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Abstract. Fluorescence tomographic reconstruction, based on the detection of photons
coming from fluorescent emission, can be used for revealing the internal elemental compo-
sition of a sample. On the other hand, conventional transmission tomography can be used
for reconstructing the spatial distribution of the absorption coefficient inside a sample. In
this work, we integrate both fluorescence and transmission data modalities and formulate
a nonlinear optimization-based approach for reconstruction. This model provides a simul-
taneous reconstruction of both the quantitative spatial distribution of all elements and the
absorption effect in the sample. Mathematically speaking, we show that compared with the
single-modality inversion, the joint inversion provides a better-posed problem, which implies
a better recovery. Therefore, the challenges in fluorescence tomography arising mainly from
the self-absorption effects in the sample are partially mitigated. The use of this technique is
demonstrated on the reconstruction of several synthetic samples.

Keywords. Tomographic reconstruction, X-ray fluorescence, X-ray transmission, Joint
inversion, Nonlinear optimization, Truncated-Newton method

1. Introduction. Tomographic imaging refers to the reconstruction of a 3D object from
its 2D projections by sectioning the object, through the use of any kind of penetrating wave,
from many different directions. It has had a revolutionary impact in a number of fields ranging
from biology, physics, and chemistry to astronomy. The technique requires an accurate image
reconstruction, however, and the resulting reconstruction problem is ill-posed and does not
have a unique solution because of insufficient measurements. The main reasons for the lack of
measurements include time-consuming restrictions such as the low-dose computed tomography
(CT) requirement for performing longitudinal studies, and a limitation on the number of
projection angles, the field of view, and the signal-to-noise ratio. Different modalities of
tomograms all have been derived by using different physical phenomena; these include CT
and magnetic resonance. The problems associated with these mathematical and experimental
implementations are similar, however. In particular, one of the most popular modalities is X-
ray transmission (XRT) tomography, which measures the ratio of the incident beam intensity
to the intensity of the beam transmitted through the sample. A complementary tomographic
technique, X-ray fluorescence (XRF) tomography, which is a novel synchrotron-based imaging
modality, has also received considerable attention in recent years because of its ability to
trace the elemental content of samples [11, 20, 23]. However, the reconstruction problem for
fluorescence tomography is much more difficult than it is for transmission tomography, because
of the absorption of the photons on the excitation and detection paths.

∗Mathematics and Computer Science Division, Argonne National Laboratory. (wendydi@mcs.anl.gov,
leyffer@mcs.anl.gov, wild@anl.gov.)
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Conventional tomographic reconstruction approaches can be classified in two main cate-
gories [12]: filtered backprojection (FBP) [26] and iterative methods. FBP includes the first
reconstruction algorithms used for XRF imaging [3]. It is well known for its rapid processing
with contrast enhancement; however, some artifacts can be caused by blurring effects and
the reconstruction filter. Iterative methods include the algebraic reconstruction technique
(ART), the simultaneous iterative reconstruction technique, and the iterative least squares
technique. Iterative techniques generally reduce sensitivity to noise and can reconstruct a
high-quality image in the case of incomplete data, such as an insufficient set of available pro-
jections, or if the projections are not distributed uniformly in angle or are sparse or missing
at certain orientations. In particular, ART [8, 17, 23, 34] and the expectation maximization
algorithm [9,14, 15, 32] have been widely applied for XRF reconstruction.

Another research effort regarding XRF reconstruction has focused on achieving a more
accurate approach with a correction for attenuation, which involves simultaneously estimating
emission and attenuation maps in conventional emission tomography when no transmission
scan is performed. The correction of fluorescent attenuation was first introduced by Hogan et
al. [11]. In [14,15], La Rivière et al. propose a penalized-likelihood reconstruction for XRF with
an approximate expression for the fluorescence attenuation map as a linear combination of
known quantities and an element’s own unknown distribution. In [16], Miqueles and De Pierro
develop a novel alternating method for retrieving simultaneously the fluorescence density
and the attenuation coefficients for XRF reconstruction. Recently, Sawatzky et al. [24] have
proposed a general numerical framework for multichannel image reconstruction in spectral X-
ray CT that enables exploration of statistical correlations between the decomposed material
sinograms and improves the reconstruction quality.

A common feature of these XRF reconstruction approaches is that the linear attenuation
coefficients of the sample either are assumed to be known or approximated from a single imag-
ing modality. In this work, we take advantage of recent advances in simultaneous acquisition
of different modality signals, and we propose a novel joint inversion framework in the con-
text of XRF and XRT that improves the ill-posed nature of tomography problems. Our new
approach has the potential to provide the distribution of both the heavy elements that emit
detectable fluorescent lines as well as lighter elements.

1.1. Principles of X-Ray Transmission. XRT is an imaging technique that uses X-rays
to view the internal structure of an opaque object, and provides the spatial distribution of
the absorption coefficient inside the object. In order to create the image, a beam of X-rays
produced from an X-ray generator is projected toward the object. A certain amount of the
X-rays is absorbed by the object, depending on the object’s density and composition. The X-
rays that pass through the object are captured behind the object by a detector. The detector
can then provide a 2D representation of the object’s internal structures.

1.2. Principles of X-Ray Fluorescence. XRF is the emission of characteristic X-rays
from a nonradioactive material that has been excited by bombardment with a pencil beam
of intense, monochromatic synchrotron X-rays of energy greater than the principal binding
energy of the elements of interest. These elements emit certain characteristic fluorescence X-
rays in the form of photons isotropically, which are detected by an energy-dispersive detector.
This detector is placed parallel to the direction of the incident beam in order to minimize
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contamination by Compton scattering photons from the incident beam. The detector outputs
a spectrum comprising multiple peaks [22]. These peaks correspond to the principal emission
lines of the various elements present in the sample, since the number of detected fluorescence
photons is linearly proportional to the quantity of chemical elements from which it originated.
By measuring the height or area of these peaks, the chemical element from which it originated
can be deduced, and its amount can be quantified.

2. Mathematical Model. The radiation intensity traveling toward a sample is attenuated
along the path of an X-ray beam. Consequently, the Radon transform [21], which in 2D
consists of integration over straight lines, forms the mathematical foundation for tomographic
imaging. In this section, we describe the mathematical models for XRT and XRF.

Notation. We use Greek letters to denote the indices related to the experimental setup;
all other quantities are denoted by Roman letters. In detail, we use Θ and T , respectively, to
denote the complete collection of |Θ| angles and |T | beamlets and θ ∈ Θ and τ ∈ T to denote
the index of the X-ray beam angle and discretized beamlet, respectively. The set V denotes
the complete collection of |V| spatial voxel indices, which we use to discretize the sample. By

L = [Lθ,τ
v ], we denote the tensor of intersection lengths of beamlet (θ, τ) with the voxel v ∈ V .

We use E to denote the collection of |E| possible element indices and µE
e to denote the linear

attenuation coefficient of element e at beam incident energy E.

Our goal is to recover the tensor W = [Wv,e] denoting the mass of element e ∈ E in voxel
v ∈ V .

2.1. Discrete XRT Imaging Model. The geometry of the XRT imaging setup is illus-
trated in Figure 1 in the 2D case.

A traditional way (see, e.g., [12]) to model the transmission projection of a sample from
beamlet (θ, τ) is

F̃T
θ,τ (µ) = I0 exp

{
−
∑

v

Lθ,τ
v µE

v

}
,

where I0 is the X-ray beam intensity and µ = [µE
v ] is the attenuation/absorption coefficients

at incident energy E.

We note that the coefficients µ depend on W by way of µE
v =

∑
e′
Wv,e′µ

E
e′ for all v ∈ V .

Since the goal is to recover W, the forward model that we use is

(2.1) FT
θ,τ (W) = I0 exp

{
−
∑

v,e

Lθ,τ
v µE

e Wv,e

}
.

For e ∈ E and v ∈ V , the first-order derivative of (2.1) with respect to Wv,e is

∂

∂Wv,e
FT
θ,τ (W) = −I0 exp



−

∑

v′,e′
Lθ,τ
v′ µ

E
e′Wv′,e′



Lθ,τ

v µE
e .
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Figure 1: (a) Illustration of the discrete XRT projection geometry: the sample resides in
space (discretized in 2D for simplicity of illustration), whereas the beam is parameterized by
its angular and translation scan (θ and τ , respectively); (b) Corresponding structure of XRT
data for all |Θ||T | projections.

2.2. Discrete XRF Imaging Model. The discrete model we use to simulate XRF is built
on the one proposed in [15], and the corresponding geometry is illustrated in Figure 2. Two
main features distinguish our model from the one in [13, 15]. First, instead of modeling the
XRF process in terms of both the elemental distribution and the attenuation map of fluores-
cence energy, we model the XRF only in terms of the elemental distribution. Second, rather
than modeling the detected fluorescence photons directly, we follow an elemental approach,
whereby we model the fluorescence emitted from an elemental atom by its corresponding ele-
mental unit spectrum. Then, the total fluorescence spectrum detected from the given sample
is modeled as a weighted sum of such unit spectra of the elements being recovered.

We approximate the elemental unit spectrum as follows. Based on Sherman’s equation [27],
a first-order approximation (i.e., no chain effect) of the net-line intensity corresponding to the
characteristic fluorescence energy Ee emitted from element e is

Ie,l,s = I0ceωe,l

(
1− 1

re,s

)
µE
e ,

where ce is the total concentration of element e in the sample, ωe,l is the fluorescence yield of
e for the spectral line l, and re,s is the probability that a shell s electron (rather than other
shell electrons) will be ejected.

Sources for values of ωe,l, µE
e , and re,s include the tabulated data [28] and the online

4



database xraylib [25]. In our calculations, we used the XRF cross sections from xraylib to

obtain the quantity ωe,l

(
1− 1

re,s

)
µE
e .

For an energy-dispersive detector used for detecting fluorescence, let I denote the set of
the complete collection of its |I| energy channel indices and let x be the |I|-dimensional vector
denoting its energy channels. Let 1Ee be the |I|-dimensional unit indicator vector with its
component defined as

[1xEe
]i :=

{
1 if |xi − Ee| = min

j
(|xj − Ee|) and xi 6= 2Ee − xi−1

0 otherwise
, i = 1, . . . , |I|,

where we choose to break ties between neighboring channels lexicographically. We then obtain
the perfect spectral line Ix = Ie,l,s1

x
Ee
. However, the fluctuations in the number of excitations

and ionizations in the detector material mean that one usually observes a Gaussian-like peak
rather than an ideal, delta-function peak for a monoenergetic particle beam. This forms the
basis of the detector response principle [28]. The width of this Gaussian-like peak determines
the capability to distinguish particles with different energies. The energy resolution ∆E
is given by the full-width-at-half-maximum (FWHM) of the single peak. For a Gaussian
distribution with standard deviation σ, we have FWHM ≈ 2.35σ. Therefore, the final unit
spectrum obtained by convolving the perfect spectral line Ix with a Gaussian distribution is

M e,l,s = F−1

(
F(Ix) ∗ F

(
1√
2πσ

exp

{−x2

2σ2

}))
,

where ∗ denotes convolution and F (F−1) is the (inverse) Fourier transform. In our simulation,
we consider only Kα,Kβ , Lα, Lβ lines (see [28]), which result in the final unit spectrum of
element e given by M e =

∑
l,s

M e,l,s.

For given elemental unit spectra, we model the total fluorescence spectrum of a sample
with multiple elements by considering the attenuation of the beam energy and self-absorption
of the fluorescence energy. We let AE,θ,τ

v represent the attenuation experienced by beamlet
(θ, τ) (at incident beam energy E) as it travels toward voxel v ∈ V :

AE,θ,τ
v (W) = exp

{
−∑

v′
µE
v′L

θ,τ
v′ Iv′∈Uθ,τ

v

}
= exp

{
−∑

v′

∑
e′
Wv′,e′µ

E
e′L

θ,τ
v′ Iv′∈Uθ,τ

v

}
,

where IX is the indicator (Dirac delta) function for the event X and Uθ,τ
v ⊂ V is the set of

voxels that are intersected by beamlet (θ, τ) before it enters voxel v.

By F θ,τ
v,e (W), we denote the attenuation of fluorescence energy emitted for beamlet (θ, τ)

from element e ∈ E at voxel v ∈ V before it reaches the detector. Note that the energy-
dispersive detectors typically used to detect fluorescence spectra are nonimaging detectors
that record only the count of photons within specific energy levels but do not record the
initial spatial information of the detected photons. In order to provide the spatial restriction
necessary for tomographic reconstruction, a pencil beam illuminating only a single line is
used to scan through the object while the object is rotating. Therefore, we need to track the
history of the emitted photons only along the corresponding beam line rather than the whole
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Figure 2: (a) Geometry and notation of XRF setup; (b) Corresponding structure of XRF
data, with each projection (θ, τ) yielding a spectrum indexed by ι ∈ {1, . . . , |I|}.

sample space. Also, instead of considering all possible traveling paths of the emitted photons
isotropically, we restrict their traveling paths to the solid angle area between the emitting
source and the fluorescence detector. By numerically subdividing the fluorescence detector
into nd detectorlets, we approximate F θ,τ

v,e (W) as

F θ,τ
v,e (W) =

1

nd

nd∑

d=1

exp

{
−
∑

v′

∑

e′
Wv′,e′µ

Ee
e′ P

θ,τ
v,v′,d

}
,

where P = [P θ,τ
v,v′,d] denotes a tensor of intersection lengths of fluorescence detectorlet path

d (originated from voxel v and beamlet (θ, τ)) with the voxel v′ and µEe
e′ is the linear atten-

uation coefficient of element e′ at the fluorescence energy Ee of element e. Accordingly, the
fluorescence spectrum FR

θ,τ of the object resulting from beamlet (θ, τ) is the |I|-dimensional
vector

(2.2)

FR
θ,τ (W) =

∑

e

(∑

v

Lθ,τ
v AE,θ,τ

v (W)F θ,τ
v,e (W)Wv,e

)
M e

=
∑

v,e,d

Lθ,τ
v Wv,eM e

nd
exp



−

∑

v′,e′
Wv′,e′

(
µE
e′L

θ,τ
v′ Iv′∈Uθ,τ

v
+ µEe

e′ P
θ,τ
v,v′,d

)


 .
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One can show that the first-order derivative with respect to Wv,e is given by
(2.3)

∂
∂Wv,e

FR
θ,τ (W)

=
∑

e′

(∑

v′
Lθ,τ
v′ Wv′,e′

(
∂AE,θ,τ

v′

∂Wv,e
F θ,τ
v′,e′ +AE,θ,τ

v′
∂F θ,τ

v′,e′

∂Wv,e

))
M e′ + Lθ,τ

v AE,θ,τ
v F θ,τ

v,e M e

= −
∑

e′

(∑

v′
Lθ,τ
v′ Wv′,e′A

E,θ,τ
v′ F θ,τ

v′,e′

(
µE
e L

θ,τ
v I

v∈Uθ,τ

v′

))
M e′

−
∑

e′

(∑

v′
Lθ,τ
v′ Wv′,e′A

E,θ,τ
v′

(
1

nd

nd∑

d=1

exp

{
−
∑

v′′

∑

e′′
Wv′′,e′′µ

Ee′
e′′ P

θ,τ
v′,v′′,d

}
µ
Ee′
e P θ,τ

v′,v,d

))
M e′

+Lθ,τ
v AE,θ,τ

v F θ,τ
v,e M e.

3. Optimization-Based Reconstruction Formulations and Algorithms. We now describe
the optimization-based approach for solving inverse problems involving the models FT

θ,τ (W)

and FR
θ,τ (W). We assume that for these models the respective data are given by

• DR
θ,τ ∈ RnE , the measurement data of XRF detected at angle θ from light beam τ ,

and
• DT

θ,τ ∈ R, the measurement data of XRT detected at angle θ from light beam τ
for a set of (θ, τ) values.

Each of the approaches follows a constrained least-squares formulation [7, 33],

min
x∈X

φ(x) =
1

2
‖r(x)‖2 := 1

2
r(x)⊤r(x),

where x denotes the n ≤ m parameters, r : Rn 7→ Rm denotes the residual mapping, and
X ∈ Rn denotes a feasible region for the parameters.

3.1. Joint Reconstruction Technique. In this section, we describe our formulation of
multimodal imaging as a joint inversion problem. The inverse problem we solve for the mass
tensor W is

(3.1)

min
W≥0

φ(W) = φR(W) + βφT (W)

=
1

2

∥∥FR(W)−DR
∥∥2 + β

2

∥∥FT (W)−DT
∥∥2

=
1

2

∑

θ,τ

(∥∥FR
θ,τ (W)−DR

θ,τ

∥∥2 + β
∥∥FT

θ,τ (W)−DT
θ,τ

∥∥2
)
,

where the constraint W ≥ 0 is due to the physical nature of mass and β > 0 is a scaling
between the two modalities. Therefore, the first-order derivative of the objective function in
(3.1) with respect to W is

∇φ(W) = JR(W)⊤
(
FR(W)−DR

)
+ βJT (W)⊤

(
FT (W)−DT

)
.

For |Θ| angular and |T | translation scans, JT is the |Θ||T |× |V||E| Jacobian matrix of φT

whose components are given by
[
JT (W)

]
i,j

:=
∂FT

i (W)
∂Wj

, where i and j index the vectorizations
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of the indices (θ, τ) and (v, e), respectively. Similarly, we let ι ∈ I denote the energy channel
index and JR denote the |Θ||T ||I|×|V||E| Jacobian matrix of φR whose components are given

by
[
JR(W)

]
i,j

:=
∂FR

i (W)
∂Wj

, where i and j index the vectorizations of the indices (θ, τ, ι) and

(v, e), respectively. Consequently, the master Jacobian matrix and master residual vector of

(3.1) are J(W) =

[
JR(W)

βJT (W)

]
and r(W) =

[
FR(W)−DR

β(FT (W)−DT )

]
, respectively.

3.2. Optimality Conditions. We now consider the optimality conditions corresponding to
problem (3.1). We define the set of binding constraints by B(W) = {i : Wi = 0, ∂

∂Wi
φ(W) ≥

0} and the strongly binding set by Bs(W) = B(W) ∩ {i : ∂
∂Wi

φ(W) > 0}.
Therefore, the first-order necessary condition for W∗ ≥ 0 to be a local minimizer of (3.1)

is
∂φ(W∗)
∂Wi

=
[
J(W∗)⊤r(W∗)

]
i
= 0 ∀i /∈ B(W∗).

The second-order sufficient condition additionally requires that

z⊤∇2φ(W∗)z > 0

for all vectors z 6= 0 with zi = 0, i ∈ Bs(W
∗).

3.3. Motivation. In practical experimental settings, the projection data are known to be
incomplete and are typically corrupted by noise. Hence, small perturbations of the projection
data will result in the solution being unstable. For this reason, the generalized tomography
problem is ill-conditioned [4]. The most commonly used remedy for this ill-posed nature is to
add a regularization term (e.g., Tikhonov regularization [1, 30, 31]). An appropriately chosen
regularization can facilitate direct numerical solution; however, choosing a good regularizer
is difficult [10, 19]. In this section, we examine the Jacobian of the nonlinear least-square
formulations involving FR and FT , and we provide an example motivating how joint inversion
can be used to improve the solvability of such inverse problems.

Where an exact solution exists, the residual vector r(W∗) vanishes, and the Hessian is
therefore given by ∇2φ(W∗) = J(W∗)⊤J(W∗). For the second-order sufficient condition to
hold strictly, a reduction of this matrix must be positive definite. In particular, this condition
requires J(W∗)N to be full column rank, where N = {i /∈ Bs(W

∗)} is used to denote the
columns of J(W∗) not belonging to the strongly binding set. Analogously, we can say that the
bound-constrained (W ≥ 0) system of nonlinear equations is well-posed; that is, the solution
manifold consists of an isolated local minimum. Otherwise, if J(W∗)N is rank-deficient, the
system is ill-posed and can have infinitely many solutions. Even when no exact solution exists,
a rank-deficient reduced Jacobian can indicate the existence of many local minima that are
not isolated [6]. This case arises often in traditional tomographic reconstructions because the
data is often insufficient and thus linear dependent.

The following example identifies a simple joint inversion case with an improved Jacobian
(in terms of its rank) relative to the Jacobian from either of the single-modality formulations.

Example 3.1. Consider a 2D (3× 3 discretized) sample composed of the single element Ca.
It is imaged by using |I| = 2 energy channels, one angular (θ = 0o), and three translation
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scans, for which W ∗
v,e = 1, v ∈ [1, . . . , 9], e = 1. The Jacobian

J =

[
JR

βJT

]

at W∗ is given by




173 −16 −17 171 −23 −23 179 −16 −17
2730 −252 −268 2706 −361 −361 2825 −260 −270
173 177 −31 171 170 −53 179 173 −36
2730 2806 −497 2706 2696 −834 2825 2728 −575
173 177 179 171 170 156 179 173 175
2730 2806 2830 2706 2696 2466 2825 2728 2770

0.12β 0 0 0.12β 0 0 0.12β 0 0
0 0.12β 0 0 0.12β 0 0 0.12β 0
0 0 0.12β 0 0 0.12β 0 0 0.12β




.

We note that
• Bs(W

∗) = ∅;
• rank(JR) = 6;
• rank(JT ) = 3; and
• rank(J ) = 9, which returns a full column rank, well-determined system of equations.

Hence, W∗ is an isolated minimizer of the joint inversion problem for all β > 0. The single
modality inversions XRT and XRF consist of many connected local minima.

Similarly, if we increase the number of angular scans to two (i.e., |Θ| = 2), then XRF
returns in an overdetermined system with the corresponding JR of size 12× 9 and JT of size
6 × 9. However, since rank(JR) = 6 and rank(JT ) = 6, the XRF system is rank-deficient.
This example shows that it is not always sufficient to capture more measurements, and the
overall number of measurements can be reduced by joint reconstruction technique (JRT).

Regarding the overdetermined case, Figure 3 illustrates the local behavior of three different
objectives in the neighborhood of the local minimum W∗ given β = 108, where Figure 3a
corresponds to perturbations in the null space of the XRT system and Figure 3b corresponds
to perturbations in the null space of the XRF system. Taking both scenarios into account, W ∗

is the isolated solution of JRT, while there are other, connected solutions for XRF and XRT.

We mention that in practice JRT may not result in a full-rank Jacobian, but that the rank
is often improved. Therefore, the area of the solution manifold of JRT is often smaller than
the one from single modality inversion; as we will demonstrate in Section 5, this translates
into better convergence performance of JRT.

The benefit of joint inversion can also be seen from a physical point of view. The XRF
and XRT modalities considered here are based on different physical phenomena, which gener-
ate complementary morphological, structural, and chemical information. Consequently, their
combination can naturally provide richer information about an imaged sample than possible
with only one of these modalities. Furthermore, hardware technology has dramatically im-
proved, so that simultaneous detection of correlative multimodality data is now available [5,29].

4. Optimization Complexity and Computational Expense. Throughout the remainder
of this paper, for ease of visualization, we consider only 2D samples; and we fix the number
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Figure 3: Residual objectives in a neighborhood of W∗ for the overdetermined system in
Example 3.1: Local behavior of different objectives in (a) the null space of the XRT system
and (b) the null space of the XRF system.

of energy channels to |I| = 2000, the number of detectorlets to nd = 5, and the number of
beamlets to |T | =

√
2|V|, where |V| denotes the number of voxels to be recovered.

If computed elementwise, the XRF forward model (2.2) requires about |V|2|E|2|I|nd flops;
accordingly, its elementwise derivative (2.3) requires about |V|3|E|3|I|nd flops; hence, the over-
all cost of elementwise function and derivative evaluations for XRF is O(|V|3) flops. Similarly,
the overall cost of function and gradient evaluations for XRT is O(|V|2) flops. Therefore, the
XRF term dominates the computational cost of the joint inversion objective function (3.1).

In our implementation, however, we utilize the precalculated terms Lθ,τ
v µE

e and µ′Ee
e P θ,τ

v,v′,d
for every possible combination in order to avoid duplicated calculation. We also code in
a tensor-product fashion for the summations in (2.2) and (2.3). Based on these strategies,
Figure 4a shows the computational time of one (φR,∇φR) evaluation for increased numbers
of angular projections. In particular, with a model fit to the time shown, we observe that the
actual time complexity is on the order of

(4.1) |V|1.5|Θ|.

This shows that our approach is more feasible for larger-scale problems than the elementwise
complexity analysis suggests.

We also compare the efficiency of different ways to calculate the gradient ∇φR. We use
the Matlab-based AdiMat tool [2] to perform automatic differentiation-based (AD) derivative
calculations. If W is a 2D matrix (i.e., |E| = 1), then AD is performed in reverse mode; oth-
erwise, if W is a 3D tensor with |E| > 1, then AD is performed in forward mode. Figure 4b
shows a comparison between the AD codes and our hand-coded derivatives. We observe that
using the reverse mode, the cost of AD is approximately 6 times greater than that of our imple-
mentation of the tensor-based analytical derivative; furthermore, with the forward mode, the
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Figure 4: Time required for a single function and gradient evaluation (φR,∇φR) for different
input sizes (number of angular projections and voxels): (a) Actual computational time and
the model in Equation (4.1) for fixed numbers of voxels; (b) Comparison of computational
costs of a function and gradient evaluation (φR,∇φR) using our hand-coded, tensor-based
derivative and the AD-based derivatives.

AD derivative is roughly 30 times more expensive than our tensor-based analytical derivative.
Therefore, we use our tensor-based analytical derivative in all the numerical experiments.

Because we are targeting large problems (with at least |V| nonzeros), having a fast and
memory-efficient algorithm to solve (3.1) is highly desirable. Therefore, in all the numerical
experiments, we use an inexact truncated-Newton (TN) method [18] with preconditioned
projected conjugate gradient (PPCG) providing the search direction.

We also estimate the complexity of TN. Each outer iteration of the inexact TN performs
the following computations (to “vectors” of dimension |V||E|):

• 1 infinity-norm calculation, 1 vector addition, and 2 (function, gradient) evaluations.
• a number of PPCG iterations, with cost per inner iteration given by

– 1 (function, gradient) evaluation,
– 4 inner products, and
– 5 “vector+constant·vector” operations.

For the synthetic problems examined in the next section, 5 PPCG iterations are required on
average per outer TN iteration. Based on the above estimate, one outer TN iteration requires
1 infinity norm, 20 inner products, 25 “vector+constant·vector”, 1 vector add calculation,
and 7 (function, gradient) evaluations. The overall cost of one TN iteration amounts to
|V||E|(1 + 20 + 25 + 1) = 47|V||E| flops, plus 7 (function, gradient) evaluations, whose time
empirically grows like |V|1.5 (see (4.1)).

5. Numerical Results. In this section, we examine the performance of the joint recon-
struction algorithm on two synthetic samples. All numerical experiments are performed on a
platform with 32 GB of RAM and two Intel E5430 Xeon CPUs.
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Figure 5: Chemical composition of the Shepp Logan phantom (top) and phase (bottom)
synthetic samples; color indicates the mass of the existing elements.

The primary goal of our tests with the first sample is to measure the performance of JRT
with respect to different problem sizes and contamination of the measurement data.

For the second sample, we test the independence of JRT performance with respect to
the given sample and the benefit of our XRF forward model in correcting the attenuation
coefficient by including the self-absorption effect.

5.1. Synthetic Samples. We present results for two synthetic samples: the “phantom”
sample and the “phase” sample. Both samples are shown in Figure 5, together with their
chemical composition. For the phantom sample, the chemical elements are potassium (K),
gallium (Ga), and iron (Fe), each of which results in a significant amount of fluorescent
radiation. The phase sample is typically used (see, e.g., [8, 15]) to explore the self-absorption
effect in fluorescence imaging and additionally contains palladium (Pd) and tin (Sn).

We denote these samples by W∗ and run each through our forward simulation to obtain
fluorescence and transmission output. For all forward simulations in these tests, the simulated
incident beam is monochromatic, with 20 keV energy and 0.2× 0.2µm transverse size. A 2.4
mm-diameter transmission detector is placed at 90◦ to the incident beam at a distance 1.6cm
from the sample. A fluorescence detector is placed parallel to the incident beam at a distance
1.6 cm from the sample. Given a numerical resolution of the sample image, we vary the
translation and angular scan steps to get different-sized measurement data, which allows us
to study the dependence of the reconstruction algorithms on the measurement data size.
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Figure 6: Optimization starting from W0
bad for the 3 × 3 phantom sample: (a) Reduction

of reconstruction error with respect to the number of (function, gradient) evaluations; (b)
Trajectories of the XRF and XRT residuals for the three reconstruction approaches.

5.2. Performance Metrics. The known chemical composition of the synthetic samples
facilitates our quantitative evaluation of the reconstruction algorithms. We compare JRT
with the existing single XRT and XRF reconstruction approaches based on two metrics.

First, the conventional way to compare the performance of different reconstruction meth-
ods in the tomography community is to compare the recovered samples directly with the
synthetic sample. In other words, we measure the “reconstruction error”

(5.1) dw(W) = ‖W −W∗‖F ,

where W∗ is the synthetic sample.
The second metric that we use is based on the forward residuals. We examine both the

fluorescence residual φR and the transmission residual φT . Since the three approaches we
consider are based on minimizing the residuals φR, φT , and φR + βφT , one might expect that
each approach would perform best for its respective residual. By construction in the noise-free
tests, we have that φR(W∗) = φT (W∗) = 0, and hence W∗ is a global minimizer of all three
residuals.

5.3. Phantom Sample Results. First, we compare the performance of single modality
reconstruction (i.e., XRF and XRT), with the joint version JRT for problems of different
resolution. To show the insensitivity of JRT to the initial guess, we consider both W0

good,

generated by adding to W∗ uniform noise with support [0, 0.1], and W0
bad, generated inde-

pendent of W∗ by uniform noise with support [0, 0.1].
Given W0

bad, Figure 6 illustrates the performance of different algorithms in reconstructing
a 3 × 3 phantom sample with only 3 translation and 4 angular scans. To be more specific,
Figure 6a shows the reduction of reconstruction error as defined in Equation (5.1) from three

13



W
∗

K Ga Fe Error

W
0 b
a
d

X
R
F

J
R
T

X
R
T

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 7: Comparison of reconstruction results for optimization starting from W0
bad for the

3× 3 phantom.

different algorithms with respect to the number of (function, gradient) evaluations. We observe
that JRT produces an error that is an order of magnitude smaller than XRT or XRF.

Moreover, owing to the ill-posed nature of both XRF and XRT, given an initial guess, the
solution manifold of XRF does not agree with that of XRT in general; that is, minimizing φR

and φT separately is unlikely to return a common solution. Since global solutions are unlikely
to be obtained, this situation can have severe effects in practice. For example, Figure 6b illus-
trates that the single-modality inversion approaches get stuck at poor local minima of their
respective objectives. In contrast, joint inversion not only converges much faster than the
two single-modality inversions, the local minimum found also achieves a much better recon-
struction result in terms of both the XRT and XRF residual objectives. The corresponding
reconstructed elemental maps, along with the resulting summed reconstruction errors, are
shown in Figure 7. Since the performance of XRT is poor for fluorescence tomography, for the
remainder of our experiments we report only the reconstruction qualities of JRT and XRF,
the approach mostly used in practice.

Next, given W0
good, we increase the resolution of the phantom sample to 10×10 pixels with

|Θ| = 6 angular scans. Figure 8 shows the convergence results for different algorithms with
respect to solution error and function value residual. Correspondingly, Figure 9 illustrates the
reconstructed elemental maps. With an even finer resolution of 20×20 pixels with 10 angular
scans, given W0

bad, the corresponding convergence performance and reconstructed elemental
maps are shown in Figures 10 and 11, respectively. From these tests, we can see that, with
roughly the same computational cost, JRT consistently returns results with better accuracy
than does XRF. In particular, even for the highly fluorescing element iron, JRT returns a
reconstruction error with an 83% improvement compared with XRF only.
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Figure 8: Optimization starting from W0
good for the 10× 10 phantom sample: (a) Reduction

of reconstruction error with respect to the number of (function, gradient) evaluations; (b)
Trajectories of the XRF and XRT residuals for the three reconstruction approaches.
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Figure 9: Comparison of reconstruction results for optimization starting from W0
good for the

10× 10 phantom.
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Figure 10: Optimization starting from W0
bad for the 20× 20 phantom sample: (a) Reduction

of reconstruction error with respect to the number of (function, gradient) evaluations; (b)
Trajectories of the XRF and XRT residuals for the three reconstruction approaches.
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Figure 11: Comparison of reconstruction results for optimization starting from W0
bad for the

20× 20 phantom.
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Figure 12: Performance of different reconstruction algorithms for increased resolution size and
a fixed number of angular projections.

In the case of limited angular scans (i.e., |Θ| = 2), we also compare the convergence factors
of JRT and XRF (given the same stopping criteria) for an increasing size of sample resolution.
The convergence factor here is

Ck =

(
φ(W(k+1))− φ(W∗)
φ(W(1))− φ(W∗)

) 1
k+1

,

where W∗ is the synthetic solution at the highest resolution down interpolated to the res-
olution of W(k). Figure 12 shows the corresponding results. As we increase the problem
resolution (i.e., the number of voxels |V|), the convergence factor and the XRF objective
residual are always better with JRT than with XRF. We thus observe that, in the case of the
limited data, JRT is obtaining better reconstruction results than XRF and doing so with a
performance that does not depend more strongly on problem size than does XRF.

Given W0
good as the initial guess, we also compare the reconstruction ability of XRF and

JRT when we consider contaminated data by adding standard Gaussian noise to the simulated
measurement data. Figure 13 demonstrates that JRT converges faster than single XRF and
XRT, in addition to providing improved residual and error. The corresponding reconstructed
elemental maps are given in Figure 14.

5.4. Phase Sample Results. Now we examine the performance of JRT on a sample nor-
mally used to explore the self-absorption effect in fluorescence imaging; see Figure 5. Notably,
we address not only the independent performance of JRT with respect to different samples
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Figure 13: Optimization starting from W0
good for the 20 × 20 phantom sample with noisy

data: (a) Reduction of reconstruction error with respect to the number of (function, gradient)
evaluations; (b) Trajectories of the XRF and XRT residuals for the three reconstruction
approaches.
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Figure 14: Comparison of reconstruction results for optimization starting from W0
good for the

20× 20 phantom with noisy data.
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Figure 15: A 20 × 20 phase sample from W0
bad. (a) Reduction of reconstruction error with

respect to the number of function gradient evaluations; (b) Trajectories of the value φR with
respect to the value φT for each iteration.

but also the advantage of our XRF forward model by including the self-absorption effect.
First, analogous to previous experiments, we compare the performance of JRT with single

XRF and XRT on a 20 × 20 phase sample with 20 translation and 12 angular scans. Again,
JRT beats XRF and XRT in reducing both the objective function residuals and reconstruction
error as shown in Figure 15. The resulting elemental maps are shown in Figure 16.

In Figure 17, we can see that with self-absorption correction, the reconstructed result is
much more accurate. In particular, without self-absorption correction, the mass in the inner
region of the shapes is underestimated because of the self-absorption effect.

6. Comments and Conclusions. This paper addresses a joint inversion framework to solve
tomography problems by using multimodality data to improve the ill-conditioned nature of
such problems. In detail, we model the X-ray fluorescence and X-ray transmission phenomena
separately as nonlinear equations in terms of chemical element composition of a given sample.
We also formulate reconstruction of the composition from given XRF and XRT tomography
data as an optimization-based joint inversion problem by utilizing multimodality data. To
solve the optimization problem, we use the truncated-Newton method for minimizing the sum
of errors between measured and synthetic data generated by our forward models.

The experimental results presented in the paper show that significant improvements are
achieved by performing joint inversion for limited data sources in terms of both convergence
speed and accuracy during the reconstruction process.
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Figure 16: Reconstruction results of the 20× 20 phase sample reconstruction.
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Figure 17: Solution of the phase sample reconstruction with and without self-absorption
correction using JRT.

20



REFERENCES

[1] Mario Bertero and Patrizia Boccacci, Introduction to inverse problems in imaging, CRC Press,
1998.
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