
An Augmented Lagrangian Filter Method∗

Sven Leyffer† Charlie Vanaret‡

July 29, 2019

Abstract

Changes to previous version are marked in red.

We introduce a filter mechanism to enforce convergence for augmented Lagrangian meth-
ods for nonlinear programming. In contrast to traditional augmented Lagrangian methods, our
approach does not require the use of forcing sequences that drive the first-order error to zero.
Instead, we employ a filter to drive the optimality measures to zero. Our algorithm is flexible
in the sense that it allows for equality-constrained quadratic programming steps to accelerate
local convergence. We also include a feasibility restoration phase that allows fast detection of
infeasible problems. We provide a convergence proof that shows that our algorithm converges
to first-order stationary points. We provide preliminary numerical results that demonstrate the
effectiveness of our proposed method. R.Ed

Keywords: Augmented Lagrangian, filter methods, nonlinear optimization.

AMS-MSC2000: 90C30

1 Introduction

Nonlinearly constrained optimization is one of the most fundamental problems in scientific com-
puting with a broad range of engineering, scientific, and operational applications. Examples in-
clude nonlinear power flow [4, 31, 57, 61, 65], gas transmission networks [33, 56, 16], the coordina-
tion of hydroelectric energy [23, 18, 63], and finance [28], including portfolio allocation [51, 43, 72]
and volatility estimation [25, 2]. Chemical engineering has traditionally been at the forefront of
developing new applications and algorithms for nonlinear optimization; see the surveys [11, 12].
Applications in chemical engineering include process flowsheet design, mixing, blending, and
equilibrium models. Another area with a rich set of applications is optimal control [10]; opti-
mal control applications include the control of chemical reactions, the shuttle re-entry problem
[17, 10], and the control of multiple airplanes [3]. More importantly, nonlinear optimization is a
basic building block of more complex design and optimization paradigms, such as mixed-integer R.1
nonlinear optimization [1, 34, 48, 52, 14, 5] and optimization problems with complementarity con-
straints [53, 64, 54].
∗Preprint ANL/MCS-P6082-1116
†Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA, leyffer@

mcs.anl.gov.
‡Fraunhofer ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany, charlie.vanaret@itwm.

fraunhofer.de

1

leyffer@mcs.anl.gov
leyffer@mcs.anl.gov
charlie.vanaret@itwm.fraunhofer.de
charlie.vanaret@itwm.fraunhofer.de

An Augmented Lagrangian Filter Method 2

Nonlinearly constrained optimization has been studied intensely for more than 30 years, re-
sulting in a wide range of algorithms, theory, and implementations. Current methods fall into
two competing classes, both Newton-like schemes: active-set methods [44, 45, 35, 19, 24, 39] and
interior-point methods [40, 50, 70, 69, 8, 68, 20, 21]. While both have their relative merits, interior-
point methods have emerged as the computational leader for large-scale problems.

The Achilles’ heel of interior-point methods is the lack of efficient warm-start strategies. De-
spite significant recent advances [46, 6, 7], interior-point methods cannot compete with active-set
approaches when solving mixed-integer nonlinear programs [15]. This deficiency is at odds with
the rise of complex optimization paradigms, such as nonlinear integer optimization that require
the solution of thousands of closely related nonlinear problems and drive the demand for effi-
cient warm-start techniques. On the other hand, active-set methods exhibit an excellent warm-
starting potential. Unfortunately, current active-set methods rely on pivoting approaches and do
not readily scale to multicore architectures (though some successful parallel approaches to linear R.1
programming (LP) active-set solvers can be found in the series of papers [49, 67, 55]). To over-
come this challenge, we study augmented Lagrangian methods, which combine better parallel
scalability potential with good warm-starting capabilities.

We consider solving the following nonlinear program (NLP):

minimize
x

f(x)

subject to c(x) = 0
l ≤ x ≤ u

(NLP)

where x ∈ IRn, f : IRn → IR, c : IRn → IRm are twice continuously differentiable. We use su-
perscripts ·(k) to indicate iterates, such as x(k), and evaluation of nonlinear functions, such as
f (k) := f(x(k)) and ∇c(k) = ∇c(x(k)). The Lagrangian of (NLP) is defined as

L(x, y) = f(x)− yT c(x), (1.1)

where y ∈ IRm is a vector of Lagrange multipliers of c(x) = 0.
The first-order optimality conditions of (NLP) can be written as

min {x− l,max {x− u,∇xL(x, y)}} = 0 (1.2a)
c(x) = 0, (1.2b)

where the min and max are taken componentwise. It can be shown that (1.2a) is equivalent to the
standard Karush-Kuhn-Tucker (KKT) conditions for (NLP). Introducing Lagrange multipliers z
for the simple bounds, the KKT conditions are

∇L(x, y)− z = 0, c(x) = 0, l ≤ x ≤ u ⊥ z

where ⊥ represents complementarity, and means that zi = 0 if li < xi < ui, and that zi ≥ 0
and zi ≤ 0 if xi = li and xi = ui, respectively. This complementarity condition is equivalent to
min{x− l,max{x− u, z}} = 0, and hence the KKT conditions are equivalent to (1.2a).

1.1 Augmented Lagrangian Methods

The augmented Lagrangian is defined as

Lρ(x, y) = f(x)− yT c(x) +
1

2
ρ‖c(x)‖2

= L0(x, y) +
1

2
ρ‖c(x)‖2,

(1.3)

An Augmented Lagrangian Filter Method 3

for a given penalty parameter ρ. The Lagrangian (1.1) is therefore given by L0(x, y), that is (1.3)
with ρ = 0. Augmented Lagrangian methods have been studied by [9, 62, 60]. Recently, re- R.2.2
searchers have expressed renewed interest in augmented Lagrangian methods because of their
good scalability properties, which had already been observed in [26]. The key computational step
in bound-constrained augmented Lagrangian methods, such as LANCELOT, [26], is the mini- R.2.3

R.2.3mization of x 7→ Lρk(x, y(k)) for given ρk > 0 and y(k) ∈ IRm, giving rise to the bound-constrained
Lagrangian (BCL(y(k), ρk)) problem:

minimize
x

Lρk(x, y(k))

subject to l ≤ x ≤ u.
(BCL(y(k), ρk))

We denote the solution of (BCL(y(k), ρk)) by x(k+1). A basic augmented Lagrangian method solves
(BCL(y(k), ρk)) approximately and updates the multipliers using the so-called first-order multi-
plier update:

y(k+1) = y(k) − ρkc(x(k+1)). (1.4)

Traditionally, augmented Lagrangian methods have used two forcing sequences, ηk ↘ 0 and ωk ↘
0, to control the infeasibility and first-order error, and enforce global convergence. Sophisticated
update schemes for η, ω can be found in [27]. Motivated by the KKT conditions (1.2a), we define
the primal and dual infeasibility as

η(x) := ‖c(x)‖. (1.5a)
ωρ(x, y) := ‖min {x− l,max {x− u,∇xLρ(x, y)}} ‖ (1.5b)

and observe that ω0(x, y) is the dual feasibility error of (NLP). Moreover, the first-order multiplier
update implies that

∇xL0(x(k+1), y(k+1)) = ∇f(x(k+1))−∇c(x(k+1))T y(k)+ρk∇c(x(k+1))T c(x(k+1)) = ∇Lρk(x(k+1), y(k)).

Hence, it follows that
ω0(x(k+1), y(k+1)) = ωρk(x(k+1), y(k)),

which is the dual feasibility error of (BCL(y(k), ρk)). Hence, we can monitor the dual infeasibility
error of (NLP) whilst solving (BCL(y(k), ρk)).

A rough outline of an augmented Lagrangian method is given in Algorithm 1; we use a double-
loop representation to simplify the comparison to our proposed filter method.

Given sequences ηk ↘ 0 and ωk ↘ 0, an initial point (x(0), y(0)) and ρ0, set k ← 0

while (x(k), y(k)) not optimal do
Set j ← 0 and initialize x̂(j) ← x(k)

Set up the augmented Lagrangian subproblem (BCL(y(k), ρk))
while ωρk(x̂(j), y(k)) > ωk and η(x̂(j)) > ηk (not acceptable) do

x̂(j+1) ← approximate argmin
l≤x≤u

Lρk(x, y(k)) from initial point x̂(j)

if ωρk(x̂(j), y(k)) ≤ ωk but η(x̂(j)) > ηk then
Increase penalty parameter ρk ← 2ρk

else
Update multipliers: ŷ(j+1) ← y(k) − ρkc(x̂(j+1))

Set j ← j + 1

Set (x(k+1), y(k+1))← (x̂(j), ŷ(j)), update ρk+1 ← ρk, and increase k ← k + 1

Algorithm 1: Classical Bound-Constrained Augmented Lagrangian Method.

An Augmented Lagrangian Filter Method 4

Our goal is to improve traditional augmented Lagrangian methods in three ways, extending
the augmented Lagrangian filter methods developed in [42] for quadratic programs to general
NLPs:

1. Replace the forcing sequences (ηk, ωk) by a less restrictive algorithmic construct, namely a
filter (defined in Section 2);

2. Introduce a second-order step to promote fast local convergence, similar to recent sequential
linear quadratic programming (SLQP) methods [19, 24, 39];

3. Equip the augmented Lagrangian method with a fast and robust detection of infeasible sub-
problems [37].

In [13], the authors study a related approach in which the augmented Lagrangian algorithm
is used to find an approximate minimizer (e.g. to a tolerance of 10−4), and then a crossover is
performed to an interior-point method or a Newton method on the active constraints. In contrast,
we propose a method that more naturally integrates second-order steps within the augmented
Lagrangian framework.

This paper is organized as follows. The next section defines the filter for augmented La-
grangians, and outlines our method. Section 3 presents the detailed algorithm and its components,
and Section 4 presents the global convergence proof. In Section 5, we present some promising nu-
merical results. We close the paper with some conclusions and outlooks. R.Ed

2 An Augmented Lagrangian Filter

This section defines the basic concepts of our augmented Lagrangian filter algorithm. We start by
defining a suitable filter and related step acceptance conditions. We then provide an outline of the
algorithm that is described in more detail in the next section.

The new augmented Lagrangian filter is defined by using the residual of the first-order con-
ditions (1.2a), defined in (1.5). Augmented Lagrangian methods use forcing sequences (ωk, ηk)
to drive ω0(x, y) and η(x) to zero. Here, we instead use the filter mechanism [38, 36] to achieve R.1
convergence to first-order points. A filter is formally defined as follows.

Definition 2.1 (Augmented Lagrangian Filter and Acceptance). A filter F is a list of pairs (ηl, ωl) :=(
η(x(l)), ω0(x(l), y(l))

)
such that no pair dominates another pair, i.e. there exists no pairs (ηl, ωl), (ηk, ωk), l 6=

k such that ηl ≤ ηk and ωl ≤ ωk. A point (x(k), y(k)) is acceptable to the filter F if and only if

ηk := η(x(k)) ≤ βηl or ωk := ω0(x(k), y(k)) ≤ ωl − γη(x(k)), ∀(ηl, ωl) ∈ F . (2.6)

where 0 < γ, β < 1 are constants.

In our algorithm, we maintain a filter, Fk, at iteration k, with the property that ηl > 0 for all
l ∈ Fk The fact that (η(x), ω0(x, y)) ≥ 0 implies that we have an automatic upper bound on η(x) R.2.4
for all points that are acceptable:

η(x) ≤ U := max (ωmin/γ, βηmin) , (2.7)

where ωmin is the smallest first-order error of any filter entry, that is ωmin := min {ωl : (ηl, ωl) ∈ F},
and the smallest infeasibility is ηmin := min {ηl : (ηl, ωl) ∈ F and ηl > 0}, see Figure 1. The point
(ηmin, ωmin) is the ideal filter entry.

An Augmented Lagrangian Filter Method 5

η

ω0

βηmin

ωmin

U

Figure 1: Example of an augmented Lagrangian filter F with three entries. The filter is in blue,
the dashed green line shows the envelope in η, and the upper bound U (red line) is implied by
the sloping envelope condition (2.6) and ω0 ≥ 0. Values above and to the right of the filter are not
acceptable. The green area shows the set of filter entries that are guaranteed to be acceptable, and
the shaded purple area is the set of entries that trigger the switch to restoration.

We note that our filter is based on the Lagrangian and not on the augmented Lagrangian.
This choice is deliberate: one can show that the gradient of the Lagrangian after the first-order
multiplier update (1.4) equals the gradient of the augmented Lagrangian, namely:

∇xL0(x(k), y(k)) = ∇xLρk(x(k), y(k−1)). (2.8)

Thus, by using the Lagrangian, we ensure that filter-acceptable points remain acceptable after
the first-order multiplier update. Moreover, (2.8) shows that the filter acceptance can be readily
checked during the minimization of the augmented Lagrangian, in which the multiplier is fixed
and we iterate over x only.

The filter envelope defined by β and γ ensures that iterates cannot accumulate at points where
η > 0, and it promotes convergence (see Lemma 4.4). A benefit of the filter approach is that we do
not need to assume that the multipliers remain bounded or that the iterates remain in a compact
set, although we assume later that there exists no feasible points at infinity. We outline the main
algorithmic ideas in Algorithm 2; in the next section we provide a detailed description of the
algorithm and its main components.

Algorithm 2 has an inner iteration in which we minimize the augmented Lagrangian until a
filter-acceptable point is found. Inner iterates are distinguished by a “hat”, that is x̂(j). Outer iter-
ates are denoted by x(k). A restoration phase is invoked if the iterates fail to make progress toward R.1
feasibility. The outline of our algorithm is deliberately vague to convey the main ideas. Details of
the conditions of switching to restoration, termination of the inner iteration, and increase of the
penalty parameter are developed in the next section. The algorithm supports an optional penalty
increase condition, which triggers a heuristic to estimate the penalty parameter. In addition, our
algorithm implements an optional second-order step on the set of active constraints. Our analysis,
however, concentrates on the plain augmented Lagrangian approach.

We note, that most of the effort of Algorthm 2 is in the solution of the approximate minimiza-
tion of the augmented Lagrangian, for which efficient methods exist, such as bound-constrained

An Augmented Lagrangian Filter Method 6

Given (x(0), y(0)) and ρ0, set ω0 ← ω(x(0), y(0)), η0 ← η(x(0)), F0 ← {(η0, ω0)}, and k ← 0

while (x(k), y(k)) not optimal do
Set j ← 0, and initialize x̂(j) ← x(k)

while (η̂j , ω̂j) not acceptable to Fk do
x̂(j+1) ← approximate argmin

l≤x≤u
Lρk(x, y(k)) from initial point x̂(j)

if restoration switching condition holds then
Increase penalty: ρk+1 ← 2ρk
Switch to restoration to find acceptable (η̂j , ω̂j)

Update multipliers: ŷ(j+1) ← ŷ(j) − ρkc(x̂(j+1))
Set j ← j + 1

Set (x(k+1), y(k+1))← (x̂(j), ŷ(j))
if ηk+1 > 0 then

Add (ηk+1, ωk+1) to Fk (only points with ηk+1 > 0 are added)

Set k ← k + 1

Algorithm 2: Outline of Augmented Lagrangian Filter Method

projected-gradient conjugate-gradient methods, see, e.g. [58, 22] R.2.6

3 Detailed Algorithm Statement

We start by describing the four algorithmic components not presented in our outline: the penalty
update, the restoration switching condition, the termination condition for the inner iteration, and
the second-order step. We then discuss the complete algorithm.

3.1 Optional Penalty Update Heuristic

Augmented Lagrangian methods can be shown to converge provided that the penalty parameter
is sufficiently large and the multiplier estimate is sufficiently close to the optimal multiplier; see,
for example, [9]. Here, we extend the penalty estimate from [42] to nonlinear functions. We stress
that this step of the algorithm is not needed for global convergence, although it has been shown
that these steps improve the behavior of our method in the context of QPs [42]. We will show in
Section 4 that the penalty update is bounded, so that our heuristic does not harm the algorithm.

Consider the Hessian of the augmented Lagrangian, Lρ(x, y): R.1

∇2Lρ = ∇2L0 + ρ∇c∇cT + ρ

m∑
i=1

ci∇2ci, (3.9)

which includes the usual Lagrangian Hessian, ∇2L0(x, y), and the last two terms that represent
the Hessian of the penalty term, ρ

2‖c(x)‖22. Ideally, we would want to ensure ∇2Lρ � 0 at the R.2.7
solution. Instead, we drop the∇2ci terms and consider

∇2Lρ ≈ ∇2L0 + ρ∇c∇cT . (3.10)

Now, we use the same ideas as in [42] to develop a penalty estimate that ensures that the aug-
mented Lagrangian is positive definite on the null space of the active inequality constraints. We

An Augmented Lagrangian Filter Method 7

define the active set and the inactive set as

Ak := A(x(k)) :=
{
i : x

(k)
i = li or x(k)

i = ui

}
and Ik := {1, 2, . . . , n} − Ak, (3.11)

respectively.
Next, we define reduced Hessian and Jacobian matrices. For a set of row and column indices

R, C and a matrix M , we define the submatrix MR,C as the matrix with entries Mij for all (i, j) ∈
R × C (we also use the Matlab notation “:” to indicate that all entries on a dimension are taken).
In particular, for the Hessian∇2

xLρk(x(k), y(k)), and the Jacobian∇c(x(k))T , we define the reduced
Hessian and Jacobian as

Hk :=
[
∇2
xLρk(x(k), y(k))

]
Ik,Ik

and Ak :=
[
∇c(x(k))T

]
:,Ik

. (3.12)

We can show that a sufficient condition for∇2Lρ � 0 on the active set is

ρ ≥ ρmin(Ak) :=
max{0,−λmin(Hk)}

σmin(Ak)2
, (3.13)

where λmin(·) and σmin(·) denote the smallest eigenvalue and singular value, respectively. Com- R.2.15
puting (3.13) directly would be prohibitive for large-scale problems, and we use the following
estimate instead:

ρ̃min(Ak) := max

1,
‖Hk‖1

max
{

1√
|Ik|
‖Ak‖∞ , 1√

m
‖Ak‖1

}
 , (3.14)

where |Ik| is the number of free variables and m is the number of general equality constraints. If
ρk < ρ̃min(Ak), then we increase the penalty parameter to ρk+1 = 2ρ̃min(Ak). We could further im-
prove this estimate by taking the terms ρci∇2ci into account, which would change the numerator
in (3.14).

An alternative adaptive penalty update is proposed in [29]. The authors propose an adaptive
penalty parameter update to mitigate any initial poor choices of penalty parameter during early
iterations.

3.2 Switching to Restoration Phase

In practice, many NLPs are not feasible; this situation happens frequently in particular when solv-
ing MINLPs. In this case, it is important that the NLP solver quickly and reliably find a minimum
of the constraint violation η(x)2. To converge quickly to such a point, we have to either drive the R.1
penalty parameter to infinity or switch to the minimization of η(x). We prefer the latter approach
because it provides an easy escape if we determine that the NLP appears to be feasible after all.
We note, that unlike linear programming (LP), there does not exist a phase I/phase II approach for
NLPs, because even once we become feasible, subsequent steps cannot be guaranteed to maintain
feasibility for general NLP, unlike for LP, where we only need to establish feasibility once in phase
I. R.2.9

and R.1We define a set of implementable criteria that force the algorithm to switch to the minimization
of the constraint violation. Recall that the augmented Lagrangian filter implies the existence of an
upper bound U = max{ωmin/γ, βηmin} from (2.7). Thus any inner iteration that generates

η̂j+1 = η(x̂(j+1)) ≥ βU (3.15)

An Augmented Lagrangian Filter Method 8

triggers the restoration phase. The second test that triggers the restoration phase is related to the
minimum constraint violation ηmin of filter entries. In particular, if it appears that the augmented
Lagrangian is converging to a stationary point while the constraint violation is still large, then we
switch to the restoration phase, because we take this situation as an indication that the penalty
parameter is too small, illustrated by the purple area in Figure 1. This observation motivates the
following condition:

ωρk(x̂(j+1), y(k)) ≤ ε and η(x̂(j+1)) ≥ βηmin, (3.16)

where ε > 0 is a constant and ηmin is the smallest constraint violation of any filter entry, namely
ηmin := min{ηl : (ηl, ωl) ∈ F} > 0, which is positive because we only ever add entries with positive
constraint violation to the filter. In our algorithm, we switch to restoration if (3.15) or (3.16) holds. R.2.10

Each time we switch to restoration, we increase the penalty parameter and start a new major
iteration. The outcome of the restoration phase is either a (local) minimum of the infeasibility or a
new point that is filter-acceptable. The (approximate) first-order condition for a minimum of the
constraint violation η(x)2 at x̂(j) is:∥∥∥min

(
x̂(j) − l,max

(
x̂(j) − u, 2∇c(x̂(j))T c(x̂(j))

))∥∥∥ ≤ ε and η(x̂(j)) > ε, (3.17)

where ε > 0 is a constant that represents the optimality tolerance. The mechanism of the algorithm
ensures that we either terminate at a first-order point of the constraint violation, or find a point
that is acceptable to the filter, because ηmin > 0, which is formalized in the following lemma.

Lemma 3.1. Either the restoration phase converges to a minimum of the constraint violation, or it finds a
point x(k+1) that is acceptable to the filter in a finite number of steps.

Proof. The restoration phase minimizes η(x)2 and hence either converges to a local minimum
of the constraint violation or generates a sequence of iterates x(j) with η(x(j)) → 0. Because we
only add points with ηl > 0 to the filter, it follows that ηl > 0 for all (ηl, ωl) ∈ Fk (defined in R.2.11
Algorithm 2), and hence that we must find a filter-acceptable point in a finite number of iterations R.2.12
in the latter case. 2

3.3 Termination of Inner Minimization

The filter introduced in Section 2 ensures convergence only to feasible limit points; see Lemma 4.4.
Thus, we need an additional condition that ensures that the limit points are also first-order opti-
mal. We introduce a sufficient reduction condition that will ensure that the iterates are stationary.
A sufficient reduction condition is more natural (since it corresponds to a Cauchy-type condition,
which holds for all reasonable optimization routines) than is a condition that explicitly links the
progress in first-order optimality ωk to progress toward feasibility ηk.

In particular, we require that the following condition be satisfied at each inner iteration:

∆L(j)
ρk

:= Lρk(x̂(j), y(k))− Lρk(x̂(j+1), y(k)) ≥ σω̂j , (3.18)

where σ > 0 is a constant. This condition can be satisfied, for example, by requiring Cauchy
decrease on the augmented Lagrangian for fixed ρk and y(k). We note that the right-hand side of
(3.18) is the dual infeasibility error of the augmented Lagrangian at x̂(j), which corresponds to the
dual infeasibility error of (NLP) after the first-order multiplier update.

We will show that this sufficient reduction condition of the inner iterates in turn implies a
sufficient reduction condition of the outer iterates as we approach feasibility; see (4.21). This outer

An Augmented Lagrangian Filter Method 9

sufficient reduction leads to a global convergence result. To the best of our knowledge, this is the
first time that a more readily implementable sufficient reduction condition has been used in the
context of augmented Lagrangians.

3.4 Optional Second-Order (EQP) Step

Our algorithm allows for an additional second-order step. The idea is to use the approximate
minimizers x(k) of the augmented Lagrangian to identify the active inequality constraints x(k)

i = 0,
and then solve an equality-constrained QP (EQP) on those active constraints, similarly to popular
SLQP approaches. Given sets of active and inactive constraints (3.11), our goal is to solve an EQP
with x(k)

i = li, or x(k) = ui, ∀i ∈ Ak. Provided that the EQP is convex, its solution can be obtained R.2.14
by solving an augmented linear system.

Using the notation introduced in (3.11) and (3.12), the convex EQP is equivalent to the follow-
ing augmented system, [

Hk ATk
Ak

](
∆xI
∆y

)
=

(
−∇f (k+1)

I
−c(x(k+1))

)
, (3.19)

and ∆xA = 0. We note that, in general, we cannot expect that the solution x(k+1)+∆x is acceptable
to the filter (or may not be a descent direction for the augmented Lagrangian). Hence, we add R.2.16
a backtracking line search to our algorithm to find an acceptable point. We note that because
(x(k+1), y(k+1)) is known to be acceptable, we can terminate the line search if the step size is less
that some αmin > 0 and instead accept (x(k+1), y(k+1)).

3.5 Complete Algorithm

A complete description of the method is given in Algorithm 3. It has an inner loop that minimizes
the augmented Lagrangian for fixed penalty parameter, ρk, and multipliers, y(k) until a filter- R.1
acceptable point is found. Quantities associated with the inner loop are indexed by j and have
a “hat.” The outer loop corresponds to major iterates and may update the penalty parameter.
The inner iteration also terminates when we switch to the restoration phase. Any method for
minimizing η(x)2 (or any measure of constraint infeasibility) can be used in this phase. Note that
the penalty parameter is also increased every time we switch to the restoration phase, although
we could use a more sophisticated penalty update in that case, too.

We note that Algorithm 3 uses a flag, RestFlag, to indicate whether we entered the restoration
phase or not. If we enter the restoration phase, we increase the penalty parameter in the outer
loop iterates k. Two possible outcomes for the restoration phase exist: either we find a nonzero
(local) minimizer of the constraint violation indicating that problem (NLP) is infeasible, or we find
a filter-acceptable point and exit the inner iteration. In the latter case, RestFlag = true ensures that
we do not update the penalty parameter using (3.14), which does not make sense in this situation.

4 Convergence Proof

This section establishes a global convergence result for Algorithm 3, without the second-order
step for the sake of simplicity. We make the following assumptions throughout this section.

Assumption 4.1. Consider problem (NLP), and assume that the following hold:

An Augmented Lagrangian Filter Method 10

Given (x(0), y(0)) and ρ0, set ω0 ← ω(x(0), y(0)), η0 ← η(x(0)), F0 ← {(η0, ω0)}, and k ← 0

while (x(k), y(k)) not optimal do
Set j ← 0, RestFlag← false, and initialize x̂(0) ← x(k)

while (η̂j , ω̂j) not acceptable to Fk do
Approximately minimize the augmented Lagrangian for x̂(j+1) starting at x̂(j):

minimize
l≤x≤u

Lρk(x, y(k)) = f(x)− y(k)T c(x) + 1
2ρk‖c(x)‖2

such that the sufficient reduction condition (3.18) holds.
if restoration switching condition (3.15) or (3.16) holds then

Set RestFlag = true
Increase penalty parameter: ρk+1 ← 2ρk
Switch to restoration phase to find (x̂(j+1), ŷ(j+1)) acceptable to F or find an
infeasible point that minimizes ‖c(x)‖2 subject to l ≤ x ≤ u

else
Provisionally update multipliers: ŷ(j+1) ← y(k) − ρkc(x̂(j+1))

Compute ω̂j+1 ← ω0(x̂(j+1), ŷ(j+1)) and η̂j+1 ← η(x̂(j+1)).

Set j ← j + 1

Set (x̂(k+1), ŷ(k+1))← (x̂(j), ŷ(j))

Solve EQP (3.19) for (∆x(k+1),∆y(k+1))
Line-search: Find αk ∈ {0} ∪ [αmin, 1] such that

(x(k+1), y(k+1)) = (x̂(k+1), ŷ(k+1)) + αk(∆x
(k+1),∆y(k+1)) acceptable to Fk

Compute ωk+1 ← ω0(x(k+1), y(k+1)), ηk+1 ← η(x(k+1))
if ηk+1 > 0 then

Add (ηk+1, ωk+1) to filter: Fk+1 ← Fk ∪ {(ηk+1, ωk+1)} (ensuring ηl > 0 ∀l ∈ Fk+1)

if not RestFlag and ρk < ρ̃min(Ak) see (3.14) then
Increase penalty: ρk+1 ← 2ρ̃min(Ak)

else
Leave penalty parameter unchanged: ρk+1 ← ρk

Set k ← k + 1

Algorithm 3: Augmented Lagrangian Filter Method.

A1 The problem functions f, c are twice continuously differentiable.

A2 The constraint norm satisfies ‖c(x)‖ → ∞ as ‖x‖ → ∞.

Assumption A1 is standard. Assumption A2 implies that our iterates remain in a compact set
(see Lemma 4.1). This assumption could be replaced by an assumption that we optimize over
finite bounds l ≤ x ≤ u. Both assumptions together imply that f(x) and c(x) and their derivatives
are bounded for all iterates.

Algorithm 3 has three distinct outcomes.

1. There exists an infinite sequence of restoration phase iterates x(kl), indexed byR := {k1, k2, . . .},
whose limit point x∗ := limx(kl) minimizes the constraint violation, satisfying η(x∗) > 0;

An Augmented Lagrangian Filter Method 11

2. There exists an infinite sequence of successful major iterates x(kl), indexed by S := {k1, k2, . . .},
and the linear independence constraint qualification fails to hold at the limit x∗ := limx(kl),
which is a Fritz-John (FJ) point of (NLP);

3. There exists an infinite sequence of successful major iterates x(kl), indexed by S := {k1, k2, . . .},
and the linear independence constraint qualification holds at the limit x∗ := limx(kl), which
is a Karush-Kuhn-Tucker point of (NLP).

Outcomes 1 and 3 are normal outcomes of NLP solvers in the sense that we cannot exclude the
possibility that (NLP) is infeasible without making restrictive assumptions such as Slater’s con-
straint qualification. Outcome 2 corresponds to the situation where a constraint qualification fails
to hold at a limit point.

Outline of Convergence Proof. We start by showing that all iterates remain in a compact set.
Next, we show that the algorithm is well defined by proving that the inner iteration is finite,
which implies the existence of an infinite sequence of outer iterates x(k), unless the restoration
phase fails or the algorithm converges finitely. We then show that the limit points are feasible and
stationary. Finally, we show that the penalty estimate (3.14) is bounded.

We first show that all iterates remain in a compact set.

Lemma 4.1. All major and minor iterates, x(k) and x̂(j), remain in a compact set C.

Proof. The upper bound U on η(x) implies that ‖c(x(k))‖ ≤ U for all k. The switching condition
(3.15) implies that ‖c(x̂(j))‖ ≤ U for all j. The feasibility restoration minimizes η(x), implying that
all its iterates in turn satisfy ‖c(x(k))‖ ≤ U . Assumptions A1 and A2 now imply that the iterates
remain in a bounded set C. 2

The next lemma shows that the mechanism of the filter ensures that there exists a neighbor-
hood of the origin in the filter that does not contain any filter points, as illustrated in Figure 1
(right).

Lemma 4.2. There exists a neighborhood of (η, ω) = (0, 0) that does not contain any filter entries.

Proof. The mechanism of the algorithm ensures that ηl > 0, ∀(ηl, ωl) ∈ Fk. First, assume that
ωmin := min{ωl : (ηl, ωl) ∈ Fk} > 0. Then it follows that there exist no filter entries in the
quadrilateral bounded by (0, 0), (0, ωmin), (βηmin, ωmin−γβηmin), (βηmin, 0), illustrated by the green
area in Figure 1 (right). Next, if there exists a filter entry with ωl = 0, then define ωmin := min{ωl >
0 : (ηl, ωl) ∈ Fk} > 0, and observe that the quadrilateral (0, 0), (0, ωmin), (βηmin, ωmin), (βηmin, 0)
contains no filter entries. In both cases, the area is nonempty, thus proving that there exists a
neighborhood of (0, 0) with filter-acceptable points. 2

Next, we show that the inner iteration is finite and the algorithm is well defined.

Lemma 4.3. The inner iteration is finite.

Proof. If the inner iteration finitely terminates with a filter-acceptable point or switches to the
restoration phase, then there is nothing to prove. Otherwise, there exists an infinite sequence of in-
ner iterates x̂(j) with η̂j ≤ βU . Lemma 4.1 implies that this sequence has a limit point x∗ = lim x̂(j).
We note that the penalty parameter and the multipliers are fixed during the inner iteration, and we
consider the sequence Lρ(x̂(j), y) for fixed ρ = ρk and y = y(k). The sufficient reduction condition
(3.18) implies that

∆L(j)
ρ := Lρ(x̂(j), y)− Lρ(x̂(j+1), y) ≥ σω̂j .

An Augmented Lagrangian Filter Method 12

If the first-order error, ω̂j ≥ ω > 0 is bounded away from zero, then this condition implies that
Lρ(x, y(k)) is unbounded below, which contradicts the fact that f(x), ‖c(x)‖ are bounded by As-
sumption A1 and Lemma 4.1. Thus, it follows that ω̂j → 0. If in addition, η̂j → η̂ < βηmin, then
we must find a filter-acceptable point in the green region of Figure 1, and terminate finitely. Oth-
erwise, ω̂j → 0 and η̂j ≥ βηmin, which triggers the restoration phase after a finite number of steps.
In either case, we exit the inner iteration according to Lemma 4.2. 2

The next lemma shows that all limit points of the outer iteration are feasible.

Lemma 4.4. Assume that there exist an infinite number of outer iterations. It follows that η(x(k))→ 0. R.1

Proof. Every outer iteration for which ηk > 0 adds an entry to the filter. The proof follows directly
from [24, Lemma 1]. 2

The next two lemmas show that the first-order error ωk also converges to zero. We split the
argument into two parts depending on whether the penalty parameter remains bounded or not.

Lemma 4.5. Assume that the penalty parameter is bounded, ρk ≤ ρ̄ < ∞, and consider an infinite
sequence of outer iterations. Then it follows that ω(x(k))→ 0.

Proof. Because the penalty parameter is bounded, it is updated only finitely often. Hence, we
consider the tail of the sequence x(k) for which the penalty parameter has settled down, namely
ρk = ρ̄. We assume that ωk ≥ ω̄ > 0 and seek a contradiction. The sufficient reduction condition
of the inner iteration (3.18) implies that

∆Lin
ρ̄,k := Lρ̄(x(k), y(k))− Lρ̄(x(k+1), y(k)) ≥ σωk ≥ σω̄ > 0. (4.20)

We now show that this “inner” sufficient reduction (for fixed y(k)) implies an “outer” sufficient
reduction. We combine (4.20) with the first-order multiplier update (1.4) and obtain

∆Lout
ρ̄,k := Lρ̄(x(k), y(k))− Lρ̄(x(k+1), y(k+1)) = ∆Lin

ρ̄,k − ρ̄‖c(x(k+1))‖22 ≥ σω̄ − ρ̄η2
k+1. (4.21)

Lemma 4.4 implies that ηk → 0; hence, as soon as ηk+1 ≤ σ ω̄
2ρ̄ for all k sufficiently large, we obtain

the following sufficient reduction condition for the outer iteration:

∆Lout
ρ̄,k ≥ σ

ω̄

2
,

for all k sufficiently large. Thus, if ωk ≥ ω̄ > 0 is bounded away from zero, then it follows that
the augmented Lagrangian must be unbounded below. However, because all x(k) ∈ C remain in
a compact set, it follows from Assumption A1 that f(x) and ‖c(x)‖ are bounded below and hence
that Lρ̄(x, y) can be unbounded below only if −yT c(x) is unbounded below.

We now show by construction that there exists a constant M > 0 such that c(x(k))T y(k) ≤ M R.1 and
R.2.19for all major iterates. The first-order multiplier update implies that y(k) = y(0)− ρ̄

∑
c(l) and hence

that

c(x(k))T y(k) =

(
y(0) − ρ̄

k∑
l=1

c(l)

)T
c(k) ≤

(
‖y(0)‖+ ρ̄

k∑
l=1

‖c(l)‖

)
‖c(k)‖ =

(
y0 + ρ̄

k∑
l=1

ηl

)
ηk ,

(4.22)

An Augmented Lagrangian Filter Method 13

where y0 = ‖y(0)‖, and we have assumed without loss of generality that ρ̄ is fixed for the whole
sequence. Now define Ek := maxl≥k ηl and observe that Ek → 0 from Lemma 4.4. The definition
of the filter then implies that Ek+1 ≤ βEk, and we obtain from (4.22) that

c(x(k))T y(k) ≤

(
y0 + ρ̄

k∑
l=1

El

)
Ek =

(
y0 + ρ̄

k∑
l=1

βlE0

)
βkE0 =

(
y0 + ρ̄β

1− βk

1− β
E0

)
βkE0 < M.

Moreover, because E0 < ∞, ρ̄ < ∞ and 0 < β < 1, it follows that this expression is uniformly
bounded as k →∞. Hence c(x(k))T y(k) ≤M for all k, and Lρ̄(x, y) must be bounded below, which
contradicts the assumption that ωk ≥ ω̄ > 0 is bounded away from zero. It follows that ωk → 0. 2

We now consider the case where ρk → ∞. In this case, we must assume that the linear inde-
pendence constraint qualification (LICQ) holds at every limit point. If LICQ fails at a limit point,
then we cannot guarantee that the limit is a KKT point; it may be a Fritz-John point instead. The
following lemma formalizes this result.

Lemma 4.6. Consider the situation where ρk →∞. Then any limit point x(k) → x∗ is a Fritz-John point.
If in addition LICQ holds at x∗, then it is a KKT point, and ωk → 0.

Proof. Lemma 4.4 ensures that the limit point is feasible. Hence, it is trivially a Fritz-John point.
Now assume that LICQ holds at x∗. We use standard augmented Lagrangian theory to show that
this limit point also satisfies ω(x∗) = 0. Following Theorem 2.5 of [41], we need to show that for all
restoration iterations R := {k1, k2, k3, . . .} on which we increase the penalty parameter, it follows
that the quantity

∞∑
l=1

ηkν+l

remains bounded as ν → ∞. Similarly to the proof of Lemma 4.5, the filter acceptance ensures
that ηkν+l ≤ βlηkν , which gives the desired result. Thus, we can invoke Theorem 2.5 of [41], which
shows that the limit point is a KKT point. 2

The preceding lemmas are summarized in the following result.

Theorem 4.1. Assume that Assumptions A1 and A2 hold. Then either Algorithm 3 terminates after a
finite number of iterations at a KKT point, that is, for some finite k, x(k) is a first-order stationary point
with η(x(k)) = 0 and ω(x(k)) = 0, or there exists an infinite sequence of iterates x(k) and any limit point
x(k) → x∗ that satisfy one of the following:

1. The penalty parameter is updated finitely often, and x∗ is a KKT point;

2. There exists an infinite sequence of restoration steps at which the penalty parameter is updated. If x∗

satisfies LICQ, then it is a KKT point. Otherwise, it is an FJ point;

3. The restoration phase converges to a minimum of the constraint violation.

Remark 4.1. We seem to be able to show that the limit point is a KKT point without assuming a constraint
qualification, as long as the penalty parameter remains bounded. On the other hand, without a constraint
qualification, we would expect the penalty parameter to be unbounded. It would be interesting to test these
results in the context of mathematical programs with equilibrium constraints (MPECs). We suspect that
MPECs that satisfy a strong-stationarity condition would have a bounded penalty, but that those that do
not have strongly stationary points would require the penalty to be unbounded.

An Augmented Lagrangian Filter Method 14

Remark 4.2. The careful reader may wonder whether Algorithm 3 can cycle, because we do not add iterates
to the filter for which ηk = 0. We can show, however, that this situation cannot happen. If we have an
infinite sequence of iterates for which ηk = 0, then the sufficient reduction condition (3.18) implies that we
must converge to a stationary point, similarly to the arguments in Lemma 4.5. If we have a sequence that
alternates between iterates for which ηk = 0 and iterates for which ηk > 0, then we can never revisit any
iterates for which ηk > 0 because those iterates have been added to the filter. By Lemma 4.4, any limit point
is feasible. Thus, if LICQ holds, then the limit is a KKT point; otherwise, it may be an FJ point. We note
that these conclusions are consistent with Theorem 4.1.

5 Numerical Results

We have implemented a preliminary version of Algorithm 3 in C++, using L-BFGS-B 3.0, see [73],
to minimize the bound-constrained augmented Lagrangian and MA57, see [32], to solve the re-
duced KKT system. All experiments are run on a Lenovo Thinkpad X1 Carbon with an Intel Core
i7 processor running at 2.6GHz and 16Gb RAM under the Ubuntu 18.04.2 LTS operating system. R.Ed

101 102
100

101

102

n

m

Figure 2: Distribution of CUTEst test problems based on number of variables, n, and number of
constraints, m.

We have chosen 429 small test problems from the CUTEst test set [47] that have up to 100
variables and/or constraints. The distribution of the problem sizes is shown in Figure 2. We
compare the performance of our filter augmented Lagrangian method, referred to as filter-al, with
five other state-of-the-art NLP solvers:

• FilterSQP [36] is a filter SQP solver endowed with a trust-region mechanism to enforce con-
vergence;

• SNOPT [45] is an SQP method using limited-memory quasi-Newton approximations to the
Hessian of the Lagrangian with an augmented Lagrangian merit function;

• MINOS [59] implements a linearly-constrained augmented Lagrangian method with a line-
search mechanism;

• IPOPT [71] implements a filter interior-point method with a line-search mechanism; and,

An Augmented Lagrangian Filter Method 15

• LANCELOT [26] is a bound-constrained augmented Lagrangian method.

Because the test problems are small and our implementation is still preliminary, we only compare
the number of gradient evaluation to solve a problem. This statistic is a good surrogate for the
number of major iterations. Detailed results are shown in Table 1 in the appendix. We note, that
MINOS and SNOPT do not report gradient evaluations for some problems such as QPs, which
results in empty entries in the table. In these cases, we set the number of gradient evaluations to
“1”, which favors these solvers slightly, but does not change our overall conclusions.

0 2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

2x times fewer evaluations than best

fr
ac

ti
on

of
so

lv
ed

pr
ob

le
m

s

Filter Augmented Lagrangian
FilterSQP
SNOPT
IPOPT
MINOS

LANCELOT

Figure 3: Performance profile comparing number of gradient evaluations of different NLP solvers
for 429 small CUTEst problems.

We summarize our numerical results using a performance profile, [30], in Figure 3. We ob-
serve that filter-al is competitive with the two SQP solvers, FilterSQP and SNOPT, which typically
require the smallest number of iterations. This result is very encouraging, because whilst filter-al
can in principle be parallelized by using parallel subproblem solvers, parallelizing an SQP method
is significantly harder. Moreover, our new solver, filter-al, clearly outperforms the two augmented
Lagrangian methods, MINOS and LANCELOT, indicating that the use of a filter provides a faster
convergence mechanism, reducing the number of iterations.

6 Conclusions

We have introduced a new filter strategy for augmented Lagrangian methods that removes the
need for the traditional forcing sequences. We prove convergence of our method to first-order
stationary points of nonlinear programs under mild conditions, and we present a heuristic for
adjusting the penalty parameter based on matrix-norm estimates. We show that second-order
steps are readily integrated into our method to accelerate local convergence.

The proposed method is closely related to Newton’s method in the case of equality constraints
only. If no inequality constraints exist, that is if x is unrestricted in (NLP), then our algorithm

An Augmented Lagrangian Filter Method 16

reverts to standard Newton/SQP for equality constrained optimization with a line-search safe-
guard. In this case, we only need to compute the Cauchy point to the augmented Lagrangian step
that is acceptable to the filter. Of course, a more direct implementation would be preferable.

Our proof leaves open a number of questions. First, we did not show second-order conver-
gence, but we believe that such a proof follows directly if we use second-order correction steps
as suggested in [69], or if we employ a local non-monotone filter similar to [66]. A second open
question is how the proposed method performs in practice. We have some promising experience
with large-scale quadratic programs [42], and we are working on an implementation for nonlinear
programs.

We have presented preliminary numerical results on 429 small CUTEst test problems that
showed that our new augmented Lagrangian filter method outperforms other augmented La-
grangian solvers, and is competitive with SQP methods in terms of major iterations.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. This
work was also supported by the U.S. Department of Energy through grant DE-FG02-05ER25694.

References

[1] Kumar Abhishek, Sven Leyffer, and Jeffrey T. Linderoth. FilMINT: An outer-approximation-
based solver for nonlinear mixed integer programs. INFORMS Journal on Computing, 22:555–
567, 2010.

[2] A. Altay-Salih, M.C. Pinar, and S. Leyffer. Constrained nonlinear programming for volatility
estimation with GARCH models. SIAM Review, 45(3):485–503, 2003.

[3] J.J. Arrieta-Camacho, L.T. Biegler, and D. Subramanian. NMPC-based real-time coordination
of multiple aircraft. In R.F. Allgower and L.T. Biegler, editors, Assessment and Future Directions
of Nonlinear Model Predictive Control, pages 629–639. Springer, Heidelberg, 2007.

[4] Guillermo Bautista, Miguel F. Anjos, and Anthony Vannelli. Formulation of oligopolistic
competition in AC power networks: An NLP approach. IEEE Transaction on Power Systems,
22(1):105–115, 2007.

[5] Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and Ashutosh
Mahajan. Mixed-integer nonlinear optimization. Acta Numerica, 22:1–131, 5 2013.

[6] Hande Benson and David Shanno. An exact primal-dual penalty method approach to warm-
starting interior-point methods for linear programming. Computational Optimization and Ap-
plications, 38:371–399, 2007. 10.1007/s10589-007-9048-6.

[7] Hande Y. Benson and David F. Shanno. Interior-point methods for nonconvex nonlinear
programming: regularization and warmstarts. Computational Optimization and Applications,
40(2):143–189, 2008.

[8] H.Y. Benson, D.F. Shanno, and R.J. Vanderbei. Interior-point methods for nonconvex nonlin-
ear programming: filter-methods and merit functions. Computational Optimization and Appli-
cations, 23(2):257–272, 2002.

An Augmented Lagrangian Filter Method 17

[9] D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific,
New York, 1982.

[10] J.T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming. Advances in
Design and Control. SIAM, Philadelphia, 2001.

[11] L.T. Biegler and I.E. Grossmann. Challenges and research issues for product and process
design optimization. In C.A. Floudas and R. Agrawal, editors, Proceedings of Foundations of
Computer Aided Process Design. CACHE Corporation, Austin, TX, 2004.

[12] L.T. Biegler and I.E. Grossmann. Part I: Retrospective on optimization. Computers and Chemi-
cal Engineering, 28(8):1169–1192, 2004.

[13] E.G. Birgin and J.M. Martinez. Improving ultimate convergence of an augmented Lagrangian
method. Optimization Methods and Software, 23(2):177–195, 2008.

[14] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuejols, I.E. Grossmann, C.D. Laird, J. Lee, A. Lodi,
F. Margot, N. Sawaya, and A. Wähter. An algorithmic framework for convex mixed integer
nonlinear programs. Research Report RC 23771, IBM T. J. Watson Research Center, Yorktown,
NY, 2005.

[15] Pierre Bonami, Jon Lee, Sven Leyffer, and Andreas Waechter. More branch-and-bound ex-
periments in convex nonlinear integer programming. Technical Report ANL/MCS-P1949-
0911, Argonne National Laboratory, Mathematics and Computer Science Division, Lemont,
IL, September 2011.

[16] J.F. Bonnans and J. André. Optimal structure of gas transmission trunklines. Technical Report
6791, INRIA Saclay, 91893 ORSAY Cedex, France, 2009.

[17] B. Bonnard, L. Faubourg, G. Launay, and E. Trélat. Optimal control with state constraints and
the space shuttle re-entry problem. Journal of Dynamical and Control Systems, 9(2):155–199,
2003.

[18] A. Borghetti, A. Frangioni, F. Lacalandra, and C.A. Nucci. Lagrangian heuristics based on dis-
aggregated bundle methods for hydrothermal unit commitment. IEEE Transactions on Power
Systems, 18:1–10, 2003.

[19] R.H. Byrd, N.I.M. Gould, J. Nocedal, and R.A. Waltz. An algorithm for nonlinear optimiza-
tion using linear programming and equality constrained subproblems. Mathematical Program-
ming, Series B, 100(1):27–48, 2004.

[20] R.H. Byrd, M.E. Hribar, and J. Nocedal. An interior point algorithm for large scale nonlinear
programming. SIAM J. Optimization, 9(4):877–900, 1999.

[21] R.H. Byrd, J. Nocedal, and R.A. Waltz. KNITRO: An integrated package for nonlinear opti-
mization. In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, pages 35–59.
Springer-Verlag, New York, 2006.

[22] Calamai, P.H. and Moré, J.J. Projected gradient methods for linearly constraint problems.
Mathematical Programming, 39:93–116, 1987.

[23] J. Castro and J.A. Gonzalez. A nonlinear optimization package for long-term hydrothermal
coordination. European Journal of Operational Research, 154(1):641–658, 2004.

An Augmented Lagrangian Filter Method 18

[24] C.M. Chin and R. Fletcher. On the global convergence of an SLP-filter algorithm that takes
EQP steps. Mathematical Programming, 96(1):161–177, 2003.

[25] T.F. Coleman, Y. Li, and A. Verman. Reconstructing the unknown volatility function. Journal
of Computational Finance, 2(3):77–102, 1999.

[26] A.R. Conn, N.I.M. Gould, and Ph.L. Toint. LANCELOT: A Fortran package for large-scale non-
linear optimization (Release A). Springer Verlag, Heidelberg, New York, 1992.

[27] A.R. Conn, N.I.M. Gould, and Ph.L. Toint. Trust-Region Methods. MPS-SIAM Series on Opti-
mization. SIAM, Philadelphia, 2000.

[28] G. Cornuejols and R. Tütüncü. Optimization Methods in Finance. Cambridge University Press,
2007.

[29] Frank E Curtis, Hao Jiang, and Daniel P Robinson. An adaptive augmented Lagrangian
method for large-scale constrained optimization. Mathematical Programming, 152(1-2):201–
245, 2015.

[30] Elizabeth D. Dolan and Jorge Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[31] V. Donde, V. Lopez, B. Lesieutre, A. Pinar, C. Yang, and J. Meza. Identification of severe
multiple contingencies in electric power networks. In Proceedings 37th North American Power
Symposium, 2005. LBNL-57994.

[32] Iain S Duff. Ma57—a code for the solution of sparse symmetric definite and indefinite sys-
tems. ACM Transactions on Mathematical Software (TOMS), 30(2):118–144, 2004.

[33] Klaus Ehrhardt and Marc C. Steinbach. Nonlinear optimization in gas networks. In H.G.
Bock, E. Kostina, H.X. Phu, and R. Ranacher, editors, Modeling, Simulation and Optimization of
Complex Processes, pages 139–148. Springer, Berlin, 2005.

[34] R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approximation.
Mathematical Programming, 66:327–349, 1994.

[35] R. Fletcher and S. Leyffer. User manual for filterSQP. Numerical Analysis Report NA/181,
University of Dundee, April 1998.

[36] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical
Programming, 91:239–270, 2002.

[37] R. Fletcher and S. Leyffer. Filter-type algorithms for solving systems of algebraic equations
and inequalities. In G. di Pillo and A. Murli, editors, High Performance Algorithms and Software
for Nonlinear Optimization, pages 259–278. Kluwer, Dordrecht, 2003.

[38] R. Fletcher, S. Leyffer, and Ph.L. Toint. On the global convergence of a filter-SQP algorithm.
SIAM J. Optimization, 13(1):44–59, 2002.

[39] Fletcher, R. and Sainz de la Maza, E. Nonlinear programming and nonsmooth optimization
by successive linear programming. Mathematical Programming, 43:235–256, 1989.

[40] A. Forsgren, P.E. Gill, and M.H. Wright. Interior methods for nonlinear optimization. SIAM
Review, 4(4):525–597, 2002.

An Augmented Lagrangian Filter Method 19

[41] Michael P. Friedlander. A Globally Convergent Linearly Constrained Lagrangian Method for Non-
linear Optimization. Ph.D. thesis, Stanford University, August 2002.

[42] M.P. Friedlander and S. Leyffer. Global and finite termination of a two-phase augmented
Lagrangian filter method for general quadratic programs. SIAM J. Scientific Computing,
30(4):1706–1729, 2008.

[43] L.E. Ghaoui, M. Oks, and F. Oustry. Worst-case value-at-risk and robust portfolio optimiza-
tion: A conic programming approach. Operations Research, 51(4), 2003.

[44] P.E. Gill, W. Murray, and M.A. Saunders. User’s guide for SQOPT 5.3: A Fortran package for
large-scale linear and quadratic programming. Tech. Rep. NA 97-4, Department of Mathe-
matics, University of California, San Diego, 1997.

[45] P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large–scale con-
strained optimization. SIAM Journal on Optimization, 12(4):979–1006, 2002.

[46] Jacek Gondzio and Andreas Grothey. Reoptimization with the primal-dual interior point
method. SIAM Journal on Optimization, 13(3):842–864, 2002.

[47] Nicholas IM Gould, Dominique Orban, and Philippe L Toint. Cutest: a constrained and
unconstrained testing environment with safe threads for mathematical optimization. Compu-
tational Optimization and Applications, 60(3):545–557, 2015.

[48] J.-P. Goux and S. Leyffer. Solving large MINLPs on computational grids. Optimization and
Engineering, 3:327–346, 2002.

[49] Q. Huangfu and J.A.J. Hall. Novel update techniques for the revised simplex method. Tech-
nical Report ERGO-13-001, The School of Mathematics, University of Edinburgh, Edinburgh,
UK, 2013.

[50] Y. Kawayir, C. Laird, and A. Wächter. Introduction to Ipopt: A tutorial for downloading,
installing, and using Ipopt. Manual, IBM T.J. Watson Research Center, Yorktown Heights,
NY, 2009.

[51] H. Konno and H. Yamazaki. Mean-absolute deviation portfolio optimization model and its
application to Tokyo stock market. Management Science, 37:519–531, 1991.

[52] S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear program-
ming. Computational Optimization & Applications, 18:295–309, 2001.

[53] S. Leyffer, G. Lopez-Calva, and J. Nocedal. Interior methods for mathematical programs with
complementarity constraints. SIAM Journal on Optimization, 17(1):52–77, 2006.

[54] S. Leyffer and T.S. Munson. A globally convergent filter method for MPECs. Preprint
ANL/MCS-P1457-0907, Argonne National Laboratory, Mathematics and Computer Science
Division, September 2007.

[55] Miles Lubin, J.A.J. Hall, Cosmin G. Petra, and Mihai Anitescu. Parallel distributed-memory
simplex for large-scale stochastic LP problems. Computational Optimization and Applications,
55(3):571–596, 2013.

[56] A. Martin, M. Möller, and S. Moritz. Mixed integer models for the stationary case of gas
network optimization. Mathematical Programming, 105:563–582, 2006.

An Augmented Lagrangian Filter Method 20

[57] J.A. Momoh, R.J. Koessler, M.S. Bond, B. Stott, D. Sun, A. Papalexopoulos, and P. Ristanovic.
Challenges to optimal power flow. IEEE Transaction on Power Systems, 12:444–455, 1997.

[58] J.J. Moré and G. Toraldo. On the solution of quadratic programming problems with bound
constraints. SIAM Journal on Optimization, 1(1):93–113, 1991.

[59] B.A. Murtagh and M.A. Saunders. MINOS 5.4 user’s guide. Report SOL 83-20R, Department
of Operations Research, Stanford University, 1993.

[60] Bruce A. Murtagh and Michael A. Saunders. A projected Lagrangian algorithm and its im-
plementation for sparse nonlinear constraints. In A.G. Buckley and J.-L. Goffin, editors, Algo-
rithms for Constrained Minimization of Smooth Nonlinear Functions, volume 16 of Mathematical
Programming Studies, pages 84–117. Springer Berlin Heidelberg, 1982.

[61] P. Penfield, R. Spence, and S. Duinker. Tellegen’s theorem and electrical networks. MIT Press,
Cambridge, London, 1970.

[62] M.J.D. Powell. Algorithms for nonlinear constraints that use Lagrangian functions. Mathe-
matical Programming, 14(1):224–248, 1978.

[63] Gad Rabinowitz, Abraham Mehrez, and Gideon Oron. A nonlinear optimization model of
water allocation for hydroelectric energy production and irrigation. Management Science,
34(8):973–990, 1988.

[64] A. Raghunathan and L. T. Biegler. An interior point method for mathematical programs with
complementarity constraints (MPCCs). SIAM Journal on Optimization, 15(3):720–750, 2005.

[65] G.B. Sheble and G.N. Fahd. Unit commitment literature synopsis. IEEE Transactions on Power
Systems, 9:128–135, 1994.

[66] Chungen Shen, Sven Leyffer, and Roger Fletcher. A nonmonotone filter method for nonlinear
optimization. Computational Optimization and Applications, 52(3):583–607, 2012.

[67] E. Smith and J.A.J. Hall. A high performance primal revised simplex solver for row-linked
block angular linear programming problems. Technical Report ERGO-12-003, The School of
Mathematics, University of Edinburgh, Edinburgh, UK, 2012.

[68] R.J. Vanderbei and D.F. Shanno. An interior point algorithm for nonconvex nonlinear pro-
gramming. COAP, 13:231–252, 1999.

[69] A. Wächter and L.T. Biegler. Line search filter methods for nonlinear programming: Local
convergence. SIAM Journal on Optimization, 16(1):32–48, 2005.

[70] A. Wächter and L.T. Biegler. Line search filter methods for nonlinear programming: Motiva-
tion and global convergence. SIAM Journal on Optimization, 16(1):1–31, 2005.

[71] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming. Mathematical programming,
106(1):25–57, 2006.

[72] R.S. Womersley and K. Lau. Portfolio optimisation problems. In R.L. May and A.K. Easton,
editors, Computational Techniques and Applications: CTAC95, pages 795–802. World Scientific
Publishing Co., 1996.

An Augmented Lagrangian Filter Method 21

[73] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on
Mathematical Software (TOMS), 23(4):550–560, 1997.

An Augmented Lagrangian Filter Method 22

A Appendix

Table 1: Number of evaluations of nonlinear solvers on a
subset of CUTEr problems.

Problem filter-al filterSQP snopt ipopt minos lancelot
3pk 3 7 12 210 47

aircrfta 8 4 4 4 8 10
aircrftb 13 21 58 19 66 27
airport 50 13 58 16 528 69
aljazzaf 6 15 145 82 65 24
allinitc 64 24 105 44 56 76
allinit 15 11 17 19 30 13

allinitu 15 12 14 15 21 15
alsotame 3 5 6 9 12 11
argauss 3 1 9 17 13
arglinb 3 2 3 9 2
arglinc 3 2 3 9 2
avgasa 9 2 10 20 12
avgasb 21 2 13 16 11
avion2 19 19 143 18 787
bard 42 11 23 9 37 15
batch 9 33 34 380 1000
beale 10 15 19 25 21

biggs3 12 11 24 28 32 40
biggs5 48 50 107 36 39 64
biggs6 62 83 120 50 120 103
biggsc4 16 2 35 17 15
booth 3 2 2 3
box2 3 9 10 9 11 20
box3 12 8 24 15 16 31

bqp1var 2 2 6 6 3
bqpgabim 3 2 21 108 6
bqpgasim 3 2 21 122 6

brkmcc 6 4 10 4 14 7
brownal 15 8 21 8 78 24
brownbs 57 48 32 8 36 7

brownden 21 9 40 9 42 9
bt10 11 7 23 7 11 20
bt11 16 7 12 9 57 22
bt12 12 5 10 5 60 11
bt13 74 48 33 25 207 1001
bt1 62 1 12 15 17 19
bt2 93 13 18 13 386 36
bt3 3 2 2 13 6
bt4 23 11 10 10 48 25
bt5 27 9 11 8 173 20

An Augmented Lagrangian Filter Method 23

Problem filter-al filterSQP snopt ipopt minos lancelot
bt6 118 12 14 18 118 25
bt7 634 19 36 30 86 49
bt8 92 12 14 52 22 30
bt9 36 23 28 14 78 22

byrdsphr 189 11 200 19 97 43
camel6 8 8 19 11 25 8
cantilvr 29 16 27 12 176 27
catena 254 13 145 7 418 56

cb2 25 7 12 9 78 18
cb3 16 7 16 10 72 18

chaconn1 33 5 12 7 55 12
chaconn2 9 5 7 7 55 11
chebyqad 50 3 168 6 62
chnrosnb 40 59 170 92 593 68

cliff 26 28 28 24 47 28
cluster 18 10 9 10 22 45
concon 100 5 8 10 1 676

congigmz 131 4 23 33 43 30
coolhans 15 3 12 10 7 281

core1 6 12 105 151 1001
coshfun 1274 303 233 1039 2508 154
cresc4 52 93 269 865 1001
csfi1 317 18 48 12 10 155
csfi2 57 8 84 86 10 180
cube 10 41 42 58 67 52

dallass 586 56 109 29 141 1001
deconvb 8 30 103 5705 31 31
deconvc 85 58 81 99 88 43
deconvu 45 971 152 687 31 69
degenlpa 2 29 25
degenlpb 2 41 45

demymalo 45 8 18 12 95 28
denschna 9 7 12 7 24 13
denschnb 9 10 10 25 18 11
denschnc 9 11 21 11 31 13
denschnd 29 43 77 27 112 65
denschne 15 11 44 25 35 16
denschnf 9 7 12 7 22 8

dipigri 1508 13 23 22 130 63
disc2 243 25 522 48 706 20
discs 40 4893 186 629 422

dixchlng 404 12 31 11 1582 44
dixon3dq 3 2 2 44 4

djtl 84 29 1345 861 89 100
dnieper 9 4 13 31 37 75
dual1 3 2 221 17 278 9
dual2 3 2 116 14 216 9

An Augmented Lagrangian Filter Method 24

Problem filter-al filterSQP snopt ipopt minos lancelot
dual4 3 2 31 14 209 8
dualc1 2 30 25 17
dualc2 2 28 15 19
dualc5 136 2 11 25 8
dualc8 2 13 17 24

eg1 6 8 9 8 15 9
eigencco 45 29 34 14 159 17
eigmaxc 80 7 11 7 373 21
eigminc 30 7 10 8 120 11
engval2 48 20 34 33 67 30
errinros 22 53 267 70 553 76
expfita 36 13 24 31 29 54
expfit 13 18 9 29 11

extrasim 3 2 6 3
extrosnb 1 2 2 1 6 1

fccu 3 4 2 49 13
fletcher 46 1 2 28 9 28
genhs28 3 2 2 13 5

genhumps 63 188 77 321 170 134
gigomez1 143 8 17 19 141 33

goffin 11 3 10 10
gottfr 16 13 8 9 10 35

gridnetg 24 4 22 11 43 21
gridneth 14 5 36 7 115 20
gridneti 19 5 47 14 112 22
growthls 49 106 184 171 259 178
growth 49 106 187 171 259 178

gulf 33 26 66 44 696 63
hadamals 21 13 19 128 267 20

haifas 728 13 23 10 144 27
hairy 17 84 35 96 60 102

haldmads 23536 41 12 23 129 45
hart6 8 11 16 14 37 9

hatflda 30 15 30 11 45 47
hatfldb 27 11 28 11 33 28
hatfldc 9 5 14 6 20 9
hatfldd 18 23 29 27 49 66
hatflde 18 26 31 32 64 57
hatfldf 246 15 4148 1335 12 113
hatfldg 829 15 17 20 11 29
hatfldh 3 2 19 9 13
heart6ls 20 1001 1351 1588 22799 1001
heart6 16 401 3002 129 1001

heart8ls 445 217 1313 189 475 238
heart8 12 133 40 157 359
helix 9 19 28 25 54 18

hilberta 3 2 2 13 60

An Augmented Lagrangian Filter Method 25

Problem filter-al filterSQP snopt ipopt minos lancelot
hilbertb 3 2 2 113 5

himmelba 3 2 2 3
himmelbb 12 25 8 12 21 11
himmelbc 10 8 7 9 9 11
himmelbd 4 27 79 64 52
himmelbe 15 2 2 3 3 8
himmelbf 14 8 53 11 48 29
himmelbg 10 10 12 14 18 16
himmelbh 6 8 10 24 11 7
himmelbk 6 11 19 172 206
himmelp1 12 9 19 12 21 29
himmelp2 230 9 32 19 152 275
himmelp3 690 5 8 13 120 870
himmelp4 1204 5 8 25 116 737
himmelp5 2680 12 44 543 76 273
himmelp6 208 2 2 12 6 2

hong 6 5 4 13 15 6
hs001 8 36 48 53 10 41
hs002 9 15 17 13 7
hs003 3 2 5 13 16
hs004 2 3 4 6 7 2
hs005 9 11 9 9 14 9
hs006 117 3 9 7 91 63
hs007 24 13 30 28 65 26
hs008 14 6 6 6 8 13
hs009 30 5 10 6 12 22
hs010 31 10 31 13 59 18
hs011 12 6 15 9 47 16
hs012 72 8 11 9 159 26
hs013 79 34 17 79 54 60
hs014 10 6 10 8 10 13
hs015 28 7 11 21 86 47
hs016 19 5 5 23 10 19
hs017 42 8 19 18 12 20
hs018 295 7 32 27 94 117
hs019 39 7 9 16 57 45
hs020 12 5 5 7 9 23
hs021 3 2 9 9 3
hs022 9 2 7 7 48 10
hs023 370 7 7 12 54 51
hs024 6 3 8 13 9 14
hs025 1 27 2 44 6 1
hs026 230 18 27 26 77 41
hs027 18 8 21 143 137 31
hs028 3 2 2 13 4
hs029 77 8 14 9 174 18
hs030 6 2 5 26 30 8

An Augmented Lagrangian Filter Method 26

Problem filter-al filterSQP snopt ipopt minos lancelot
hs031 10 6 11 8 29 12
hs032 6 2 5 20 15 7
hs033 9 5 9 16 39 9
hs034 15 8 7 10 33 21
hs035 3 2 8 13 8
hs036 6 3 10 13 9 7
hs037 9 6 10 13 17 13
hs038 7 54 101 78 89 56
hs039 36 23 28 14 78 22
hs040 10 5 9 4 22 11
hs041 6 2 7 12 6 7
hs042 9 6 10 7 22 13
hs043 37 11 11 10 103 25
hs044 3 2 20 11 11
hs045 1 2 2 48 6 1
hs046 53 19 32 20 122 28
hs047 335 21 28 21 126 29
hs048 3 2 2 17 3
hs049 30 17 34 20 62 38
hs050 15 9 20 10 25 11
hs051 3 2 2 13 10
hs052 3 2 2 12 6
hs053 3 2 7 13 6
hs054 3 2 8 17 9
hs055 14 2 2 4 6 7
hs056 22 19 52 40 53 12
hs057 9 5 62 28 29 2
hs059 1000 11 22 72 128 340
hs060 35 7 13 8 121 18
hs061 24 1 39 10 71 19
hs062 53 10 16 9 19 37
hs063 180 1 18 8 120 21
hs064 30 13 28 18 99 38
hs065 169 5 11 91 320 42
hs066 9 14 6 8 21 11
hs067 6234 12 32 12 61 287
hs070 149 42 34 36 67 39
hs071 21 6 8 9 56 16
hs072 30 15 35 17 153 65
hs073 8 4 7 9 16 18
hs074 1274 6 15 10 28 13
hs075 12 5 12 10 19 110
hs076 3 2 8 14 9
hs077 54 14 16 13 124 27
hs078 27 5 7 5 58 12
hs079 40 5 12 5 55 14
hs080 92 8 9 7 49 13

An Augmented Lagrangian Filter Method 27

Problem filter-al filterSQP snopt ipopt minos lancelot
hs081 91 38 11 8 56 17
hs083 42 5 8 15 12 16
hs084 6 58 12 46 47
hs085 48 1 9904 127 893 1001
hs086 20 5 16 11 14 15
hs087 107 7 11 18 51 32
hs088 32 19 59 18 67 56
hs089 29 31 85 38 198 61
hs090 35 2 55 28 93 58
hs091 39 337 73 15 216 62
hs092 35 2 56 25 111 58
hs093 4 2 33 10 46 4
hs095 3 2 18 4 24
hs096 3 2 24 4 23
hs097 74 7 36 24 106 19
hs098 255 7 36 21 87 19
hs099 63 9 19 7 61 997

hs100lnp 406 14 33 21 134 32
hs100mod 14 32 27 124 137

hs100 1508 13 23 22 130 63
hs101 34 530 273 5495 1001
hs102 3669 42 238 36 981 1001
hs103 28 177 64 1419 1001
hs104 239 23 29 11 86 80
hs105 9 89 31 115 1001
hs106 17 13 15 504 1001
hs107 317 6 14 12 21 26
hs108 286 36 152 17 165 43
hs109 6020 7 349 44 354 1000
hs110 6 5 11 7 44 5

hs111lnp 52 31 64 16 389 57
hs111 72 31 70 16 389 46
hs112 140 12 35 18 93 47
hs113 2086 6 28 12 147 97
hs114 1 9 73 5 664
hs116 14 22 26 97 1003
hs117 224 6 20 23 158 66
hs118 3 3 12 42 19
hs119 19 7 22 15 30 28

hs21mod 3 2 17 9 3
hs268 6 2 17 37 27

hs35mod 3 2 16 7 3
hs3mod 3 2 6 14 4
hs44new 3 2 14 11 10
hs99exp 12 42 30 213 1001
hubfit 3 2 8 9 12 8
humps 207 1001 257 571 194 1001

An Augmented Lagrangian Filter Method 28

Problem filter-al filterSQP snopt ipopt minos lancelot
hypcir 9 8 5 8 8 10
jensmp 11 36 10 56 10

kiwcresc 45 11 17 11 81 23
kowosb 18 18 33 23 40 24

lakes 63 39 20 1045 1001
launch 1 246 673 50 1001

lewispol 6307 1 6 38 22
linspanh 56 2 54 13
loadbal 48 8 58 18 131 62
loghairy 42 1001 249 4173 403 1001
logros 82 50 109 358 148 66

lootsma 9 5 9 16 39 9
lotschd 3 3 15 6 9

lsnnodoc 9 7 8 15 8 11
lsqfit 3 2 8 12 7

madsen 106 25 12 25 72 26
makela1 36 15 8 19 69 19
makela2 54 5 26 8 59 40
makela3 205 25 50 17 238 125
makela4 9 3 8 20
maratosb 8 13 7 33 11 8
maratos 12 10 9 5 21 9
matrix2 26 12 14 21 66 13
maxlika 9 89 31 115 1001
mconcon 100 5 8 10 1 676
mdhole 12 56 70 106 117 68

methanb8 47 306 9 176 221
methanl8 6000 96 499 82 670 640
mexhat 6 10 37 5 19 4
meyer3 36 280 6159 494 776 559
mifflin1 12 23 8 7 36 18
mifflin2 145 10 17 16 124 50

minmaxbd 9 71 78 356 592
minmaxrb 173 3 8 11 112 81

minsurf 9 10 24 21 197 15
mistake 96 18 19 15 160 30
model 2 15 33

mwright 12 12 12 11 38 19
nasty 3 2 2 7 5

nonmsqrt 73 716 7413 83890 1491 167
nuffield continuum 6 5 9 7 16 15

obstclal 6 2 15 91 7
obstclbl 6 2 13 88 3
obstclbu 6 2 13 75 2

odfits 22 7 17 11 29 49
optcntrl 4 5 134 16 352
optmass 18 2 23 332 1001

An Augmented Lagrangian Filter Method 29

Problem filter-al filterSQP snopt ipopt minos lancelot
optprloc 6 12 19 686 438
orthregb 5969 2 9 3 263 64
orthrege 190 180 31 77 858 795
osbornea 17 998 120 152 128 57
osborneb 20 82 25 128 45

oslbqp 3 2 15 12 3
palmer1a 51 205 71 12 102
palmer1b 21 87 26 12 55
palmer1c 3 7 2 62 145
palmer1d 3 6 2 51 34
palmer1e 30 74 186 122 150 353
palmer1 33 33 30 1854 40 28
palmer2a 68 115 392 198 211
palmer2b 16 61 34 8 77
palmer2c 3 5 2 63 298
palmer2e 268 86 191 52 346 133
palmer2 33 44 63 8 34
palmer3a 82 136 199 8 201
palmer3b 21 54 15 17 36
palmer3c 3 5 2 62 206
palmer3e 57 117 293 133 427 1001
palmer3 12 13 553 12 58
palmer4a 52 109 133 8 93
palmer4b 21 52 31 17 64
palmer4c 3 6 2 62 176
palmer4e 175 24 123 38 211 123
palmer4 12 14 1182 12 142
palmer5a 5 1001 1303 12804 321079 1001
palmer5b 5 855 1343 208 3729 961
palmer5c 3 4 2 27 2
palmer5d 3 5 2 26 2
palmer5e 6 3 1313 7933 25502 8
palmer6a 5 137 202 263 271 277
palmer6c 3 6 2 61 159
palmer6e 5 38 198 59 260 47
palmer7a 991 1299 8073 21 1001
palmer7c 3 8 2 65 189
palmer7e 5 1001 1315 12230 925 39
palmer8a 9 50 127 102 104 61
palmer8c 3 7 2 62 152
palmer8e 55 29 92 31 122 86
pentagon 27 12 15 20 23 48

pfit1ls 22 566 480 678 718 453
pfit1 22 566 480 678 718 453

pfit2ls 21 210 175 184 238 217
pfit2 21 210 175 184 238 217

pfit3ls 33 139 289 337 475 272

An Augmented Lagrangian Filter Method 30

Problem filter-al filterSQP snopt ipopt minos lancelot
pfit3 33 139 289 337 475 272

pfit4ls 32 126 470 548 755 410
pfit4 32 126 470 548 755 410

polak1 89 8 17 7 86 37
polak2 124 10 225 15 350 321
polak3 24 208 4862 88 234
polak4 33 5 6 10 76 16
polak5 21 45 58 33 68 7
polak6 2592 29 108 301 248 644
portfl1 3 2 10 49 20
portfl2 3 2 9 51 14
portfl3 3 2 11 53 14
portfl4 3 2 10 50 19
portfl6 3 2 9 49 20

powellbs 30 16 15 12 15 106
powellsq 76 4 217 109 52 23
prodpl0 21 9 14 16 41 35
prodpl1 15 7 10 17 70 27
pspdoc 10 7 15 15 26 10
qudlin 2 2 26 19 2
recipe 11 2 2 3 3 12

res 1 2 10 1
rk23 18015 9 11 12 58 54
robot 286 45 18 10 378 33

rosenbr 44 29 45 45 10 36
rosenmmx 1522 37 41 22 167 226
s365mod 86 31 43 540 91
sim2bqp 3 2 8 10 3
simbqp 3 2 8 11 2

simpllpa 6 2 14 5
simpllpb 6 2 11 4

sineali 12 1001 1351 8025 7334 1001
sineval 51 62 94 110 124 75
sisser 9 19 15 21 18 38
snake 3 6 14 21 1001

spanhyd 11 13 24 61 26
spiral 245 152 107 64 392 96

ssnlbeam 1032 5 36 22 125 39
stancmin 14 2 5 11 6 9
supersim 3 2 2 7

swopf 355 6 24 17 137 290
synthes1 17 5 10 10 22 13

tame 3 2 6 9 2
tointqor 3 2 2 164 8

try-b 18 8 10 20 11 13
twobars 15 8 11 10 32 13

vanderm4 2514 1 57 51 34 36

An Augmented Lagrangian Filter Method 31

Problem filter-al filterSQP snopt ipopt minos lancelot
watson 17 21 172 14 118 44
weeds 39 51 32 9 3

womflet 412 9 27 12 135 97
yfit 6 48 95 185 131 103

yfitu 48 95 69 131 103
zangwil2 3 2 2 12 4
zangwil3 3 2 2 3
zecevic2 6 2 9 10 7
zecevic3 19 9 11 22 39 19
zecevic4 15 6 8 10 23 12
zigzag 287 11 23 23 219 43

zy2 9 5 9 10 44 9

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Ar-
gonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

http://energy.gov/downloads/doe-public-access-plan

	Introduction
	Augmented Lagrangian Methods

	An Augmented Lagrangian Filter
	Detailed Algorithm Statement
	Optional Penalty Update Heuristic
	Switching to Restoration Phase
	Termination of Inner Minimization
	Optional Second-Order red (EQP) Step
	Complete Algorithm

	Convergence Proof
	red Numerical Results
	Conclusions
	red Appendix

