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EEEEEE———
Challenges at DOE Lightsources
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Advanced Photon Source (APS) Beamline

@ 10x increase in data rates and size = HPC & CS
@ Heterogeneous experiments & requirements = hotchpotch of math/CS solution
@ Multi-modal data analysis, movies, ... =- more complex reconstruction
@ New experimental design = less regular data
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Example: Learning Cell Identification from Spectral Data

Identify cell-type from concentration maps of P, Mn, Fe, Zn ...
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EEEEEE———
Learning Cell Identification via Nonnegative Matrix Factorization

minimize A — WH||%2  subject to W >0, H>0

where “data” Ais 1,000 x 1,000 image x2,000 channels
o W are weight ~ additive elemental spectra

@ H are images ~ additive elemental maps

L H ]
_>A =lw

Solve using (cheap) gradient steps ... need good initialization of W!

Insight from Data

Repeat analysis hundreds of times to, e.g., classify/identify cancerous cells etc.
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Result: Learning Cell Identification from Spectral Data
2 ° @

Raw data ... . classify cells

Traditional Cell Identification at APS
Ask student/postdoc to “mark” potential cell locations by hand & test

Opportunities for Applied Math & CS Light Sources

ML plus physical/statistical models, large-scale streaming data, ...
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ST ) e Worse: Until this fall, | had no clue about this!!!
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D ———————————————
The Four Lands of Learning [Moritz Hardt, UC Berkeley]

Non-Convex Non-Optimization (2018 INFORMS Optimization Conference)

10/37


https://mrtz.org/gradientina.html#/
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The Four Lands of Learning [Moritz Hardt, UC Berkeley]
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The Four Lands of Learning [Moritz Hardt, uC Berkeley]
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The Four Lands of Learning [Moritz Hardt, UC Berkeley]

Non-Convex Non-Optimization (2018 INFORMS Optimization Conference)
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The Four Lands of Learning [Moritz Hardt, uC Berkeley]
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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize f(x)

subject to c(x) <0
xekX
xi € Zforalliel

infeasible

integer  dominated
feasible by UBD
uBD

.. see survey, [Belotti et al., 2013]

v

e X bounded polyhedral set, e.g. X = {x : | < ATx < u}

e f:R" — R and c: R" — R™ twice continuously differentiable (maybe convex)
e 7 C{1,...,n} subset of integer variables

@ MINLPs are NP-hard, see [Kannan and Monma, 1978]

e Worse: MINLP are undecidable, see [Jeroslow, 1973]
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Optimal Symbolic Regression

Goal in Optimal Symbolic Regression

Find symbolic mathematical expression that explains dependent variable in terms of
independent variables without assuming functional form!

[Austel et al., 2017] propose MINLP model

@ Find simplest symbolic mathematical expression ... objective
@ Constrain the “grammar” of expressions ... constraints
e Match data (observations) to expression ... continuous variables
@ Select "best” possible expression ... binary variables

. model mathematical expressions as a directed acyclic graph (DAG)
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Factorable Functions and Expression Trees

Definition (Factorable Function)

f(x) is factorable iff expressed as sum of products of unary functions of a finite set

Ounary = {sin, cos, exp, log, | - |} whose arguments are variables, constants, or other
functions, which are factorable.

o ) Expression Tree
@ Combination of functions from set of operators Q

O = {+, x, /,"sin, cos, exp, log, | - |}
o Excludes integrals fg:XO h(§)d¢ and black-box functions e

o Can be represented as expression trees a @ @

@ Forms basis for automatic differentiation
& global optimization of nonconvex functions
. see, e.g. [Gebremedhin et al., 2005]
f(Xl, X2) = X1 |Og(X2) +X§
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Optimal Symbolic Regression [Austel et al., 2017]
Build and solve optimal symbolic regression as MINLP
@ Form “supertree” of all possible expression trees
@ Use binary variables to switch parts of tree on/off
@ Compute data mismatch by propagating data values through tree
@ Minimize complexity (size) of expression tree with bound on data mismatch
= large nonconvex MINLP model ... solved using Baron, SCIP, Couenne

Example: Kepler's Law on planetary motion from NASA data with depth 3

Data | 2% Noise 10% Noise 30% Noise
Exl | VM V72(M4¢) Ver?

Ex2 | Ver2M  V/72c VT

Ex3 | Ver2M Y TM+ 1 Ver +c

Correct answer: d = ¢/c7?(M + m) major semi-axis of m orbiting M at period 7
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Deep Neural Nets (DNNs) as MIPs [Fischetti and Jo, 2018]

Model DNN as MIP

@ Model ReLU activation function with binary variables

@ Model output of DNN as function of inputs (variable!)

@ Solvable for DNNs of moderate size with MIP solvers

Image from Arden Dertad
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Deep Neural Nets (DNNs) as MIPs [Fischetti and Jo, 2018]

Model DNN as MIP

@ Model ReLU activation function with binary variables

@ Model output of DNN as function of inputs (variable!)

@ Solvable for DNNs of moderate size with MIP solvers
Image from Arden Dertad

WARNING: Do not use for training of DNN!

MIP-model is totally unsuitable for training ... cumbersome & expensive to evaluate!

Where can we use MIP models?
Use MIP for building adversarial examples that fool the DNN ... flexible!
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S
Deep Neural Nets (DNNs) as MIPs [Fischetti and Jo, 2018]

o DNN with K + 1 layers: input=0,..., K =output
@ ny nodes/units per layer UNIT(j,k) with output xj" < UNIT(j,k)

@ UNIT(j,k), e.g. RelLU: xk = max (0, Whk=1xk=1 4 bk_l),
where Wk, b DNN known parameters (from training)

Key Insight (not new): Use Implication Constraints!

Model x = max(0, w Ty + b) using implications, or binary variables:

.
B - w y+b=x—-—5s, x>0,s>0
o= mesi(l oy B {26{0,1}, withz=1=x<0andz=0=s5<0

.. alternative 0 <s | x > 0 complementarity constraint

Also model MaxPool: x = max(y1,...,yt) using t binary vars & SOS-1 constraint
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S
Deep Neural Nets (DNNs) as MIPs [Fischetti and Jo, 2018]

Gives MIP model with flexible objective (DNN outputs x¥, binary vars x)

minimize ¢'x+d’z
X,S,Z

T
subject to (wf 1) XK1 b = xk — sk, xk sk >0
k . k k k k
26 € {0,1}, WIchj —1:>Xj §Oandzj —O:>sj <0
P <x0<ud

... for given input = x°, just compute output = x¥ expensive!

Modeling Implication Constraints

ze€{0,1}, withz=1=x<0andz=0=s<0
< ze€{0,1}, withx < M, (1—2z)ands < M,z

v

Use MIP for Building Adversarial Example

e Fix weights W, b from training data

o Find smallest perturbation to inputs x° that results in mis-classification
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Deep Neural Nets (DNNs) as MIPs [Fischetti and Jo, 2018]

Example: DNN for digit classification as MIP
o Misclassify all digits: d= (d +5)mod 10,ie. 0 —>5,1—6, ..

@ Require activation of “wrong” digit in final layer is 20% above others

@ Need tight bnds M,, M in implications: propagate bnds forward through DNN

Results with CPLEX Solver and Tight Bounds (300s max CPU)

# Hidden # Nodes | % Solved +# Nodes CPU
3 8 100 552 0.6
4 20/8 100 20,309 121
5  20/10 76,714 171.1

EEHEH
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Sparse Support-Vector Machines

Standard SVM Training

e Data S = {x;,y;}",: features x; € R" labels
yi € {-1,1}
@ & > 0 slacks, b bias, ¢ > 0 penalty parameter
iz slwli3 +cliélly = 3lIwllz +c17¢

9%k

subject to Y (Xw — b1) + £ > 1
£=0,

where Y = diag(y) and X = [x1,...,xm]"
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Sparse Support-Vector Machines

Standard SVM Training

e Data S = {x;,y;}",: features x; € R" labels
yi € {-1,1}
@ & > 0 slacks, b bias, ¢ > 0 penalty parameter

minimize sIwll3 + cllglls = 3lIwll3 + c17¢

subject to Y (Xw — b1) + £ > 1
£=0,

where Y = diag(y) and X = [x1,...,Xxm]"

Find MINLP Model for Feature Selection in SVMs

Given labeled training data find maximum margin classifier that minimizes hinge-loss
and cardinality of weight-vector, ||w||o
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. _________________________________________
Sparse Support-Vector Machines
[Guan et al., 2009] consider {p-norm penalty on w as MINLP

minilr)nize w3 + aljwljo +c17¢

subject to Y (Xw — b1)+£>1, £ >0,

Model ¢y with Perspective & Binary z; Counter

X2
mu’ivgflr)rjgi’zze 1Tu+al"z+c17¢
subject to Y (Xw —b1)+£> 1, £>0
Wj2 < zjuj, u>0, z; € {0,1}
.. conic-MIP, see, e.g. [Giinlik and Linderoth, 2008] ) L

. WJ-2 < zju; violates CQs => weaker big-M formulation ... >
1
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Sparse Support-Vector Machines
[Goldberg et al., 2013] rewrite WJ-2 < zjuj as

12w, b = 2) |2 < uj + 2

. second-order cone constraint ... and relax integrality ... add >z <r

Ace
o
@

***¥***

LaR8 40 2%

phpmig
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... good classification accuracy & small ||w||o!
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Sparse Support-Vector Machines [Maldonado et al., 2014]

Mixed-Integer Linear SVM

[Maldonado et al., 2014] formulate MILP: min ||£]|1 subj. to ||w|o < B

minimize 17¢ classification error
W7b?£’z

subject to Y (Xw — b1) + & > 1 classifier ¢/s

Lz; < w; < Uz on/off w;

Z cz; < B budget constraint

J
£€>0, z<{0,1}

for bounds L < U and budget B > 0
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Outline

@ Robust Optimization
@ Robust Optimization for SVMs
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Nonlinear Robust Optimization

Nonlinear Robust Optimization Small Example

minimize f(x) mini>n(1)ize (x1 — 4)2 + (x2 — 1)2
X x>
subject to c(x;u) >0, VuelU subject to x11/u — xou < 2,
xeX ..Vue [},2]

Assumptions (e.g. [Leyffer et al., 2018]) ... wlog assume f(x) is deterministic
@ u € U uncertain parameters closed convex set, independent of x
@ c¢(x;u) >0V u € U robust constraints ... semi-infinite optimization problem

e X C R” standard (certain) constraints; f(x) and c(x; u) smooth functions
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S
Linear Robust Optimization [Ben-Tal and Nemirovski, 1999]

Robust linear constraints are easy! E.g. a’x+b>0, Vacl:={BTa>c}

. rewrite semi-infinite constraint as a minimum
minimize a’x+ b
& a - >0
subjecttoB'a > ¢

.. apply duality: £(a,\):=a’x+b—-AT(BTa—c¢)

maximize L£(a,\) =b+ ATc
2N a,\ > 0
subject to 0 = V,L(a,\) =x— B\, A>0

.. only need feasible point > 0 ... becomes standard polyhedral set

b+Ac>0, x=BX\ A>0
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Duality Trick for Conic and Linear Robust Optimization

Duality trick generalizes to other conic uncertainty sets

(P) minimize f(x) subjecttoc(x;u)>0,Vueld, xeX

.. creates classes of tractable extended formulations

Robust Constraints

Uncertainty Set

Extended Formulation

c(x;u)>0 Uu

Linear Polyhedral Linear Program
Linear Ellipsoidal Conic QP
Conic Conic SDP
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Robust Optimization for Support Vector Machines (SVMs)

Standard SVM Training

o Data S = {x;,y;}": features x; € R" labels y; € {—1,1}

@ & > 0 slacks, b bias, ¢ > 0 penalty parameter
minilr)nize w3 +c17¢

subject to Y (Xw — b1) + & > 1, £>0,

where Y = diag(y) and X = [x1, ..., xm] "

SVMs with Additive Location Errors

@ See survey article [Caramanis et al., 2012] & use duality trick!
o Location errors xf® = x; + u; & ellipsoid uncertainty ¢/ = {u; | u/ u; < 1}:
Yi (WT(X; + u,-) = b) +&>1, Yu; : UI-TZU,' <1
&y (wixi—b) +&—[|Z”w|>>1  SOC constraint
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N
Robust Optimization for Support Vector Machines (SVMs)

General Case of Location Errors: “Worst-Case SVM”

w,b

o N ;
minimize maximize §”W||2 + CZ max {1 — Y (W (xj + uj) — b) ,0}
j

for uncertainty set U = {(ul, coum) | 35 gl < d} equivalent to

A T .
syl §|]W]|2—i—dHWHD—i-chax{l—yj(W ()(j+Uj)—b>,0}
J

where || - || p is dual norm of || -

,e.g. by lpor by <> 01, ... follows from duality

[Caramanis et al., 2012] argue that derivation shows that:
@ Regularized classifiers are more robust: satisfy worst-case principle

@ Provide probabilistic interpretation if viewed as chance constraints
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lllustration of Robust Machine-Learning

Standard ML Uses Subset of Data
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lllustration of Robust Machine-Learning

Standard ML Uses Subset of Data

Robust ML Uses Region of Data
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Global vs. Robust Minimizers

Global Minimizer not Robust wrt
Perturbations

A
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N
Global vs. Robust Minimizers

Global Minimizer not Robust wrt Robust Minimizer is Robust wrt
Perturbations Perturbations
A A

E E
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Stochastic Gradient Descend et al. [Bottou et al, SIREV 60(2), 2018]

A Must-Read Paper!

SiAM Review ® 2018 Socityfo Incustrs and Appled Mthematis
Vol 60, N 2,pp. 723311

Optimization Methods for
Large-Scale Machine Learning*

Great intro to Optimization for ML p Lon B
© Analysis of Stochastic Gradient

Jorge Nocedalt

Abstract. This paper provides a review and commentazy on the past, present, aud future of numeri

. . cal optimization algorithms in the context of machine learning applications. Through case

e N oise Red u Ct ion studies on text classification and the trainiug of deep neural uetworks, we discuss how op-
timization problems arisc in machine learning and what makes them challenging. A major

theme of our study is that large-scale machine learning reprosonts a distinetive sotbing in

which the stochastic gradient (SG) method has traditionally played a central role while

nd O d Method 1 noninear Lechuiaques typically falter. Based on
@ Newton & 2 rder Methods comvationd ol b soulves optiition ecaies Lyiely e, Do o

algorithm, discuss its practical behavior, and highlight opportunities for designing algo-

rithins with improved performance. This leads 10 a discussion about the next generation
of aptimization methods for large-scale machine learning, including an investigation of two
‘main streams of research on techniques that diminish noise in the stochastic directions and
methods that make use of second-order derivative approximations.

Key words. numerical optimization, machine learning, stochastic gradient methods, algorithm com-
plexity analysis, noise reduction methods, second-order methods

AMS subject classifications. 65K05, 68Q23, 68T05, 90C06, 90C30, 90C90

DO 10.1137/16M1080173
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Stochastic Gradient Descend et al. [Bottou et‘al, SIREV 60(2), 2018]

Generic Training/Optimization Problem in ML

minimize F(w) = E¢ [f(w;€)] or == fi(w)

Stochastic Gradient Method (starting at w)

for k=1,2,... do
Generate a realization of random variable & (select ix)
Get stochastic gradient vector g(wk, k), e.8. VT (wk; &k)
Choose stepsize ay >0
New iterate wyyq < wk — agg(Wi, &k)

end
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Stochastic Gradient Descend et al. [Bottou et al, SIREV 60(2), 2018]

Sloppy Theorem: Convergence of Stochastic Gradient for Strictly Convex F(w)
Assume fixed stepsize 0 < & < {47 then forall k =1,2,...

alM

E[F(wk) = F(w")] = 2

expected optimality gap

where

o y satisfies VF(wi) "E [g(wi; £k)] > pl|VF(wi) |3

@ L Lipschitz constant: [|[VF(w) — VF(W)|2 < L|lw — w|2, forall w,w

@ M second-moment bound: E [||g(wk; &)[13] < M + M|V F(w)l|3

e c strong convexity const.: F(W) > F(w) + VF(w)T(w — W) + c||w — w3

.. convergence to neighborhood of solution, only!
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Conclusions and Extension: Optimization for Machine Learning

Conclusions

@ Mixed-Integer Optimization for Machine Learning

e Optimal symbolic regression, expression trees, nonconvex MIP
e MIPs of deep neural nets for building adversarial examples
o Support-vector machines & ¢y regularizers & constraints

@ Robust Optimization for Machine Learning
o Best "worst-case” SVM = equivalent tractable formulation

@ Stochastic Gradient Descend and Convergence in Expectation

Extensions and Challenges

o Extending use of integer variables into design of DNNs

@ Realistic stochastic interpretation of regularizers in SVM, DNN, ...
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