Tutorial: Linear Optimization
 GIAN Short Course on Optimization:

Applications, Algorithms, and Computation

Devanand, Meenarli, Prashant, and Sven
IIT Bombai \& Argonne National Laboratory

September 12-24, 2016

The Busy College Student Problem

Formulate the student problem in AMPL (see Lecture 10)

- $\mathrm{h}(\mathrm{t}) \geq 0$ as hours spent on task $t \in \mathcal{T}$
- maximize value $\underset{h}{\text { maximize }} \sum_{t \in \mathcal{T}} \operatorname{Value}(t) \cdot h(t)$
- College Rule 1: h (study) +h (tutorial) $\leq \mathrm{h}$ (lecture)
- College Rule 2: $h($ study $)+h($ tutorial $)+h($ lecture $) \geq 8$
- College Rule 3: $h($ study $)+\frac{3}{2} h($ tutorial $)+2 h($ lecture $) \geq 10$
- Parents Rule 1: h (eat) +h (sleep) ≥ 10
- Parents Rule 2: h(sleep) $\geq 8 \mathrm{~h}$ (eat)
- Only 24 hours: $\sum_{t \in \mathcal{T}} h(t) \leq 24$
... you can add your own preferences!

Tutorial : A transshipment model

- A plant PITT makes 450 packs of a product. Cities NE and SE are northeast and southeast distribution centers (DC).
- The DCs receive packs from PITT and ship them to warehouses at cities BOS, EWR, BWI, ATL and MCO.
- For each intercity 'link' there is shipping cost per pack and an upper limit on the packs that can be shipped (shown in figure).
- Find the lowest-cost shipping plan of packs over available links, respecting the specified capacities and meeting the demands at warehouses. Use network.dat for input data.

Tutorial: The network

Tutorial : Mathematical model

Notation

- Set of all cities: \mathcal{C}
- Set of all links between cities: \mathcal{L}
- Supply from city k : s_{k}
- Demand at city $k: d_{k}$
- Cost of transshipment from city i to $j: c_{i j}$
- Capacity of link $(i, j): U_{i j}$
- Amount of packs to be transfered from city i to $j: x_{i j}$

$$
\begin{array}{lll}
\underset{x}{\operatorname{minimize}} & \sum_{i, j \in \mathcal{C}:(i, j) \in \mathcal{L}} c_{i j} x_{i j} & \text { (objective) } \\
\text {.subject to: } & s_{k}+\sum_{(i, k) \in \mathcal{L}} x_{i k} \geq d_{k}+\sum_{(k, j) \in \mathcal{L}} x_{k j}, \forall k \in \mathcal{C} \quad \text { (balance cons.) } \\
& 0 \leq x_{i j} \leq U_{i j}, \quad \forall i, j \in \mathcal{C}:(i, j) \in \mathcal{L} \quad \text { (bound cons.) }
\end{array}
$$

Exercise: QP in Portfolio Selection

Problem Data

- $n=4$ number of available assets
- $r=1000$ desired minimum growth of portfolio
- $\beta=10000$ available capital for investment
- m_{i} expected rate of return of asset i

$$
m_{1}=0.5, m_{2}=-0.2, m_{3}=0.15, m_{4}=0.30
$$

- Covariance matrix of asset returns $C=$

$$
\left[\begin{array}{cccc}
0.08 & -0.05 & -0.05 & -0.05 \\
-0.05 & 0.16 & -0.02 & -0.02 \\
-0.05 & -0.02 & 0.35 & 0.06 \\
-0.05 & -0.02 & 0.06 & 0.35
\end{array}\right]
$$

Problem Variables

- $x_{i} \geq 0$ amount of investment in asset i
- Assume $x_{i} \geq 0$ and $x_{i} \in \mathbb{R}$ real

Exercise: QP in Portfolio Selection

Problem Objective

- Minimize risk of investment

$$
\underset{x}{\operatorname{minimize}} x^{\top} C x
$$

Problem Constraints

- Minimum rate of return on investment

$$
\sum_{i=1}^{n} m_{i} x_{i} \geq r
$$

- Upper bound on total investment

$$
\sum_{i=1}^{n} x_{i} \leq \beta
$$

