

Optimization for Machine Learning LANS Informal Seminar

Sven Leyffer

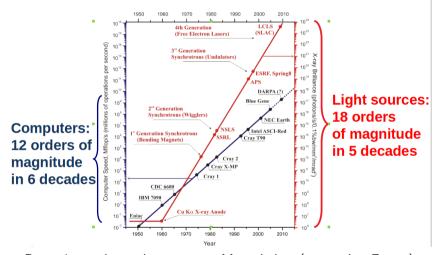
Argonne National Laboratory

November, 28 2018

Outline

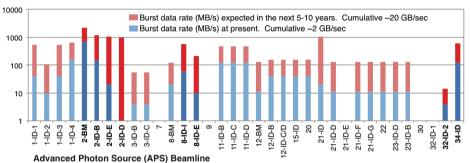
- Data Analysis at DOE Light Sources
- Optimization for Machine Learning
- Mixed-Integer Nonlinear Optimization
 - Optimal Symbolic Regression
 - Deep Neural Nets as MIPs
 - Sparse Support-Vector Machines
- Robust Optimization
 - Robust Optimization for SVMs
- Stochastic Gradient Descend
- 6 Conclusions and Extension

Motivation: Datanami from DOE Lightsource Upgrades



Data size and speed to outpace Moore's law (source Ian Foster)

Challenges at DOE Lightsources



Math, Stats, and CS Challenges from APS Upgrade

• 10x increase in data rates and size

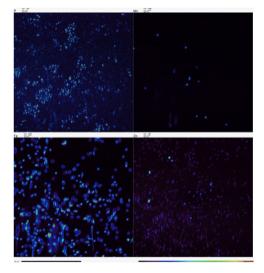
- \Rightarrow HPC & CS
- ullet Heterogeneous experiments & requirements \Rightarrow hotchpotch of math/CS solution
- Multi-modal data analysis, movies, ...

 \Rightarrow more complex reconstruction

New experimental design

 \Rightarrow less regular data

Example: Learning Cell Identification from Spectral Data



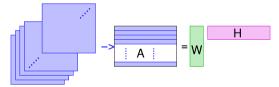
Identify cell-type from concentration maps of P, Mn, Fe, Zn ...

Learning Cell Identification via Nonnegative Matrix Factorization

minimize
$$||A - WH||_F^2$$
 subject to $W \ge 0$, $H \ge 0$

where "data" A is $1,000 \times 1,000$ image $\times 2,000$ channels

- ullet W are weight \simeq additive elemental spectra
- H are images \simeq additive elemental maps

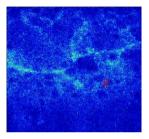


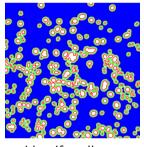
Solve using (cheap) gradient steps ... need good initialization of W!

Insight from Data

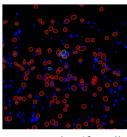
Repeat analysis hundreds of times to, e.g., classify/identify cancerous cells etc.

Result: Learning Cell Identification from Spectral Data





... identify cell ...



... classify cells

Traditional Cell Identification at APS

Ask student/postdoc to "mark" potential cell locations by hand & test

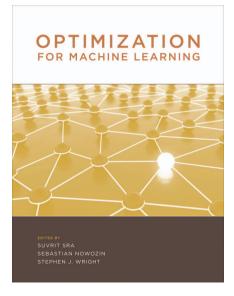
Opportunities for Applied Math & CS Light Sources

ML plus physical/statistical models, large-scale streaming data, ...

Outline

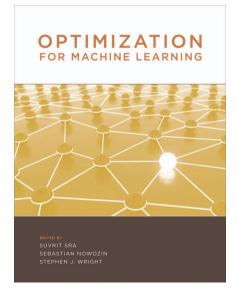
- Data Analysis at DOE Light Sources
- Optimization for Machine Learning
- Mixed-Integer Nonlinear Optimization
 - Optimal Symbolic Regression
 - Deep Neural Nets as MIPs
 - Sparse Support-Vector Machines
- Robust Optimization
 - Robust Optimization for SVMs
- Stochastic Gradient Descend
- Conclusions and Extension

Optimization for Machine Learning [Sra, Nowozin, & Wright (eds.)]



- Convexity & Sparsity-Inducing Norms
- Nonsmooth Optimization: Gradient, Subgradient & Proximal Methods
- Newton & Interior-Point Methods for ML
- Cutting-Pane Methods in ML
- Augmented Lagrangian Methods & ADMM
- Uncertainty & Robust optimization in ML
- (Inverse) Covariance Selection

Optimization for Machine Learning [Sra, Nowozin, & Wright (eds.)]

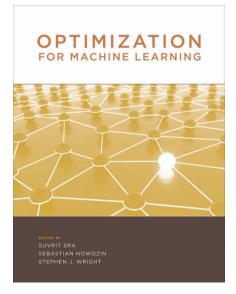


- Convexity & Sparsity-Inducing Norms
- Nonsmooth Optimization: Gradient, Subgradient & Proximal Methods
- Newton & Interior-Point Methods for ML
- Cutting-Pane Methods in ML
- Augmented Lagrangian Methods & ADMM
- Uncertainty & Robust optimization in ML
- (Inverse) Covariance Selection

Important Argonne Legalese Disclaimer

I made zero contributions to this fantastic book!

Optimization for Machine Learning [Sra, Nowozin, & Wright (eds.)]



- Convexity & Sparsity-Inducing Norms
- Nonsmooth Optimization: Gradient, Subgradient & Proximal Methods
- Newton & Interior-Point Methods for ML
- Cutting-Pane Methods in ML
- Augmented Lagrangian Methods & ADMM
- Uncertainty & Robust optimization in ML
- (Inverse) Covariance Selection

Important Argonne Legalese Disclaimer

I made zero contributions to this fantastic book! Worse: Until this fall, I had no clue about this!!!

Non-Convex Non-Optimization (2018 INFORMS Optimization Conference)

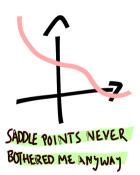
Non-Convex Non-Optimization (2018 INFORMS Optimization Conference)

Convexico

Non-Convex Non-Optimization (2018 INFORMS Optimization Conference)

Convexico WOW! LOOK AT THAT HESSIANI

Gradientina

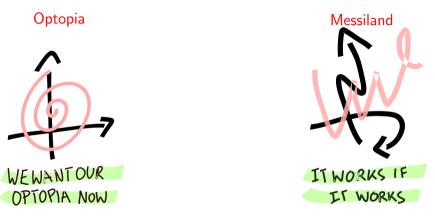


https://mrtz.org/gradientina.html#/

Non-Convex Non-Optimization (2018 INFORMS Optimization Conference)

Optopia

Non-Convex Non-Optimization (2018 INFORMS Optimization Conference)



https://mrtz.org/gradientina.html#/

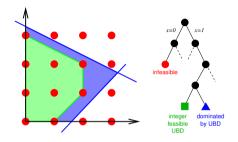
Outline

- Data Analysis at DOE Light Sources
- Optimization for Machine Learning
- Mixed-Integer Nonlinear Optimization
 - Optimal Symbolic Regression
 - Deep Neural Nets as MIPs
 - Sparse Support-Vector Machines
- Robust Optimization
 - Robust Optimization for SVMs
- Stochastic Gradient Descend
- **6** Conclusions and Extension

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

see survey, [Belotti et al., 2013]



- \mathcal{X} bounded polyhedral set, e.g. $\mathcal{X} = \{x : I \leq A^T x \leq u\}$
- $f: \mathbb{R}^n \to R$ and $c: \mathbb{R}^n \to \mathbb{R}^m$ twice continuously differentiable (maybe convex)
- $\mathcal{I} \subset \{1, \dots, n\}$ subset of integer variables
- MINLPs are NP-hard, see [Kannan and Monma, 1978]
- Worse: MINLP are undecidable, see [Jeroslow, 1973]

Optimal Symbolic Regression

Goal in Optimal Symbolic Regression

Find symbolic mathematical expression that explains dependent variable in terms of independent variables without assuming functional form!

[Austel et al., 2017] propose MINLP model

- Find simplest symbolic mathematical expression
- Constrain the "grammar" of expressions
- Match data (observations) to expression
- Select "best" possible expression

... objective

... constraints

... continuous variables

... binary variables

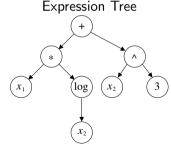
... model mathematical expressions as a directed acyclic graph (DAG)

Factorable Functions and Expression Trees

Definition (Factorable Function)

f(x) is factorable iff expressed as sum of products of unary functions of a finite set $\mathcal{O}_{\mathrm{unary}} = \{\sin, \cos, \exp, \log, |\cdot|\}$ whose arguments are variables, constants, or other functions, which are factorable.

- Combination of functions from set of operators $\mathcal{O} = \{+, \times, /, \hat{}, \sin, \cos, \exp, \log, |\cdot| \}.$
- Excludes integrals $\int_{\xi=x_0}^{x} h(\xi) d\xi$ and black-box functions
- Can be represented as expression trees
- Forms basis for automatic differentiation
 & global optimization of nonconvex functions
 ... see, e.g. [Gebremedhin et al., 2005]



$$f(x_1, x_2) = x_1 \log(x_2) + x_2^3$$

Optimal Symbolic Regression [Austel et al., 2017]

Build and solve optimal symbolic regression as MINLP

- Form "supertree" of all possible expression trees
- Use binary variables to switch parts of tree on/off
- Compute data mismatch by propagating data values through tree
- Minimize complexity (size) of expression tree with bound on data mismatch
- \Rightarrow large nonconvex MINLP model ... solved using Baron, SCIP, Couenne

Example: Kepler's Law on planetary motion from NASA data with depth 3

			30% Noise
Ex1	$\sqrt[3]{c\tau^2M}$	$\sqrt[3]{\tau^2}(M+c)$	$\sqrt{c\tau^2}$
Ex2	$\sqrt[3]{c\tau^2M}$	$\sqrt[3]{ au^2}c$	$\sqrt{ au}$
Ex3	$\sqrt[3]{c\tau^2M}$	$\sqrt[3]{\tau M} + \tau$	$\sqrt{c\tau} + c$

Correct answer: $d = \sqrt[3]{c\tau^2(M+m)}$ major semi-axis of m orbiting M at period τ

Model DNN as MIP

- Model ReLU activation function with binary variables
- Model output of DNN as function of inputs (variable!)
- Solvable for DNNs of moderate size with MIP solvers

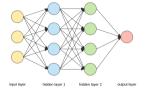


Image from Arden Dertad

Model DNN as MIP

- Model ReLU activation function with binary variables
- Model output of DNN as function of inputs (variable!)
- Solvable for DNNs of moderate size with MIP solvers

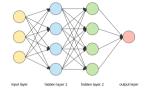


Image from Arden Dertad

WARNING: Do not use for training of DNN!

MIP-model is totally unsuitable for training ... cumbersome & expensive to evaluate!

Model DNN as MIP

- Model ReLU activation function with binary variables
- Model output of DNN as function of inputs (variable!)
- Solvable for DNNs of moderate size with MIP solvers

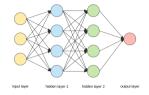


Image from Arden Dertad

WARNING: Do not use for training of DNN!

MIP-model is totally unsuitable for training ... cumbersome & expensive to evaluate!

Where can we use MIP models?

Use MIP for building adversarial examples that fool the DNN ... flexible!

- DNN with K + 1 layers: input= 0, ..., K =output
- n_k nodes/units per layer UNIT(j,k) with output $x_i^k \leftarrow \text{UNIT(j,k)}$
- UNIT(j,k), e.g. ReLU: $x^k = \max (0, W^{k-1}x^{k-1} + b^{k-1})$, where W^k, b^k DNN known parameters (from training)

Key Insight (not new): Use Implication Constraints!

Model $x = \max(0, w^T y + b)$ using implications, or binary variables:

$$x = \max(0, w^T y + b) \Leftrightarrow \begin{cases} w^T y + b = x - s, & x \ge 0, \ s \ge 0 \\ z \in \{0, 1\}, & \text{with } z = 1 \Rightarrow x \le 0 \text{ and } z = 0 \Rightarrow s \le 0 \end{cases}$$

... alternative $0 \le s \perp x \ge 0$ complementarity constraint

Also model MaxPool: $x = \max(y_1, \dots, y_t)$ using t binary vars & SOS-1 constraint

Gives MIP model with flexible objective (DNN outputs x^K , binary vars x)

... for given input = x^0 , just compute output = x^K expensive!

Modeling Implication Constraints

$$z \in \{0,1\}, \quad \text{with } z = 1 \Rightarrow x \leq 0 \text{ and } z = 0 \Rightarrow s \leq 0$$

 $\Leftrightarrow z \in \{0,1\}, \quad \text{with } x \leq M_x(1-z) \text{ and } s \leq M_s z$

Use MIP for Building Adversarial Example

- Fix weights W, b from training data
- Find smallest perturbation to inputs x^0 that results in mis-classification

Example: DNN for digit classification as MIP

- Misclassify all digits: $\hat{d} = (d+5) \mod 10$, i.e. $0 \to 5$, $1 \to 6$, ...
- Require activation of "wrong" digit in final layer is 20% above others
- ullet Need tight bnds M_x, M_s in implications: propagate bnds forward through DNN

Results with CPLEX Solver and Tight Bounds (300s max CPU)

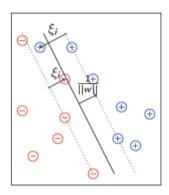
# Hidden	# Nodes	% Solved	# Nodes	CPU
3	8	100	552	0.6
4	20/8	100	20,309	12.1
5	20/10	67	76,714	171.1

Standard SVM Training

- Data $S = \{x_i, y_i\}_{i=1}^m$: features $x_i \in \mathbb{R}^n$ labels $y_i \in \{-1, 1\}$
- $\xi \ge 0$ slacks, b bias, c > 0 penalty parameter

$$\label{eq:linear_equation} \begin{split} & \underset{w,b,\xi}{\text{minimize}} & & \frac{1}{2}\|w\|_2^2 + c\|\xi\|_1 = \frac{1}{2}\|w\|_2^2 + c\mathbf{1}^T\xi \\ & \text{subject to } Y\left(Xw - b\mathbf{1}\right) + \xi \geq \mathbf{1} \\ & & \xi \geq 0, \end{split}$$

where
$$Y = \operatorname{diag}(y)$$
 and $X = [x_1, \dots, x_m]^T$

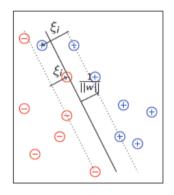


Standard SVM Training

- Data $S = \{x_i, y_i\}_{i=1}^m$: features $x_i \in \mathbb{R}^n$ labels $y_i \in \{-1, 1\}$
- $\xi \ge 0$ slacks, b bias, c > 0 penalty parameter

$$\label{eq:linear_equation} \begin{split} & \underset{w,b,\xi}{\text{minimize}} & & \frac{1}{2}\|w\|_2^2 + c\|\xi\|_1 = \frac{1}{2}\|w\|_2^2 + c\mathbf{1}^T\xi \\ & \text{subject to } Y\left(Xw - b\mathbf{1}\right) + \xi \geq \mathbf{1} \\ & & \xi \geq 0, \end{split}$$

where
$$Y = \operatorname{diag}(y)$$
 and $X = [x_1, \dots, x_m]^T$



Find MINLP Model for Feature Selection in SVMs

Given labeled training data find maximum margin classifier that minimizes hinge-loss and cardinality of weight-vector, $\|w\|_0$

[Guan et al., 2009] consider ℓ_0 -norm penalty on w as MINLP

Model ℓ_0 with Perspective & Binary z_j Counter

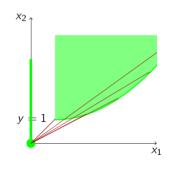
minimize
$$\mathbf{1}^T u + a \mathbf{1}^T z + c \mathbf{1}^T \xi$$

subject to $Y(Xw - b\mathbf{1}) + \xi \ge \mathbf{1}, \ \xi \ge 0$
 $w_j^2 \le z_j u_j, \ u \ge 0, \ z_j \in \{0, 1\}$

... conic-MIP, see, e.g. [Günlük and Linderoth, 2008]

... $w_i^2 \le z_j u_j$ violates CQs \Rightarrow weaker big-M formulation ...

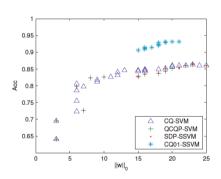
$$0 \le u_j \le M_u z_j, \quad w_i^2 \le u_j$$

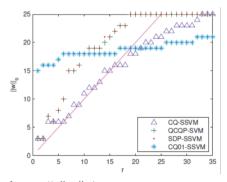


[Goldberg et al., 2013] rewrite $w_i^2 \le z_j u_j$ as

$$\|\left(2w_j,u_j-z_j\right)\|_2\leq u_j+z_j$$

... second-order cone constraint ... and relax integrality ... add $\sum z_j \leq r$





... good classification accuracy & small $||w||_0!$

Sparse Support-Vector Machines [Maldonado et al., 2014]

Mixed-Integer Linear SVM

[Maldonado et al., 2014] formulate MILP: min $\|\xi\|_1$ subj. to $\|w\|_0 \leq B$

$$\begin{array}{ll} \underset{w,b,\xi,z}{\text{minimize}} & \mathbf{1}^T \xi & \text{classification error} \\ \text{subject to } Y \left(Xw - b\mathbf{1} \right) + \xi \geq \mathbf{1} & \text{classifier c/s} \\ & Lz_j \leq w_j \leq Uz_j & \text{on/off } w_j \\ & \sum_j c_j z_j \leq B & \text{budget constraint} \\ & \xi \geq 0, \quad z_j \in \{0,1\} \end{array}$$

for bounds L < U and budget B > 0

Outline

- Data Analysis at DOE Light Sources
- Optimization for Machine Learning
- Mixed-Integer Nonlinear Optimization
 - Optimal Symbolic Regression
 - Deep Neural Nets as MIPs
 - Sparse Support-Vector Machines
- Robust Optimization
 - Robust Optimization for SVMs
- Stochastic Gradient Descend
- **6** Conclusions and Extension

Nonlinear Robust Optimization

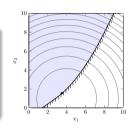
Nonlinear Robust Optimization

minimize
$$f(x)$$

subject to $c(x; \mathbf{u}) \ge 0, \ \forall \ \mathbf{u} \in \mathcal{U}$
 $x \in \mathcal{X}$

Small Example

$$\begin{array}{ll} \underset{x \geq 0}{\text{minimize}} & (x_1 - 4)^2 + (x_2 - 1)^2 \\ \text{subject to } x_1 \sqrt{u} - x_2 u \leq 2, \\ & \dots \forall u \in \left[\frac{1}{4}, 2\right] \end{array}$$



Assumptions (e.g. [Leyffer et al., 2018]) ... wlog assume f(x) is deterministic

- $u \in \mathcal{U}$ uncertain parameters closed convex set, independent of x
- $c(x; u) \ge 0 \ \forall \ u \in \mathcal{U}$ robust constraints ... semi-infinite optimization problem
- $\mathcal{X} \subset \mathbb{R}^n$ standard (certain) constraints; f(x) and c(x; u) smooth functions

Linear Robust Optimization [Ben-Tal and Nemirovski, 1999]

Robust linear constraints are easy! E.g. $\mathbf{a}^T x + b \ge 0$, $\forall \mathbf{a} \in \mathcal{U} := \{B^T \mathbf{a} \ge c\}$

... rewrite semi-infinite constraint as a minimum

$$\Leftrightarrow \left\{ \begin{array}{l} \text{minimize } \mathbf{a}^T x + b \\ \text{subject to } \mathbf{B}^T \mathbf{a} \ge c \end{array} \right\} \ge 0$$

... apply duality: $\mathcal{L}(\mathbf{a}, \lambda) := \mathbf{a}^T x + b - \lambda^T (B^T \mathbf{a} - c)$

$$\Leftrightarrow \left\{ \begin{array}{l} \text{maximize } \mathcal{L}(\mathbf{a},\lambda) = b + \lambda^T c \\ \mathbf{a},\lambda \\ \text{subject to } 0 = \nabla_{\mathbf{a}} \mathcal{L}(\mathbf{a},\lambda) = x - B\lambda, \quad \lambda \geq 0 \end{array} \right\} \geq 0$$

 \dots only need feasible point ≥ 0 \dots becomes standard polyhedral set

$$b + \lambda^T c \ge 0, \quad x = B\lambda, \quad \lambda \ge 0$$

Duality Trick for Conic and Linear Robust Optimization

Duality trick generalizes to other conic uncertainty sets

(P) minimize
$$f(x)$$
 subject to $c(x; \mathbf{u}) \ge 0, \forall \mathbf{u} \in \mathcal{U}, x \in \mathcal{X}$

... creates classes of tractable extended formulations

Robust Constraints	Uncertainty Set	Extended Formulation	
$c(x; \mathbf{u}) \geq 0$	\mathcal{U}		
Linear	Polyhedral	Linear Program	
Linear	Ellipsoidal	Conic QP	
Conic	Conic	SDP	

Robust Optimization for Support Vector Machines (SVMs)

Standard SVM Training

- Data $S = \{x_i, y_i\}_{i=1}^m$: features $x_i \in \mathbb{R}^n$ labels $y_i \in \{-1, 1\}$
- $\xi \ge 0$ slacks, b bias, c > 0 penalty parameter

$$\begin{array}{ll} \underset{w,b,\xi}{\text{minimize}} & \frac{1}{2}\|w\|_2^2 + c\mathbf{1}^T\xi\\ \text{subject to } Y\left(Xw-b\mathbf{1}\right) + \xi \geq \mathbf{1}, \qquad \xi \geq 0, \end{array}$$

where $Y = \operatorname{diag}(y)$ and $X = [x_1, \dots, x_m]^T$

SVMs with Additive Location Errors

- See survey article [Caramanis et al., 2012] & use duality trick!
- Location errors $x_i^{\text{true}} = x_i + u_i$ & ellipsoid uncertainty $\mathcal{U} = \{u_i \mid u_i^T \Sigma u_i \leq 1\}$:

$$\begin{aligned} y_i \left(w^T (x_i + u_i) - b \right) + \xi &\geq 1, & \forall u_i : u_i^T \Sigma u_i \leq 1 \\ \Leftrightarrow y_i \left(w^T x_i - b \right) + \xi - \| \Sigma^{1/2} w \|_2 &\geq 1 & \text{SOC constraint} \end{aligned}$$

Robust Optimization for Support Vector Machines (SVMs)

General Case of Location Errors: "Worst-Case SVM"

$$\underset{w,b}{\text{minimize }} \underset{u \in \mathcal{U}}{\text{maximize}} \left\{ \frac{1}{2} \|w\|_2^2 + c \sum_{j} \max \left\{ 1 - y_j \left(w^T (x_j + \mathbf{u}_j) - b \right), 0 \right\} \right\}$$

for uncertainty set $U = \left\{ (u_1, \dots, u_m) \mid \sum_j \|u_j\| \leq d \right\}$ equivalent to

minimize
$$\left\{ \frac{1}{2} \|w\|_2^2 + \frac{d}{\|w\|_D} + c \sum_j \max \left\{ 1 - y_j \left(w^T (x_j + u_j) - b \right), 0 \right\} \right\}$$

where $\|\cdot\|_D$ is dual norm of $\|\cdot\|$, e.g. $\ell_2\leftrightarrow\ell_2$ or $\ell_\infty\leftrightarrow\ell_1$, ... follows from duality

[Caramanis et al., 2012] argue that derivation shows that:

- Regularized classifiers are more robust: satisfy worst-case principle
- Provide probabilistic interpretation if viewed as chance constraints

Illustration of Robust Machine-Learning

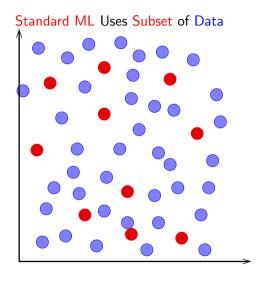
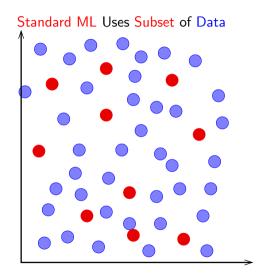
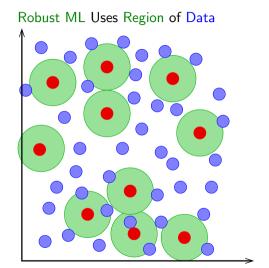
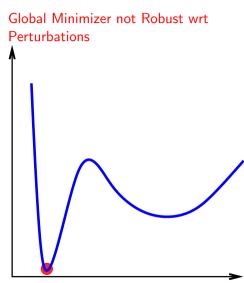


Illustration of Robust Machine-Learning

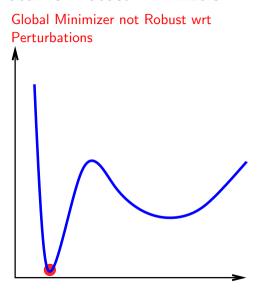


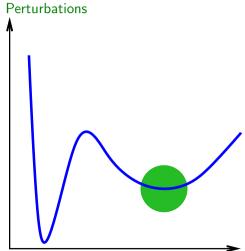


Global vs. Robust Minimizers



Global vs. Robust Minimizers





Outline

- Data Analysis at DOE Light Sources
- Optimization for Machine Learning
- Mixed-Integer Nonlinear Optimization
 - Optimal Symbolic Regression
 - Deep Neural Nets as MIPs
 - Sparse Support-Vector Machines
- Robust Optimization
 - Robust Optimization for SVMs
- 5 Stochastic Gradient Descend
- 6 Conclusions and Extension

Stochastic Gradient Descend et al. [Bottou et al, SIREV 60(2), 2018]

A Must-Read Paper!

SIAM REVIEW Vol. 60, No. 2, pp. 223-311 © 2018 Society for Industrial and Applied Mathematics

Optimization Methods for Large-Scale Machine Learning*

Léon Bottou[†] Frank E. Curtis[‡] Jorge Nocedal[§]

Abstract. This paper provides a review and commentary on the past, present, and future of numerical calptinization algorithms in the context of melabile learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of our study is that large-scale machine learning represents a distinctive setting in which the stochastic gradient (SG) method has traditionally played a central role while conventional gradient-based nonlinear optimization techniques typically falter. Based on this viewpoint, we present a comprehensive through of a straightforward, yet versatile SG algorithm, discuss its practical behavior, and highlight opportunities for designing algorithm, discuss its practical behavior, and highlight opportunities for designing of continuation methods for lawree-scale machine earning.

main streams of research on techniques that diminish noise in the stochastic directions and

methods that make use of second-order derivative approximations.

Key words. numerical optimization, machine learning, stochastic gradient methods, algorithm competity analysis, noise reduction methods, second-order methods

AMS subject classifications. 65K05, 68Q25, 68T05, 90C06, 90C30, 90C90

DOI, 10.1137/16M1080173

Great intro to Optimization for ML

- Analysis of Stochastic Gradient
- Noise Reduction
- Newton & 2nd Order Methods

Stochastic Gradient Descend et al. [Bottou et al, SIREV 60(2), 2018]

Generic Training/Optimization Problem in ML

minimize
$$F(w) = \mathbb{E}_{\xi} [f(w; \xi)]$$
 or $= \frac{1}{n} \sum_{i=1}^{n} f_i(w)$

Stochastic Gradient Method (starting at w_1)

for k=1,2,... do

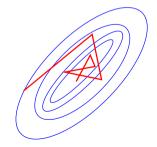
Generate a realization of random variable ξ_k (select i_k)

Get stochastic gradient vector $g(w_k, \xi_k)$, e.g. $\nabla_w f(w_k; \xi_k)$

Choose stepsize $\alpha_k > 0$

New iterate $w_{k+1} \leftarrow w_k - \alpha_g g(w_k, \xi_k)$

end



Stochastic Gradient Descend et al. [Bottou et al, SIREV 60(2), 2018]

Sloppy Theorem: Convergence of Stochastic Gradient for Strictly Convex F(w)

Assume fixed stepsize $0 < \hat{\alpha} \leq \frac{\mu}{LM}$ then for all $k = 1, 2, \dots$

$$\mathbb{E}\left[F(w_k) - F(w^*)\right] o rac{\hat{lpha}LM}{2c\mu}$$
 expected optimality gap

where

- μ satisfies $\nabla F(w_k)^T \mathbb{E}\left[g(w_k; \xi_k)\right] \ge \mu \|\nabla F(w_k)\|_2^2$
- L Lipschitz constant: $\|\nabla F(w) \nabla F(\hat{w})\|_2 \le L\|w \hat{w}\|_2$, for all w, \hat{w}
- M second-moment bound: $\mathbb{E}\left[\|g(w_k;\xi_k)\|_2^2\right] \leq M + M\|\nabla F(w_k)\|_2^2$
- c strong convexity const.: $F(\hat{w}) \geq F(w) + \nabla F(w)^T (w \hat{w}) + c \|\hat{w} w\|_2^2$

... convergence to neighborhood of solution, only!

Conclusions and Extension: Optimization for Machine Learning

Conclusions

- Mixed-Integer Optimization for Machine Learning
 - Optimal symbolic regression, expression trees, nonconvex MIP
 - MIPs of deep neural nets for building adversarial examples
 - Support-vector machines & ℓ_0 regularizers & constraints
- Robust Optimization for Machine Learning
 - ullet Best "worst-case" SVM \Rightarrow equivalent tractable formulation
- Stochastic Gradient Descend and Convergence in Expectation

Extensions and Challenges

- Extending use of integer variables into design of DNNs
- Realistic stochastic interpretation of regularizers in SVM, DNN, ...

Austel, V., Dash, S., Gunluk, O., Horesh, L., Liberti, L., Nannicini, G., and Schieber, B. (2017). Globally optimal symbolic regression. arXiv preprint arXiv:1710.10720.

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., and Mahajan, A. (2013). Mixed-integer nonlinear optimization. Acta Numerica, 22:1-131.

Ben-Tal, A. and Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1):1–13.

Caramanis, C., Mannor, S., and Xu, H. (2012). 14 robust optimization in machine learning. Optimization for machine learning, page 369.

Fischetti, M. and Jo, J. (2018). Deep neural networks and mixed integer linear optimization. Constraints, pages 1-14.

Gebremedhin, A. H., Manne, F., and Pothen, A. (2005). What color is your jacobian? graph coloring for computing derivatives. SIAM review. 47(4):629-705.

Goldberg, N., Leyffer, S., and Munson, T. (2013). A new perspective on convex relaxations of sparse sym.

In Proceedings of the 2013 SIAM International Conference on Data Mining, pages 450-457. SIAM.

Guan, W., Gray, A., and Leyffer, S. (2009).

Mixed-integer support vector machine.

In NIPS workshop on optimization for machine learning.

Günlük, O. and Linderoth, J. (2008).

Perspective relaxation of mixed integer nonlinear programs with indicator variables.

In Lodi, A., Panconesi, A., and Rinaldi, G., editors, *IPCO 2008: The Thirteenth Conference on Integer Programming and Combinatorial Optimization*, volume 5035, pages 1–16.

Jeroslow, R. G. (1973).

There cannot be any algorithm for integer programming with quadratic constraints. *Operations Research*, 21(1):221–224.

Kannan, R. and Monma, C. (1978).

On the computational complexity of integer programming problems.

In Henn, R., Korte, B., and Oettli, W., editors, *Optimization and Operations Research*,, volume 157 of *Lecture Notes in Economics and Mathematical Systems*, pages 161–172. Springer.

Leyffer, S., Menickelly, M., Munson, T., Vanaret, C., , and Wild, S. M. (2018).

Nonlinear robust optimization.

Technical report, Argonne National Laboratory, Mathematics and Computer Science Division.

Maldonado, S., Pérez, J., Weber, R., and Labbé, M. (2014).

Feature selection for support vector machines via mixed integer linear programming. *Information sciences*, 279:163–175.