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Solving MPECs as NLPs

Mathematical Program with Equilibrium Constraints (MPEC)

minimize f(x,y)
X’y
subject to ¢(x,y) >0

0<y L F(x,y)>0

Equivalent smooth (lazy) nonlinear program (NLP):
minimize f(x,y)
X7.y

subject to c(x,y) >0
F(x,y)=s, s>0, y>0 and y’s<0
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Switching Notation

To understand convergence analysis, we switch notation:

x = (X0, X1, X2):

minimize f(x)

subject to c(x) >0
0<xs L x>0

Equivalent smooth nonlinear program (NLP):

minimize  f(x)

subject to c(x) >0
x1>0, xx>0, x/x<0

Now examine convergence properties of NLP solvers ...



.
A Nonlinear Programming Approach

Replace equilibrium 0 < x; 1 x> >0 by Xix <0 or xlTx2 <0

= standard nonlinear program (NLP)

L X
minimize f(x)
X

subject to ¢(x) > 0
X1, X2 > 0

(NLP)

X

Advantage: standard (?) NLP; use large-scale solvers ...
Snag: nonlinear program (NLP) violates standard assumptions!



.
Strong Stationarity & Unbounded Multipliers

Example x* = (0,1): first order conditions:

min T0a — 1) + (o — 1)? (-1) _ <yl> B (5)
s.t. x1,x0 >0, x1x0 <0 0 0 0
v1 multiplier of x; > 0; & multiplier of x3x < 0.

Equivalent NLP (x;x2 < 0) violates MFCQ = unbounded
multipliers

-1=v-¢

multipliers form a ray = 3 bounded multipliers
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The Relaxed NLP

Define index sets
X1 = {i:x{; =0} & Xy = {i: x5 =0},
complements XJ-L ={1,....p} — &

= relaxed NLP given by

minimize f(x)
X
subject to ¢(x) > 0
X1j = 0 Vje X2L
Xoj = 0 Vje Xf‘

x1,x2 > 0

. i.e. u; multiplier of “equality” constraints
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Equivalence to KKT Conditions

KKT conditions of equivalent NLP: I\*, v7,v5,£* > 0

0
VFE(x*) — Ve(x*)TA* — | v; — X5¢° | =0 1% order
- e

c(x*) >0, x{ >0, x3 >0 and X{x3 <0 primal feas.
*\T xT % #T %
c(x*)'A = x{ vf = x3 v =0 compl. slack.

.. £€>0allows u; <0

. multipliers of relaxed NLP 1 =11 — X3¢, and 1o = 1o — X{¢
= KKT multipliers bounded if ||£*]| < oo
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Convergence of SQP for MPECs

Sequential Quadratic Programming (SQP) ... compute step d

min £(x) min Vfld+1dT Hid
st. ¢c(x) >0 st. ek +Veld>0
x>0 = xk1+dp >0
x2 >0 Xk2 +dr >0
X1x2 <0 Xi1xk2 + Xkrdz + Xikodr <0

where H, ~ V2f, — > \;iV2cy Hessian of the Lagrangian.

Set xx11 = xx + d & update multiplier estimates
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Convergence of SQP for MPECs

Sequential Quadratic Programming (SQP) ... compute step d

min £(x) min Vfld+1dT Hid
st. ¢c(x) >0 st. ek +Veld>0
x>0 = xk1+dp >0
x2 >0 Xk2 +dr >0
X1x2 <0 Xi1xk2 + Xkrdz + Xikodr <0

where H, ~ V2f, — > \;iV2cy Hessian of the Lagrangian.
Set xx11 = xx + d & update multiplier estimates

Two cases: dk : Xiixko =0 ... or ... Xeixko >0, Vk
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Convergence of SQP Part 1: Xixko =0

wlog have xx; = 0 (and for simplicity assume xx» > 0)

= QP contains constraints

X1 +dp >0 di >0
Xo+dr >0 )= x0+do>0p =d; =0
Xi1xk2 + Xiadr + X1d2 <0 Xiod1 <0
= x; ™ = x4 + di; = 0 ... stay on same axis

= same tangent cone as NLP with x; = 0 ... relaxed NLP
= fast local convergence
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Convergence of SQP Part 2: Xjixko >0

wlog x; =0, but Xjixk2 > 0, i.e. off axis

QP picks nonsingular basis, subset of
e o

00
VCk / ng
0 Xk1

Assume all QPs consistent ... 2 cases:

Ll N

case 1: true subset = non-singular = quadratic convergence
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Convergence of SQP Part 2: Xjixko >0

wlog x; =0, but Xjixk2 > 0, i.e. off axis

QP picks nonsingular basis, subset of
e o

00
VCk / ng
0 Xk1

Assume all QPs consistent ... 2 cases:

Ll N

case 1: true subset = non-singular = quadratic convergence

case 2: full set = xx1 > 0 (otherwise singular)
= X{Fxk+ = 0 now see Part (1) as before ...
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.
Consistency of QP Approximations

Are QPs always consistent for MPECs?

NO! Linearization can be inconsistent arbitrarily close to solution

minimize xi + xo !
x boxw

subject to x3 > 1 :

X1 Z 0

X2 > 0

x1 x2 <0

generic problem = solvers take arbitrary steps
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.
Consistency of QP Approximations

Relax linearization of Xixo <0 ...
... heuristic for infeasible QPs (0 < d, k < 1 constants)

T 1+x
Xiixk2 + Xkodr + Xg1do < 0 (X;kaz) e

.. works in well practice with § =0.1, Kk =1
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The Slacks Matter!!!

How important was the introduction of slack variables?
Consider MPEC without slacks ...

minimize —x1 — %XQ
z
(P) { subject to x; +xp < 2
0§x12—x1 L x>0.

with solutions (2,0)7 with f* = —2 and (0,2)7 with f* = —1
e

2
2@ -V
o Start (—¢,t)"
@ Nonstationary limit
(0 (0,t)7 for any t.
[ ] [ ] Zou . . .
z, @ Avoid failure with slacks
©
1 2
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Interior Point Penalty Methods for MPECs

Equivalent NLP:

minimize f(x)
X
subject to ¢(x) >0
x1 20, x22>0,
XlTx2 <0

Consider /1 penalty of complementarity constraint

m|n|m|ze f +7Tx1 X2

(x)
subJect to c(x) >
x120, x>0

.. form primal-dual system with a twist ...
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Interior Point Penalty Methods for MPECs

Primal-dual MPEC system with xj, xo in primal form

0

V(x) = Ve(x)"A— | pX;te—Xor | =0
/J,Xgle - Xim

c(x)—s=0

S\ =pe

Algorithm I: Interior Penalty Method for MPECs
© Choose barrier parameter uk, and tolerance €,

@ Solve PD system to tolerance €, and ensure

| min{xk1, xk2}| < ek by adjusting 7y
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Interior Point Penalty Methods for MPECs

Theorem

If Algorithm | generates an infinite sequence, then:
Q xix — x* is feasible,
@ LICQ for relaxed NLP = x* is C-stationary,
Q mixxi — 0 = x* strongly stationary,

@ superlinear convergence for suitable barrier updates

Practical implementation
@ dynamic penalty 7, update during inner iteration

@ non-monotone reduction of complementarity: 7/ = 107 if,

X{Txé > 0.9 max {Xl(jil)Txéjfl)’ o ’Xl(jferl)TXz(jferl)}
@ avoid trouble with badly scaled MPECs

o 19/32



Relaxed Interior Point Methods for MPECs

Perturb rhs of complementarity constraint ... Xix» < Cue

.. where p > 0 barrier parameter = primal dual system ...

(

VF(x) = Ve(x)TA -

\

pX;te — X6 | =0
pXy e — X1€

c(x)—s=0
S\ =pe

Xixo +t = Cpue
TE = pe

= central path (x(u),v(n),€&(u)) for u >0
[Raghunathan and Biegler, 2002, Liu and Sun, 2002]
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Relaxed Interior Point Methods for MPECs

Compare relaxation and penalization

E=m
t= C,ue—X1x2
T¢ = pe

= Penalization < Relaxation, if

+ X
m=—2* o = BTTX
pnCi — x1ix2i W

. convergence proofs carry over!
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Interior Point Method with Two Sided Relaxation

Clever idea by Friedlander, de Miguel & Scholtes [2003]:

@ MPECs have no strict interior

@ Relax Xix» < 7e = interior — 0
= relax Xixo < 1e
and x; > —de, xop > —0de 550 5

o Adjust 7,0 as 4 — 0

Theorem

In limit 7 — 0 or 6 — O but not both

= relaxed problem has non-empty interior in limit
= interior point methods faster & more robust

MPEC multiplier pj < 0 = reduce 7; \, 0 ...
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SQPEC Approach [Scholtes, 2004]

Sequential QPEC approach (similar to piecewise SQP)

minimize g(k)Td + %dTH(k)d
d
subject to ck) 4+ AT g >0,
0< X§k) +d; L Xék)dg >0

where gl = V£(x(K)) and AK) = v (x(K), y(k),
Solve sequence of QPECs, set x(kt1) = x(k) 4 ¢
Theorem [Scholtes, 04]: Local B-stationary convergence.

SQPEC has correct tangent cone = global convergence???
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N
No! Counter Example for SQPEC

Consider
minimize (x; — 1)% + x23 + ><22 subjectto0<x; L x>0

SQPEC: x(k+1) = <0,3x2(k)2/(6x2(k) + 2)) — (0, 0) spurious
a 25/32



A Sequential LPEC Method
while (not optimal) begin
@ Compute step d from LPEC subproblem
minidmize g(k)Td
subject to ck) 4+ AT g >0,

0§x{k)—|—d1 1 X2(k)—|—d220
Ild]|co < Ak trust-region

Q if x(¥) + d acceptable then
xk+1) = x(k) 4 d & increase TR A+ =25 A
else xUH1) = x(K) & decrease TR A+ = A, /2

end
© Like steepest descend: Can we speed up convergence?

@ When is x(¥) + d acceptable?
© How do we solve the LPEC subproblem?
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S ———
Spurious A/M-Stationarity Revisited

Consider min (x1 — 1) 4+ 3 + x3 subjectto0 <x L x3 >0

@ SLPEC pivots through (0,0) ... get onto xj-axis
@ SLPEC converges to B-stationary limit (1, 0)

@ ... cannot get stuck in spurious stationary points
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S ———
Spurious A/M-Stationarity Revisited

Consider min (x1 — 1) 4+ 3 + x3 subjectto0 <x L x3 >0

4 /T trust-region |

@ SLPEC pivots through (0,0) ... get onto xj-axis
@ SLPEC converges to B-stationary limit (1, 0)

@ ... cannot get stuck in spurious stationary points
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Accelerating Local Convergence
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Equality Constrained Quadratic Program (EQP)
Given active set estimate from LPEC step d:

(d)={i: ¥+ 20" g =0
A ( d':{l'Xll +d1,'—0}
d —{I le +d2,—0}
solve corresponding equality QP
minimize g(k)Ts + lsTH(k)s

k k :
EQP«(d) subject to ci ;4— a( s = 0, Vie A(d)
M ps=0,  Vied(d)
) p s =0, Vie Ay(d)

for 2nd order step s.
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A Filter Method for MPECs

MPEC have three competing aims
@ Minimize f(x, y)

@ Minimize h(x,y) :=|lc(x,y)]l ... more important
© Minimize h¢(x,y) := || min(x1, x2)|| ... most important
... for plots, let h(x) := h(x,y) + h°(x,y)
fix)

Borrow concept of domination from
multi-objective optimization

(hk, hg, f) dominates (hy, hf, f)
iff by < by & hE < hE & fi < f

(., f; ) ie.  (x() y(K)) at least as good as
W) = o] D)
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.
Global Convergence to B-Stationarity

Assumptions:
e MPEC-MFCQ (i.e. every piece satisfies MFCQ) weak
o x(K) remain in compact set strong

e f, ¢ twice continuously differentiable

Theorem

Outcome of SLPEC is one of:
@ restoration phase fails to find feasible point, or
@ d =0 solves LPEC = B-stationary, or
@ limit is B-stationary.

Proof: exploit fact that LPEC = disjunctive LPs
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Conclusions

Considered convergence of four classes of methods for MPECs

Q@ SLPEC-EQP Method

e Method of choice, but LPEC hard to solve

e Developing active-set type solver for LPECs

= base on standard LP solvers ...

@ Sequential Quadratic Programming Methods

o Often works very well ... my preferred method

e Fails to converge or converges slowly for degenerate MPECs
© Interior-Point Methods

o Works mostly well ... not as robust as SQP

e Fails to converge or converges slowly for degenerate MPECs
@ Sequential penalization or regularization methods

o Not as effective as SQP or IPM above
. solve sequence of NLPs versus a single one!
o Fails to converge or converges slowly for degenerate MPECs
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