2.2), then u ∈ H2
loc

(R3) and u solves (2.1). �

Proposition 2.4 ( [7, Theorem 8.7]). Under Assumptions 2.1 and 2.2 for d = 3, there exists a

unique solution u ∈ H2
loc

(R3) of (2.1) for every k0 > 0 and w ∈ L∞(D) with w(s) ∈ [wℓ, wu] a.e. �

We introduce the set D, which is the domain of the control-to-state operator of the state

equation and the Lippmann–Schwinger equation:

D := {w ∈ L∞(D) : w(s) ∈ [wℓ, wu] a.e.}.

To obtain continuous dependence of the solution of (2.1) on w ∈ D, we prove the following propo-

sition.

Proposition 2.5. Let Assumptions 2.1 and 2.2 be satisfied for d = 3 and let K0 > 0 such that

1−K2
0‖Φ‖L2(1 + ‖q‖L∞wu) > 0
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holds, where Φ denotes the fundamental solution of the Helmholtz equation. Then, for every k0 ∈
(0,K0), the control-to-state operator of the Lippmann–Schwinger equation (2.2) S : D → H2(D)

given by ω 7→ u|D is continuous. Furthermore, the control-to-state operator is also L2-L∞-Lipschitz

continuous. In other words, there exists L > 0 such that

‖S(w1)− S(w2)‖L2(D) ≤ L‖w1 − w2‖L∞(D)

for all w1, w2 ∈ D.

Proof. First, we show that for every w ∈ D the corresponding solution u = S(w) to (2.2) satisfies

the estimate ‖u‖L2(D) ≤ C‖w‖L∞(D) for some constant C > 0 for k0 > 0 sufficiently small. Inserting

the definition of K into (2.2) and testing the equation with u, we obtain

(

u, u
)

L2(D)
− k2

0

(
∫

D
Φ(x, ·)

(

1 + q(x)w(x)
)

u(x)dx, u

)

L2(D)

= k2
0

(
∫

D
Φ(x, ·)q(x)w(x)u0(x)dx, u

)

L2(D)
,

and thus by virtue of the Cauchy–Schwarz inequality and Hölder’s inequality, we obtain

‖u‖2L2(D)

(

1− k2
0‖Φ‖L2(1 + ‖q‖L∞‖w‖L∞(D))

)

≤ k2
0‖Φ‖L2‖u0‖L2‖q‖L∞‖w‖L∞(D)‖u‖L2(D).

Consequently, for k2
0 sufficiently small, we obtain

‖u‖L2(D) ≤
k2

0‖Φ‖L2‖u0‖L2‖q‖L∞

1− k2
0‖Φ‖L2(1 + ‖q‖L∞wu)

‖w‖L∞(D).

Next, we show the Lipschitz continuity of u = S(w), that is we show that ‖u1 − u2‖L2(D) ≤
L‖w1−w2‖L∞(D) for some constant L > 0 for k0 > 0 sufficiently small and u1 = S(w1), u2 = S(w1)

for w1, w2 ∈ D. We insert the pairs u1, w1 and u2, w2 into (2.2), subtract the two equations, and

employ the linearity of K to obtain

u1 − u2 −K
(

(1 + qw1)u1 − (1 + qw2)u2
)

= K
(

u0q(w1 − w2)
)

.

Inserting a suitable zero gives the equivalent identity

u1 − u2 −K
(

(1 + qw1)(u1 − u2)
)

= K(q(w1 − w2)(u0 − u2)).

We test this equation with u1 − u2, which gives
(

u1 − u2, u1 − u2

)

L2(D)
−

(

K
(

(1 + qw1)(u1 − u2)
)

, u1 − u2

)

L2(D)
(2.3)

=
(

K(q(w1 − w2)(u0 − u2)), u1 − u2

)

L2(D)
.

The definition of K gives the lower bound using the Cauchy–Schwarz inequality

−
(

K((1 + qw1)(u1 − u2)), u1 − u2

)

L2(D)

≥ −k2
0‖Φ‖L2

(

1 + ‖q‖L∞‖w1‖L∞(D)

)

‖u1 − u2‖2L2(D)
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for the second term in (2.3). We also obtain the upper bound
(

K(q(w1 − w2)(u0 − u2)), u1 − u2

)

L2(D)

≤ k2
0‖Φ‖L2‖q‖L∞‖w1 − w2‖L∞‖(‖u0‖L2 + C‖w2‖L∞)

for the right hand side of (2.3), where we have used the estimate ‖u2‖L2 ≤ C‖w‖L∞ that we derived

in the first step. Using the definition of ‖u1 − u2‖L2(D) and ‖wi‖L∞ ≤ wu for i = 1, 2, we obtain

‖u1 − u2‖L2(D) ≤
k2

0‖Φ‖L2(‖u0‖L2 + Cwu)

1− k2
0‖Φ‖L2(1 + ‖q‖L∞wu)

‖w1 − w2‖L2(D)

from (2.3) for k0 > 0 sufficiently small, which proves L2-L2-Lipschitz continuity, which in turn gives

the desired L2-L∞-Lipschitz continuity because the first factor of the right-hand side is bounded.

To obtain continuity with respect to the codomainH2(D), we employ a bootstrapping argument.

Let wn → w in L∞(D) with w, wn ∈ D for all n ∈ N. Then, we obtain un → u in L2(D) with

un = S(wn) and u = S(w). Insertion into the summands of (2.2) yields

K((1 + qwn)un)→ K((1 + qw)u)

and

K(u0qwn)→ K(u0qw)

in H2(D) as n→∞ because of the respective continuity of the operator K; see [7, Thm. 8.2]. Thus,

from (2.2), we obtain un → ū in H2(D) for some ū ∈ H2(D). By uniqueness of the solution of (2.2)

for k0 > 0 sufficiently small (see, e.g., [7, Thm. 8.4]), we obtain ū = u, which proves the claim.

2.2 Helmholtz Equation with Robin Boundary Condition

The radiation boundary constraints in (2.1) are difficult to implement in practice. Instead, the au-

thors in [8] suggest a first-order absorbing boundary condition, which is a Robin boundary condition

in our setting, and we use these boundary conditions in our practical experiments in Section 5. In

particular, we consider the following approximation of (2.1) in dimension d = 2

−∆u− k2
0(1 + qw)u = k2

0qwu0 in D,

∂u

∂n
− ik0u = 0 on ∂D,

(2.4)

where w(s) ∈ [wℓ, wu] for a.a. s ∈ D and where we have replaced the transmission conditions [u]∂D =

0 and [∂u/∂n]∂D = 0, and the Sommerfeld radiation condition by Robin boundary conditions. The

state equation (2.4) can be interpreted as a first-order approximation at the boundary for the

physically correct state equation (2.1), see [11, Sect. 2] and is analyzed in [5,11]. The existence and

uniqueness of solutions follow from the results in [5].

Proposition 2.6 ( [5, Lemmas 2.2 and 2.4]). Let Assumption 2.2 hold. Then, for every k0 > 0, the

state equation (2.4) admits a unique weak solution in H1(D) for all w ∈ D. Moreover, for k0 > 0

sufficiently small, the control-to-state operator S : D→ H1(D) is continuous. �

In this paper, we consider both the Sommerfeld radiation condition and the Robin boundary

conditions. We present the algorithm in the context of the simpler Robin boundary conditions,

noting that extensions to more sophisticated boundary conditions are straightforward.
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3 Optimal Design of Cloaks

Our aim is to design an electromagnetic cloak that is effective in the region Do ⊂ D. As in [11,27],

we restrict the domain where the scatterer is designed, namely, where material may be put to some

region Dc ⊂ D\Do. We are constrained by the state equation (2.4), and our goal is to minimize

the electromagnetic field in the region Do, which corresponds to the superposition of the incidence

wave and the response u. The resulting integer optimal control problem becomes

inf
u,w

1

2
‖u+ u0‖2L2(Do) (P)

s.t. −∆u− k2
0(1 + qw)u = k2

0qwu0 in D,

∂u

∂n
− ik0u = 0 on ∂D,

w(x) ∈ {w1, . . . , wM} for a.a. x ∈ Dc,

w(x) = 0 for a.a. x ∈ D\Dc

with discrete material constants wℓ = w1 < . . . < wM = wu, and its continuous relaxation becomes

min
u,w

1

2
‖u+ u0‖L2(Do) (R)

s.t. −∆u− k2
0(1 + qw)u = k2

0qwu0 in D,

∂u

∂n
− ik0u = 0 on ∂D,

w(x) ∈ [wℓ, wu] for a.a. x ∈ Dc,

w(x) = 0 for a.a. x ∈ D\Dc.

First-Order Optimality System

In this section we derive a first-order optimality system for the minimization problem (R) governed

by (2.4). We start with the Fréchet differentiability of the control-to-state operator S : L∞(D) →
H1(D).

Lemma 3.1. Let Assumption 2.2 be satisfied. Then, for k0 > 0 sufficiently small, the control-to-

state operator S : D → H1(D) is continuously Fréchet differentiable, and for every w, h ∈ D its

Fréchet-derivative û = S′(w)h ∈ H1(D) is the unique solution of
∫

D
∇û · ∇vdx− k2

0

∫

D
(1 + qw)ûvdx− ik0

∫

∂D
ûvds = k2

0

∫

D
qh(u+ u0)vdx ∀v ∈ H1(D) (3.1)

where u = S(w) and v is the complex conjugate of v.

Proof. Fréchet differentiability of the control-to-state operator follows from standard arguments

(see, e.g., [26]), together with the continuity of the control-to-state operator S : L∞(D) → H1(D)

and S(0) = 0.

Thanks to Lemma 3.1 we can compute the derivative of the reduced cost-functional

f(w) := J
(

S(w)
)

=
1

2
‖S(w) + u0‖L2(Do)

and introduce a corresponding adjoint state.
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Lemma 3.2. Under Assumption 2.2, we consider k0 > 0 sufficiently small such that the assertions

of Lemma 3.1 hold. Let w, h ∈ D and u = S(w) ∈ H1(D). Then there exists a unique solution

p ∈ H1(D) to the adjoint equation

∫

D
∇p · ∇v dx− k2

0

∫

D
(1 + qw)pv dx− ik0

∫

∂D
pv ds =

∫

Do

(u+ u0)v dx ∀v ∈ H1(D). (3.2)

Furthermore, the derivative f ′ with respect to w of the reduced objective satisfies

f ′(w)h = k2
0 Re

(
∫

D
qh(u+ u0)p dx

)

,

where Re(·) is the real part.

Proof. Because J : L2(D) → R and S : D → H1(D) are Fréchet differentiable by Lemma 3.2, we

obtain by straightforward calculations with the chain rule that

f ′(w)h =

∫

Do

Re(u+ u0) Re(û) dx+

∫

Do

Im(u+ u0) Im(û) dx, (3.3)

where û = S′(w)h solves (3.1). Now, inserting v = p into (3.1) and v = û into (3.2) yields, after

substracting the resulting equations, that

k2
0

∫

D
qh(u+ u0)pdx =

∫

Do

(u+ u0)û dx. (3.4)

We make use of the fact that Re(ab) = Re aRe b+ Im a Im b in (3.3) and (3.4) to deduce that

f ′(w)h = Re

(
∫

Do

(u+ u0)û dx

)

= k2
0 Re

(
∫

D
qh(u+ u0)p dx

)

,

which completes the proof.

We close this section by establishing a first-order optimality system for (R) governed by (2.4).

Theorem 3.3. Let the assumptions from Lemma 3.2 be satisfied. If (w∗, u∗) ∈ F(R) is a local

solution of (R) governed by (2.4), then the solution of the adjoint equation p∗ ∈ H1(D), established

in Lemma 3.2, satisfies

Re

(
∫

D
q(w − w∗)(u∗ + u0)p∗ dx

)

≥ 0 ∀w ∈ D.

Proof. Following the classical argument in [26], w∗ satisfies the variational inequality

f ′(w∗)(w − w∗) ≥ 0 ,∀w ∈ D.

The choice (w, u) = (w∗, u∗) in Lemma 3.2 implies that this inequality is equivalent to

0 ≤ f ′(w∗)(w − w∗) = k2
0 Re

∫

D
q(w − w∗)(u∗ + u0)p∗ dx,∀w ∈ D,

where p∗ ∈ H1(D) is the unique solution of the adjoint equation (3.2).
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4 Solving the MIPDECO

We begin this section by stating the algorithm to solve (P) approximately, which has been adopted

from [17]. Next, we introduce the sum-up rounding algorithm and summarize its properties. We

build on these properties to prove our approximation properties for (2.1) and (2.4). Then, we

prove the asymptotic results of the algorithm. To obtain implementable designs, we have added a

median-filtering step, and we briefly comment on the properties of this step.

4.1 Optimization Algorithm

The optimization algorithm for solving (P) is given in Algorithm 1. It tailors Algorithm 1 from

[17] to our setting and extends it by a median-filtering step. We start by introducing the main

components of this algorithm.

The algorithm takes three inputs: an initial discretization (R
(0)
h ) of the continuous relaxation

(R); an initial guess wR
0 for a local minimizer of (R

(0)
h ); and an initial rounding grid T (0), which is

a set of cells that decompose the domain D. The algorithm proceeds iteratively. Each iteration n

consists of five steps.

First, the discretization of the continuous relaxation is refined, yielding the finite-dimensional

NLP (R
(n)
h ). We note that we do not require discretization cells of the finite-dimensional NLP

(R
(n)
h ) to coincide with those of the rounding grid, although this is possible and an intuitive choice.

The subscript h denotes that a grid constant is associated with the approximation. Second, the

NLP (R
(n)
h ) is solved to (local) optimality using the local minimizer of the previous iteration wR

n−1

as the initial guess. The resulting local minimizer is denoted by wR
n . This is detailed in Section 4.2.

Third, the rounding grid is refined; that is the cells are decomposed into smaller ones, yielding

the rounding grid T (n). Fourth, the SUR algorithm is executed by using the continuous control wR
n

and the rounding grid T (n) as inputs. It computes a discrete-valued control wS
n , which is constant

per cell of the rounding grid T (n). These two steps and the necessary assumptions on the rounding

grid and its refinement are detailed in Section 4.3.

Fifth, a median filtering wF
n of wS

n is computed as a postprocessing step. It is detailed in

Section 4.5.

We summarize the algorithm as Algorithm 1 below.

Algorithm 1 Solving (P) approximately

Input: Initial guess wR
0 , an initial approximation (R

(0)
h ) of (R), and an initial rounding grid T (0).

for n = 1, . . . do

(R
(n)
h )← refine approximation (R

(n−1)
h ) of (R), see Section 4.2

wR
n ← solve (R

(n)
h ) with initialization wR

n−1, see Section 4.2

T (n) ← refine (T (n−1)), see Definition 4.1

wS
n ← SUR(wR

n , T
(n))

wF
n ← MEDIAN-FILTER(wS

n)

end for
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4.2 Refining and Solving the Continuous Relaxation

The first and second steps of the loop in Algorithm 1 deal with the solution of (R). First, the

discretization of the relaxation is refined, giving (R
(n)
h ). The discretization may, for example,

be obtained by using piecewise affine globally continuous finite elements to discretize the state

equation (2.4) and undergo a uniform grid refinement strategy during the iterations. Second,

the finite-dimensional problem (R
(n)
h ) is solved to (local) optimality. The optimization of the

resulting finite-dimensional NLP can be executed with a bound-constrained nonlinear optimization

algorithm. We highlight that the problem is not convex, since the control-to-state operator is not

convex, and thus, we can expect only local optimality.

Our algorithm and its convergence results are agnostic to the specific choice or implementation

of the discretization and the first and second steps. Their analysis is not part of this work because

we deal with the integer optimal control aspect here. However, under the assumptions on the

rounding grid refinement that are introduced in Section 4.3 for all weak∗ accumulation points wR,∗

of (wR
n )n with approximating subsequences wR

nk
⇀∗ wR,∗, we obtain wS

nk
⇀∗ wR,∗ with the help of

the results from [17].

If an optimal consistency principle holds, that is, if the sequence of local minimizers of the refined

discretizations converges at least weakly∗ to a local minimizer of the continuous relaxation (R),

this also yields optimality of the sequence (wS
n)n. For background and the proofs of convergence of

solutions of such discretized optimization problems to the minimizer of the approximated infinite-

dimensional one, we refer the reader to [1, 3, 12, 19] and the references therein. Moreover, for

bilinear optimal control problems, similar results can be found in [16, 29]. To complement these

contributions, which focus mainly on the a priori analysis, we cite [15, 28] for studies regarding a

posteriori error estimators for optimal control problems with control constraints. We note that [28]

also establishes the strong convergence of the resulting AFEM-algorithm.

4.3 Multidimensional Sum-Up Rounding

The refinement of the rounding grid in the third step of the loop in Algorithm 1 produces a rounding

grid T (n) from the previous one T (n−1). We require a refinement that yields a weak∗ approximation

of relaxed control by the discrete-valued control produced in the fourth step. This result depends

both on a suitable refinement of the grid cells and on the ordering of the grid cells. We state a set

of sufficient conditions below.

Definition 4.1 ( [17, Definition 4.9]). We call a sequence
({

T
(n)
1 , . . . , T

(n)

N(n)

})

n
⊂ 2B(D) of finite

partitions of D an order-conserving domain dissection of D if

1. N (0) = 1, T
(0)
1 = D;

2.
{

T
(n)
1 , . . . , T

(n)

N(n)

}

is a finite partition of D for all n;

3. for all n and for all i ∈ {1, . . . , N (n−1)}, there exist 1 ≤ j < k ≤ N (n) such that

k
⋃

ℓ=j

T
(n)
ℓ = T

(n−1)
i ,

i.e. the order of the grid cells is preserved from n− 1 to n;
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4. maxi∈{1,...,N(n)} λ(T
(n)
i )→ 0, where λ denotes the Lebesgue measure in R

d, that is, the maxi-

mum cell volume tends to zero; and

5. the σ-algebra generated by
⋃∞

n=1

{

T
(n)
1 , . . . , T

(n)

N(n)

}

is B(D), the Borel σ-algebra of the set D.

These properties can, in particular, be verified for the grids induced by the approximating

sequences the approximating sequences of space-filling curves; see [17]. A space-filling curve is a

surjective and continuous mapping of the unit interval to a unit hypercube of a higher dimension.

Space-filling curves yield a decomposition of the domain into grid cells and induce an ordering of

them. The approximants of space-filling curves induce a uniform refinement of the grid in every

iteration, which yields properties 1, 2, 3 and 5 in Definition 4.1. Furthermore, in every iteration

the approximating curve traverses the grid cells of the previous grid iterations in the same order

as the previous approximating curves did. This implies is the order-conservation property 3 in

Definition 4.1; see [17].

Remark 4.2. The treatment of multidimensional domains by using order-conserving domain dis-

sections is a recent development put forward in [17, 31]. Before, the SUR algorithm and other

rounding schemes were applied to time-dependent problems; see, for example, [14,23,24]. The one-

dimensional results apply when considering a time horizon [0, T ] as the domain and decomposing it

into intervals. Using the intuitive consecutive ordering of the intervals along the time axis gives us

the setting of [14, 23, 24]. In this sense, space-filling curves may be interpretated as a way to map

a decomposition of the domain to consecutive intervals discretizing a time horizon.

The fourth step of Algorithm 1 is the application of the SUR algorithm (see [17, 23]) to the

control wn
R using the rounding grid T (n). The algorithm makes use of a special ordered set of type

1 (SOS1) encoding of the discrete control realizations; see [23]. To make this formal, we introduce

the notions of binary and relaxed controls.

Definition 4.3 (Binary and relaxed control [17, Definition 2.2]). Let D ⊂ R
d be a bounded domain.

A measurable function ω : D → {0, 1}M such that
∑M

i=1 ωi = 1 a.e. in D holds is called binary

control and a measurable function α : D → [0, 1]M such that
∑M

i=1 αi = 1 a.e. in D holds is called

relaxed control.

SUR computes binary controls ω, which are constant per grid cell from relaxed controls α.

The relaxed control α can be obtained from a feasible continuous control wR
n by solving wR

n (x) =
∑M

i=1 αi(x)wi for a.a. x ∈ D. Once the binary control is computed, the discrete-valued control wS
n ,

which is feasible for (P), can be reconstructed with wS
n(x) :=

∑M
i=1 ωi(x)wi. We note that α is in

general nonunique and a consistent way to compute α from wR
n has to be chosen in Algorithm 1, that

is, we have to make sure that if the wR
n converge to w∗, then we also require that the corresponding

αn converge to α∗. This will be a requirement of Theorem 4.10 to prove convergence of Algorithm 1.

One option to achieve this (see [17]) is to represent wS
n(x) for x ∈ D by a convex combination of its

neighboring points in {w1, . . . , wM}. To this end we choose i, αi(x) such that wR
n (x) = αi(x)wi+(1−

αi(x))wi+1, we set αi+1(x) := 1−αi(x), and we set αj(x) := 0 for all j ∈ {1, . . . , i−1, i+2, . . . ,M}.
SUR computes a binary control ω that is constant per grid cell. To this end, it iterates over

the grid cells 1, . . . , N and assigns a value to ω on the respective grid cell. In each iteration, it first

computes the integrated signed difference between the relaxed control α and the resulting binary
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control ω over the grid cells, where ω is already defined. Second, the weighted mean of α over the

current grid cell is added to this quantity. Third and last, ω is set to 1 on this grid cell in the

entry where this sum has its maximum value and zero in the others. If a tie arises with respect

to the maximizing entry, the smallest applicable index is chosen. We summarize these steps in

Algorithm 2, where χA denotes the indicator function of the set A.

Algorithm 2 SUR (Multidimensional sum-up rounding)

Input: Rounding grid T = {S1, . . . , SN}, and relaxed control α.

Output: Binary control ω.

for i = 1, . . . , N do

Φi :=
∫

⋃i−1

ℓ=1
Sℓ
α(x)− ω(x)dx

γi := Φi +
∫

Si
α(x)dx

ω̃i,j =

{

1 : j = arg maxk∈{1,...,M} γi,k,

0 : else,
for all j ∈ {1, . . . ,M}

end for

return ω =
∑N

i=1 χSi
ω̃i

4.4 Properties of Sum-Up Rounding

The multidimensional SUR algorithm given in Algorithm 2 allows us to approximate a relaxed

control, α, with a binary control, ω. This approximation does not happen in the norm topology,

because the no binary control can approximate any relaxed control in norm. Instead, by executing

SUR on a sequence of refined rounding grids, which constitute an order-conserving domain dissec-

tion we obtain weak∗ convergence of the corresponding sequence of ωn to α in L∞(D), denoted by

ωn ⇀
∗ α in L∞(D), namely,

∫

D
f(x)ωn(x)dx→

∫

D
f(x)α(x)dx for all f ∈ L1(D).

Proposition 4.4. Let α be a relaxed control and wα =
∑M

i=1 αi(s)wi for w ∈ D. Then, the

multidimensional SUR algorithm applied to a sequence of finite partitions of D that constitute an

order-conserving domain dissection produces a sequence of binary controls (ωn)n with corresponding

wωn =
∑M

i=1(ωn)iwi such that

1. ωn(s) ∈ {0, 1} for all s ∈ D and for all n ∈ N;

2. supi∈{1,...,N (n)}

∥

∥

∥

∥

∫

⋃i

j=1
T

(n)
j

α(s)− ωn(s)ds

∥

∥

∥

∥

∞

≤ C maxi∈{1,...,N (n)} λ(S
(n)
i ) for some C > 0 in-

dependent of the sequence of partitions, its indexing, and α;

3. ωn ⇀
∗ α in L∞(D,RM ); and

4. wωn ⇀
∗ wα in L∞(D).

Proof. This follows immediately from [17, Theorem 4.7].
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4.5 Median Filtering

The fifth step of Algorithm 1 consists of executing the algorithm MEDIAN-FILTER. The algorithm

takes a set of cells S1, . . . , SN and a function w that is constant per cell (i.e., it can be represented

as w ∈ R
N ) as inputs. The algorithm iterates through all cells of a rounding grid and computes the

median value of all cells neighboring the current cell. Here, a cell is neighboring another one if the

distance between them is below a certain threshold r. Since we consider cells as sets, we need to

define the distance between two sets S, T ∈ R
d which we do by means of the Pompeiu-Hausdorff

distance. That is, we define

d(S, T ) := max

{

sup
s∈S

inf
t∈T
‖s− t‖RD , sup

t∈T
inf
s∈S
‖s− t‖RD

}

.

We summarize the algorithm as Algorithm 3.

Algorithm 3 MEDIAN-FILTER

Input: Piecewise constant function w on a grid consisting of cells S1, . . . , SN with vector repre-

sentation w ∈ R
N and radius r of the filter.

Output: Piecewise constant function wF on the same grid on which w is defined in vector repre-

sentation wF ∈ R
N

for n = 1, . . . , N do

wF
i ← arg minwj :dP H(Si,Sj)<r |wj − wi|

end for

4.6 Approximation Result for the Sommerfeld Radiation Condition

Before stating our main theorem, we prove the following preparatory lemma.

Lemma 4.5. Let Assumption 2.2 hold. For k0 > 0 sufficiently small, the control-to-state operator

S : D→ H2(D) is completely continuous in the sense that wn ⇀
∗ w in L∞(D) with w, wn ∈ D for

all n ∈ N yields S(wn)→ S(w) in H2(D).

Proof. By virtue of Propositions 2.3 and 2.5, we have a continuous control-to-state operator

S : D → H2(D) of the Lippmann–Schwinger equation (2.2) and the Helmholtz equation (2.1).

Assumption 2.1 yields the compact embedding H2(D) →֒c L2(D); see, for example, [21, Chap. 7].

We take the point of view of the Lippmann–Schwinger equation (2.1) and execute a bootstrap-

ping argument. Let wn ⇀
∗ w with w, wn ∈ D for all n ∈ N. First, Proposition 2.5 and S(0) = 0

yield that the un = S(wn) are uniformly bounded in L2(D) for k0 > 0 sufficiently small. Thus,

there exists ū such that un ⇀ ū, where un is a subsequence that we again denote by un for ease

of notation. Here, ⇀ indicates convergence in the weak topology. Furthermore, this implies the

boundedness of the sequence ((1+qwn)un)n, and we obtain (1+qwn)un ⇀ v for some v ∈ L2(D) by

again passing to a subsubsequence, which we again denote by the same symbol for ease of notation.

The compactness of K yields that

un → K(v) +K(u0qw) =: ū in H2(D).
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Thus, we conclude that (1 + qwn)un ⇀ (1 + qw)ū. Using the compactness of K, we obtain that

ū−K((1 + q)w)ū) = K(u0qw).

By the uniqueness of the solution of (2.2) for k0 > 0 sufficiently small (see [7, Thm 8.4]), we have

ū = S(w). Because the argument holds for all subsequences of the original sequences (un)n and

(wn)n, the claim follows.

Next, we state and prove our main theorem on the approximation relationship between (R) and

(P) when they are constrained by the state equation (2.1) instead of the state equation (2.4).

Theorem 4.6. Consider (P) and (R) being constrained by (2.1) instead of (2.4). Let k0 > 0 be

sufficiently small. Then (R) admits a minimizer (u,w) ∈ H2(D)×D. Furthermore,

inf
(u,w)∈F(P)

1

2
‖u+ u0‖2L2(Do) = min

(u,w)∈F(R)

1

2
‖u+ u0‖2L2(Do),

where F(∗) is the feasible set of (∗).

Proof. The objective of the optimization problem (R) is bounded from below. Furthermore, the set

D is nonempty, and (2.1) is uniquely solvable for all α ∈ D for k0 > 0 sufficiently small. Therefore,

(R) admits an infimum. The set D is convex and weak∗-closed in L∞(D), which means that for all

weakly∗ convergent sequences of functions in D, their limit is contained in D as well. We consider

a minimizing sequence of pairs (un, w
R
n )n ⊂ F(R), in particular un = S(wR

n ). Because (wR
n )n is

bounded, it admits weak∗ accumulation points w̄R as well as corresponding subsequences wR
k ⇀∗ w̄R

in L∞(D). For k0 > 0 sufficiently small, we employ Lemma 4.5 and obtain uk → S(w̄R) =: ū.

Because the norm is continuous, we obtain that

1

2
‖ū+ u0‖2L2(Do) = min

(u,w)∈F(R)

1

2
‖u+ u0‖2L2(Do),

which establishes the first claim.

Now, let (u,wR) be a minimizer of (R). From Proposition 4.4, we obtain that there exists a

sequence wS
n ⇀∗ wR in L∞(D) such that (wS

n , S(wS
n))n ⊂ F(P). Thus, Lemma 4.5 and continuity

of the norm yield that

1

2
‖S(wS

n) + u0‖2L2(Do) →
1

2
‖ū+ u0‖2L2(Do) = min

(u,w)∈F(R)

1

2
‖u+ u0‖2L2(Do).

Thus, (wS
n , S(wS

n))n is a minimizing sequence for (P), which proves the second claim.

Remark 4.7. The sequence (wS
n)n in the proof of Theorem 4.6 consists of discrete-valued controls

that converge weakly∗ to a continuously valued control w. If they converge in the norm topology, the

continuously valued control is also discrete-valued since the limits in the norm and weak∗ topolo-

gies coincide. If (R) admits only continuously valued minimizers, then (P) does not admit any

minimizing control, but its infimum coincides with the one of (R).
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4.7 Approximation Result for Robin Boundary Conditions

Before turning to the main statement, we again start with a preparatory lemma that establishes

complete continuity of S.

Lemma 4.8. For k0 > 0 sufficiently small, the control-to-state operator S : D → H1(D) is

completely continuous in the sense that wn ⇀
∗ w yields S(wn)→ S(w).

Proof. Proposition 2.6 establishes a continuous control-to-state operator S : L∞(D)→ H1(D), and

Assumption 2.1 establishes the compact embedding H1(D) →֒c L2(D).

From the proof of [5, Lem. 2.2], it follows that for k0 > 0 sufficiently small,

‖S(w)‖H1(D) ≤ C‖w‖L∞(D)

for some C > 0 and all w ∈ D. Thus, wn ⇀
∗ w yields (S(wn))n being bounded in H1(D). From

the compact embedding H1(D) →֒c L2(D), we have that S(wk) ⇀ ū in H1(D) and that S(wk)→ ū

in L2(D) for a subsequence and some ū ∈ H1(D).

Consider the following weak formulation of the state equation (2.4):

(∇u,∇φ)L2(D) − ik2
0(u, φ)L2(∂D) − k2

0((1 + qw)u, φ)L2(D) = k2
0(qwu0, φ)L2(D) for all φ ∈ H1(D).

Inserting the subsequence (wk)k from above, we immediately obtain that

(∇un,∇φ)L2(D) → (∇ū,∇φ)L2(D),

k2
0(qwnu0, φ)L2(D) → k2

0(qwu0, φ)L2(D).

Because the trace operator is linear and bounded (see Assumption 2.1), it is also weak-weak con-

tinuous; in other words, it maps weakly convergent sequences to weakly convergent sequences. We

thus obtain

−ik2
0(un, φ)L2(∂D) → −ik2

0(ū, φ)L2(∂D).

Because the product of a norm-convergent and a weakly convergent sequence in L2(D) weakly

converges to the product of the limits, it follows that

−k2
0((1 + qwn)un, φ)L2(D) → −k2

0((1 + qw)ū, φ)L2(D).

These observations give the identity

(∇ū,∇φ)L2(D) − ik2
0(ū, φ)L2(∂D) − k2

0((1 + qw)ū, φ)L2(D) = k2
0(qαu0, φ)L2(D) for all φ ∈ H1(D).

The weak solution of (2.4) is unique by Proposition 2.6. Thus, ū = S(w), and by passing to

subsubsequences the claim follows.

Next, we state the main theorem on the approximation relationship between (R) and (P). The

proof is analogous to the one of Theorem 4.6 and therefore is omitted.

Theorem 4.9. Let (P) and (R) be constrained by (2.1). Let k0 > 0 sufficiently small. Then (R)

admits a minimizer (u,w) ∈ H1(D)×D. Furthermore,

inf
(u,w)∈F(P)

1

2
‖u+ u0‖2L2(Do) = min

(u,w)∈F(R)

1

2
‖u+ u0‖2L2(Do).

�
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4.8 Asymptotics of the Optimization Algorithm

We combine our considerations from the preceding subsections with the results in [17] to obtain the

following convergence result for Algorithm 1. In particular, this theorem shows that for a sequence

of refined rounding grids and a sequence of controls that converge to a (local) minimizer of the

continuous relaxation (R), we obtain a sequence of controls feasible for the integer control problem

(P) that converges weakly∗ to the (local) minimizer of the continuous relaxation and approximates

the (locally optimal) objective value arbitrarily well.

Theorem 4.10. Let the assumptions of Proposition 2.6 hold in the case of the state equation

(2.4), and let the assumptions of Proposition 2.5 hold in the case of the state equation (2.1). Let the

sequence of rounding grids (T (n))n be an order-conserving domain dissection. Then, for every weak∗

accumulation point wR,∗ of the iterates (wR
n )n with approximating iterates wR

nk
⇀∗ wR,∗ in L∞(D)

and corresponding consistent sequence of relaxed controls αnk
⇀∗ α∗ with

∑M
i=1wi(αnk

)i = wR
nk

and
∑M

i=1wiα
∗
i = wR,∗ produced by Algorithm 1, we obtain that

J(S(wS
nk

))→ J(S(wR,∗)).

Proof. Our results from the preceding subsections and the assumption that the rounding grids

constitute an order-conserving domain dissection enable us to apply Theorem 4.10 of [17] to our

setting and the claim follows.

Theorem 4.10 implies that if the iterates produced by Algorithm 1 or a subsequence of iterates

converges to a local minimum of the relaxation, then we have convergence of the integer-valued

approximations computed by means of SUR to the same local minimum in terms of the state vector

and the objective value.

SUR provides an efficient way to compute weak∗ approximations of relaxed controls. The re-

sulting binary control is not optimal with respect to the number of switches for the provable bound

(see [14,23]) on the approximation. Optimizing with respect to switching cost while preserving the

weak∗ approximation may require us to solve a different, potentially expensive, optimization prob-

lem; see [6]. However, applying a heuristic that consists of a median filtering reduces the switching

and may not impact the resulting approximation too severely. Unfortunately, it is straightforward

to construct a counterexample of a sequence of chattering functions with sum-up rounding that

converges to a nonzero constant function such that the median at every grid cell evaluates to zero,

thereby destroying the approximation property.

5 Computational Results

We consider two discrete realizations for the material constant w in (P), namely, wℓ = w1 = 0 and

wu = w2 = 1. All our results use the Robin boundary setting (2.4). To solve discretizations of the

relaxation of the MIPDECO for local minimizers, we rely on standard optimization techniques for

bound-constrained optimization and employ a limited-memory quasi-Newton method with BFGS

updates.

We have obtained our numerical results on a laptop computer with Intel Core i7-6820HQ

CPU clocked at 2.70 GHz. To compute the results, we have employed the open-source libraries
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FEniCS [2] for the discretization of the state equation, dolfin-adjoint [9] for the computation

of the reduced objective and its derivative by means of adjoint calculus, and PETSc [4] for the

optimization of the reduced objective functional with the PETSc Tao solver [20].

The finest discretization grid we consider for the approximation of the state as well as the

control vector is a uniform decomposition of the square domain into 29 × 29 square cells, which

consist of two triangles each. We have optimized the relaxed problem both with piecewise constant

Ansatz functions for the control and with piecewise affine, globally continuous Ansatz functions

for the state. The results are similar, and we present only the latter ones. For the integer-valued

controls (i.e., the output of SUR) we have used piecewise constant (discontinuous Galerkin of order

0) Ansatz functions.

In contrast to [11], we use Robin boundary conditions in the computational experiments. Al-

though physically more realistic approximations of the Sommerfeld radiation boundary condition

exist (see [11, Sect. 5]), we have chosen to use the Robin boundary conditions for ease of the com-

putational setup. This gives us consistency between the computational setup and our problem

analysis and reduces unnecessary implementation overhead.

However, this comes at the cost that the results cannot be compared one to one with the results

from [11], which is underlined by the following observation. We digitized the scatterer design

plotted in [11, Fig. 7], solved our discretizations of (2.4) with this control input, and evaluated the

objective. The resulting objective value we obtained for this discrete (binary) control input was

1.103× 10−1 for a uniform triangular discretization of the domain with mesh size h = 1.10× 10−2

and 1.085× 10−1 with mesh size h = 5.52× 10−3. This is significantly higher than the value

3.76× 10−3 for mesh size h = 6.67× 10−3 reported in [11]; and using this design as an initialization

for the optimization of (R) yields a significantly improved design in our computational setup, which

is not close to the relaxation in [11, Fig. 6]. We highlight that the main point of this paper is to show

the effectiveness of SUR, and we do not believe that using more cumbersome boundary conditions

to approximate the Sommerfeld radiation condition adds significantly to our observations.

5.1 State Vector and Objective Approximation

We set up several experiments to validate our theoretical results. In all of them, we choose the

parameter values q = 0.75 and k0 = 6π, which are the settings from [11,27]. Furthermore, we chose

the angle of the incident wave as π/2 as in [11].

We perform nine iterations of Algorithm 1; that is, we compute a sequence of (locally optimal)

controls wR
n by solving (R

(n)
h ) for each grid n = 1, . . . , 9, which requires about 12 hours on our

laptop. We compute the corresponding relaxed controls αn in a consistent manner, apply the SUR

algorithm on the nth grid to compute ωn from αn, and reconstruct the discrete-valued control wS
n

from ωn as described in Section 4.3. We assess the convergence of the corresponding state vectors

by inserting wR
n and wS

n into the numerical approximation of the control-to-state operator S on the

nth grid. Furthermore, we project the wR
n onto the finest triangulation and show self-convergence

of the state vectors ‖S(wR
n ) − S(wR

9 )‖L2 . We use the same projections to evaluate J(S(wR
n )) on

the finest grid in order to be able to compare the values. The mesh size (grid cell diameter) is

hn = 2
√

2 1
2n for the cells both of the rounding grid and of the finite-element discretization.

The results are summarized in Table 1 and validate Theorem 4.10. In particular, we observe that

the difference between the state vector corresponding to the relaxed control and the binary control
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Table 1: Convergence of state vector and objective for refined grids on which both wR
n and wS

n are

computed, ‖ · ‖ = ‖ · ‖L2 .

n # binary vars hn ‖S(wS
n)− S(wR

n )‖ ‖S(wR
n )− S(wR

9 )‖ J(S(wR
n ))

3 32 3.54× 10−1 1.752× 10−1 1.795× 100 2.263× 10−1

4 128 0.18× 10−1 3.062× 10−1 1.939× 100 1.991× 10−1

5 504 8.84× 10−2 2.400× 10−1 2.022× 100 1.624× 10−1

6 2008 4.42× 10−2 2.151× 10−1 9.538× 10−1 2.188× 10−2

7 8028 2.21× 10−2 5.386× 10−2 2.136× 10−1 1.999× 10−3

8 32112 1.10× 10−2 2.096× 10−2 3.947× 10−2 9.852× 10−5

9 128452 5.52× 10−3 4.125× 10−3 0 3.533× 10−6

produced by SUR converges to zero. Furthermore, we observe self-convergence of the relaxed

states S(wR
n ). The objective J(S(wR

n )) of the objective also appears to converge to zero, which

suggests that cloaks may exist such that the electromagnetic field vanishes entirely in Do. The

real and imaginary parts of u0, S(wR
9 ), S(wS

9 ) and S(wF
9 ) are plotted in Figure 2. The qualitative

impression of the achieved cloaking is similar to the results in [11].

As a second experiment, we take the (locally optimal) control wR := wR
9 and its corresponding

relaxed control α from the previously described experiment. Then, we execute SUR on the same

refined rounding grids to obtain a sequence of discrete-valued controls (wS
n)n until the rounding

grid matches the grid of the relaxation. Furthermore, for every rounding grid, we compute a

median filtering wF
n of wS

n as a postprocessing step after SUR to remove jittering in wS
n and

improve the implementability. We assess the convergence of the corresponding state vectors and

the corresponding objectives by inserting the wS
n and wF

n for n = 1, . . . , 8 into the numerical

approximation of S and J on the finest grid n = 9. The results are stated in Table 2, which shows

the relative errors. The relative error between the solution for the relaxed control S(wR) and the

solutions for the binary controls S(wS
n) converges to zero. The relative error of the objective is

not convincing at first because the convergence ends at a value of 10−1. But the objective value

of the relaxation is very small, and in absolute values we note that J(S(wS
9 )) = 3.933× 10−6

and thus the absolute gap in the objective between the integer and the relaxed control problem

is only J(S(wS
9 )) − J(S(wR

9 )) = 4.000× 10−7. Similarly, we have an absolute objective value

J(S(wF
9 )) = 3.671× 10−3 for the filtered control.

The weak∗ convergence of the controls as well as the norm convergence of the state vector can be

observed, and in Figure 3, we plot the iterates (wS
n)n, (S(wS

n))n as well as the limits wR and S(wR).

The density of the refined binary structure of the scatterers wn
S converges to the relaxation wR as

expected by Proposition 4.4. The convergence of the corresponding scattered electromagnetic fields

is clearly visible. The amplitude fields |S(ωS
6 )|,...,|S(ωS

9 )| exhibit hardly any visual difference from

S(wR).

The effect of the filtering on the control can be observed in Figure 4. A lot of the scattered

switching between material and no material placement is removed in the filtered control inputs in

the bottom row. The objective is considerably higher; but with J(wF
9 ) = 3.671× 10−3, it is still
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Table 2: Convergence of state and objective for wR with uR = S(wR) computed on a fine grid and

refined rounding grids for the execution of SUR (wS
n) and SUR with median-filter post-processing

step (wF
n ).

n hn ‖S(wS
n)−uR‖

L2

‖uR‖
L2

J(S(wS
n))−J(uR)

J(uR)

‖S(wF
n )−uR‖

L2

‖uR‖
L2

J(S(wF
n ))−J(uR)
J(uR)

1 1.41× 100 9.646× 10−1 6.177× 104 7.028× 10−1 5.021× 104

2 7.07× 10−1 9.332× 10−1 5.299× 104 7.028× 10−1 5.021× 104

3 3.54× 10−1 9.843× 10−1 4.131× 104 6.548× 10−1 4.813× 104

4 1.77× 10−1 6.507× 10−1 2.364× 104 5.649× 10−1 4.607× 104

5 8.84× 10−2 3.646× 10−1 7.888× 103 4.188× 10−1 1.754× 104

6 4.42× 10−2 1.173× 10−1 7.719× 102 1.339× 10−1 1.685× 103

7 2.21× 10−2 3.042× 10−2 1.767× 101 1.046× 10−1 1.036× 103

8 1.10× 10−2 8.843× 10−3 1.898× 100 1.020× 10−1 1.097× 103

9 5.52× 10−3 2.071× 10−3 1.132× 10−1 1.000× 10−1 1.038× 103

small, and the electromagnetic field is still damped heavily in the region Do (see Figure 2).

5.2 Effect of Increased the Wave Number

The proofs in Section 4 are valid for the wave number k0 > 0 sufficiently small. Thus, we consider

an experiment that evaluates the approximation quality of the state vector for an increasing wave

number k0. We consider the finest grid of our computations and vary the wave number from 0.24π

to 750π by scaling it by five from one run to the next.

In every run (i.e., for every wave number k0), we do the following. Similar to the second

experiment of Section 5.1, we use the same fixed fractional-valued wR on the finest grid and refine

the rounding grid until it matches the finest grid to compute the approximating controls (wS
n)n by

means of SUR. We evaluate the state vectors S(wR) and (S(wS
n))n and compute the relative errors

‖S(wR)−S(wS
n)‖L2/‖S(wR)‖L2 . The convergence appears to be linear in the volume of the square

grid cells of the refined rounding grids, which can be seen by comparing the (scaled) volume of the

grid cells indicated by the three dashed lines in Fig. 5 with the approximation errors.

Over the 9 iterations, we observe convergence only for the small wave numbers k0 = 0.24π, 1.2π,

6π. We potentially see the start of convergence for the wave number k0 = 30π and no convergence

for the wave numbers k0 = 150π and k0 = 750π. The corresponding plots are given in Figure 5.

6 Conclusion

We have successfully applied the SUR algorithm and the underlying approximation methodology

to approximate the local infimum of the electromagnetic cloaking problem by taking the point of

view of a nonconvex MIPDECO. The computational results confirm our theoretical results.

When implementing the design of the scatterer given by the final iterate of Algorithm 1, one

should use improved approximations of the boundary conditions as suggested in [11] or extend the

computational domain in all directions so that the areas Do and Ds are only minimally affected
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Re(S(0) + u0) Re(S(wR
9

) + u0) Re(S(wS
9

) + u0) Re(S(wF
9

) + u0)

Im(S(0) + u0) Im(S(wR
9

) + u0) Im(S(wS
9

) + u0) Im(S(wF
9

) + u0)

Figure 2: Real (top) and imaginary (bottom) part of the unscattered wave (ω ≡ 0), the incident

wave u0, and the optimally scattered wave S(wR
9 ) for the relaxation and the scattered waves due

to SUR and the median filtering S(wS
9 ) and S(wF

9 ), respectively.

by approximation error at the corners. Because doing so does not change the number of controls

that are optimized, we assume that the additional computational costs do not grow too large in

this case.
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Figure 3: State (magnitude plotted) and weak∗ control vector convergence.
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Figure 4: Control vector iterates (top) and their filterings (bottom).
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Figure 5: Sequences of the relative state vector approximation errors ‖S(wS
n) −

S(wR)‖L2/‖S(wR)‖L2 of SUR approximations wS
n for a fixed wR and refined rounding grids in-

dexed by n = 1, . . . , 9 for different choices of the wave number k0.
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