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Abstract

We consider nonlinearly constrained optimization problems and discuss a generic double-

loop framework consisting of four algorithmic ingredients that unifies a broad range of nonlinear

optimization solvers. This framework has been implemented in the open-source solver Uno, a

Swiss Army knife-like C++ optimization framework that unifies many nonlinearly constrained

nonconvex optimization solvers. We illustrate the framework with a sequential quadratic pro-

gramming (SQP) algorithm that maintains an acceptable upper bound on the constraint vio-

lation, called a funnel, that is monotonically decreased to control the feasibility of the iterates.

Infeasible quadratic subproblems are handled by a feasibility restoration strategy. Globalization

is controlled by a line search or a trust-region method. We prove global convergence of the

trust-region funnel SQP method, building on known results from filter methods. We implement

the algorithm in Uno, and we provide extensive test results for the trust-region line-search funnel

SQP on small CUTEst instances.

1 Introduction and Background

We focus on algorithms for solving nonlinearly constrained optimization problems (NCOs) of the

form

min
x∈Rn

f(x), s.t. c(x) = 0, x ≥ 0, (NCO)
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where f : Rn → R and c : Rn → Rm are twice continuously differentiable and possibly nonconvex.

Problems with general inequalities l ≤ c(x) ≤ u with l, u ∈ Rm can be formulated as NCO via the

introduction of slack variables.

NCOs arise in many important applications, such as optimal control problems [3], partial dif-

ferential equation constrained optimization problems [1, 20] that model topology optimization [2],

inverse problems [4], or control problems [27]. In addition, NCOs arise as subproblems in more

complex optimization problems such as mixed-integer nonlinear optimization [22] and optimization

problems with complementarity constraints [25].

Solution methods for NCOs are iterative and generate a sequence of iterates x(k) for k ≥ 0 that

(hopefully) converges to a stationary point of NCO or a stationary point of the constraint violation

∥c(x)∥ under mild assumptions when started near a stationary point. In general, however, we must

safeguard our methods to ensure convergence from remote starting points (which we refer to as

“global convergence” in the remainder). Iterative methods for NCOs share common algorithmic

features, such as how new iterates are computed and how global convergence is ensured.

Here we present a generic framework for solving NCOs as a double-loop algorithm. The outer

loop computes new iterates that converge to a stationary point, while the inner loop implements

the convergence safeguards. This perspective allows us to easily interpret many existing NCO

methods within this framework and forms the basis of an open-source C++ implementation that

unifies many existing solvers for NCOs, called Uno [28,29]. Uno is a reliable and modular solver for

NCO that is meant to be extended to other areas such as optimization with equilibrium constraints

(see, e.g., [12, 13,25]) or robust optimization [23].

In this paper we concentrate on funnel methods to promote global convergence. We relate the

funnel idea to filter methods [11,14] and illustrate how it fits into the double-loop framework. This

allows us to quickly develop a funnel implementation by modifying the existing filter implementa-

tion within Uno. The funnel method has been studied in [18, 19] for solving equality-constrained

NCOs with a Byrd–Omojokun trust-region method. An iteration consists of the solution of several

subproblems that yield tangential and normal step decomposition. Iterations are divided into three

different kinds, namely, f -type, v-type, and y-type iterations, which account for an improvement

in optimality, a reduction of infeasibility, or an update of the Lagrange multipliers. In his Ph.D.

thesis [26], Samedi used a funnel in the context of equality-constrained optimization to design

an algorithm with favorable worst-case complexity bounds. The first funnel method for solving

inequality-constrained NCOs was introduced in [6]: the problem was transformed into a barrier

problem and solved with a Lagrange–Newton method. The approach uses matrix-free and inexact

methods and performs well on large-scale NCOs. Funnel methods can be traced back to the Ph.D.

thesis of Zoppke-Donaldson [32] that implements an SQP method that employs a tolerance tube

and reports encouraging numerical results but without any convergence analysis.

We look at funnel methods through the lens of filter methods, from which we derive our global

convergence proof. We wish to demonstrate that the funnel method obtains performance similar to

that of the filter method, while being simpler to implement. Filter methods were introduced in [11]

in the context of a trust-region SQP algorithm that switches to a feasibility restoration phase when

the quadratic subproblem is infeasible. The method was implemented in the solver filterSQP,

which obtained excellent performance on the CUTEst [17] test set. A filter line-search interior-point

method was implemented within the solver IPOPT, one of the most successful open-source NCO
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solvers [31]. Respective global convergence proofs were given in [14], [10], and [30]. The latter two

papers serve as a baseline for proving global convergence results.

Contributions. We make a number of important contributions in this paper: (i) we investigate

the funnel method from the perspective of filter methods; (ii) we consider equality and inequality-

constrained problems (if necessary by introducing additional slack variables); (iii) we prove global

convergence of a trust-region restoration funnel method; and (iv) we implement a trust-region

restoration funnel method and a line-search restoration funnel method in the Uno solver, and we

provide extensive numerical results on a subset of the CUTEst test set. To our knowledge, this is

the first time that line-search funnel methods have been considered.

Outline. This paper is structured as follows. In the remainder of this section we introduce our

notation and necessary optimality conditions. Next, we present the double-loop framework and the

main algorithmic components that make up a generic NCO method, using the funnel method as

an exemplar. We then review the funnel method in more detail and prove global convergence. We

present numerical results on a subset of the CUTEst test set (with detailed tables of function and

derivative evaluations for the trust-region and line-search methods in the appendices). In the final

section we summarize our conclusions.

Notation and Necessary Optimality Conditions

The jth component of a vector x ∈ Rn is denoted by a subscript, xj . The kth iteration index is

given by a superscript, x(k). For brevity, quantities evaluated at a given iterate x(k) are denoted

by a superscript as well, for example, f (k) def
= f(x(k)).

We start by defining the Fritz John function (or scaled Lagrangian) of (NCO) at (x, ρ, λ, µ):

L(x, ρ, λ, µ) def
= ρf(x)− λT c(x)− µTx = ρf(x)−

m∑
j=1

λjcj(x)−
n∑

i=1

µixi, (1)

where λ ∈ Rm and µ ∈ Rn are the Lagrange multipliers of the equality constraints and the bound

constraints, respectively, and ρ ∈ {0, 1}. We use the scaled Lagrangian because it allows us to treat

feasible and infeasible stationary points of (NCO) in a unified way. When ρ = 1, we obtain the

standard Lagrangian. The gradient of the scaled Lagrangian with respect to x at a point (x, ρ, λ, µ)

is denoted by

∇xL(x, ρ, λ, µ)
def
= ρ∇f(x)−

m∑
j=1

λj∇cj(x)− µ, (2)

where ∇f(x) ∈ Rn is the gradient of f and ∇c(x)T ∈ Rm×n is the Jacobian of c.

The Hessian of the scaled Lagrangian with respect to x at (x, ρ, λ) is defined by

Wρ(x, λ)
def
= ∇2

xxL(x, ρ, λ, µ) = ρ∇2f(x)−
m∑
j=1

λj∇2cj(x), (3)

where ∇2f(x) ∈ Rn×n is the Hessian of f and ∇2cj(x) ∈ Rn×n is the Hessian of cj .

We say that a feasible point x of (NCO) fulfills the Mangasarian–Fromowitz constraint quali-

fication (MFCQ) if the gradients of the constraints c(x) are linearly independent at x and if there

3



exists d ∈ Rn such that ∇c(x)Td = 0 and di > 0 if xi = 0 (d points into the interior of the feasible

set). Necessary optimality conditions for (NCO) are given in the following definition.

Definition 1 (KKT conditions [24]). If MFCQ holds at an optimal point x∗ of (NCO), the first-

order necessary optimality conditions of (NCO) at x∗ state that there exist multipliers λ∗ ∈ Rm

and µ∗ ∈ Rn such that

∇xL(x∗, 1, λ∗, µ∗) = 0, c(x∗) = 0, x∗ ≥ 0, µ∗ ≥ 0, x∗ ⊙ µ∗ = 0,

where ⊙ denotes the Hadamard (componentwise) product. These conditions are called the Karush–

Kuhn–Tucker (KKT) conditions.

2 Unified Abstraction of Nonlinearly Constrained Optimization

In [29] we introduced an abstract framework to unify the workflows of iterative methods for NCO,

arguing that most methods can be assembled by combining the following four generic ingredients

within a double-loop framework:

1. A constraint relaxation strategy is a systematic way to reformulate (NCO) with relaxed

constraints,for example, feasibility restoration or ℓ1 relaxation.

2. A subproblem method is a local approximation of the reformulated NCO at the current

primal-dual iterate, for example, inequality-constrained quadratic problems (QPs) in an SQP

framework or a primal-dual interior-point Newton system.

3. A globalization strategy assesses whether a trial iterate makes sufficient progress toward a

solution, for example, filter method or ℓ1 merit function.

4. A globalization mechanism defines the action that an algorithm takes when a trial iterate is

not acceptable, for example, line-search or trust-region method.

The double-loop framework portrayed in Algorithm 1 shows how the four ingredients interact

with one another. This abstract framework is implemented in Uno; it offers robust, off-the-shelf

strategies that are independent and agnostic of each other. Strategy combinations can be assembled

on the fly with no programming effort from the user. In particular, Uno implements three presets

that mimic existing solvers: a filterSQP [11] preset (a trust-region restoration filter SQP method);

an IPOPT [30,31] preset (a line-search restoration filter barrier method); and a Byrd [5] preset (a

line-search ℓ1-merit Sℓ1QP method).

This paper uses the same abstraction as in [29] but restricts the presentation to SQP methods

solving inequality-constrained QP subproblems and feasibility restoration to ensure consistent QPs.

The funnel method is investigated as a globalization strategy for different algorithmic configurations

and unified both for trust-region and line-search methods. In the remainder of this section we

provide details of these algorithmic ingredients.
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Algorithm 1: Abstract double-loop framework for iterative methods for (NCO).

Data: initial point (x(0), λ(0), µ(0))

Set k ← 0

while termination criteria at (x(k), λ(k), µ(k)) not met do

globalization mechanismrepeat

Solve feasible subproblem (s) that approximate(s) (NCO) at (x(k), λ(k), µ(k))

Assemble trial iterate (x̂(k+1), λ̂(k+1), µ̂(k+1))

until (x̂(k+1), λ̂(k+1), µ̂(k+1)) is acceptable

Update (x(k+1), λ(k+1), µ(k+1))← (x̂(k+1), λ̂(k+1), µ̂(k+1))

k ← k + 1

Result: (x(k), λ(k), µ(k))

2.1 Subproblem Method: Sequential Quadratic Programming

SQP is a second-order iterative method for finding a local solution for (NCO). At iteration k, it

solves a local quadratic approximation of (NCO) at the primal-dual iterate (x(k), λ(k), µ(k)):

min
d

1
2d

TW
(k)
1 d+ (∇f (k))Td

s.t. c(k) + (∇c(k))Td = 0

x(k) + d ≥ 0.

(QP(x(k)))

The primal-dual solution of (QP(x(k))) is denoted by (d(k), λ̂(k+1), µ̂(k+1)). The trial iterate for

a given step size α ∈ (0, 1] is given by x̂(k+1) = x(k) + αd(k). If the trial iterate is accepted by

the globalization strategy, we move to the trial iterate and solve the next QP. Otherwise, the

globalization mechanism (e.g., a line search) defines a new trial iterate that is more likely to be

acceptable. The process terminates either when an approximate stationary (KKT) point is found or

when a stationary point of the constraint violation is found or with an indication that a constraint

qualification fails.

Under appropriate assumptions and close to a solution, SQP cnverges with α = 1 and achieves

superlinear or quadratic local convergence [24]. Far from the solution, additional safeguards need

to be taken to ensure global convergence. SQP can suffer from ill-posedness; if the exact Hessian is

indefinite, the QP can be unbounded. Moreover, the linearization of the constraints in (NCO) can

be inconsistent. Both cases yield iterations that are not well defined. Additionally, taking full steps

(α = 1) does not necessarily result in a converging method. A globalization mechanism needs to

be incorporated, as well as a globalization strategy that ensures descent for the objective function

and improvement in constraint violation. The next section discusses various methods to address

these issues.

2.2 Globalization Mechanism: Trust Region or Line Search

Standard globalization mechanisms include trust-region methods and line-search methods. We

discuss each scheme in turn and show that they can be interpreted as inner iterations.
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2.2.1 Trust-Region Methods

Trust-region methods limit the length of the direction d a priori by imposing the trust-region

constraint ∥d∥ ≤ ∆
(l)
TR, where ∆

(l)
TR > 0 is the trust-region radius. Various norms are possible;

in this paper we consider only the ℓ∞ norm because it is most easily implemented within a QP

subproblem. The step d(k,l) is obtained by solving the trust-region subproblem at the current

primal-dual iterate (x(k), λ(k), µ(k)):

min
d

1
2d

TW
(k)
1 d+ (∇f (k))Td

s.t. c(k) + (∇c(k))Td = 0

x(k) + d ≥ 0

∥d∥∞ ≤ ∆
(l)
TR.

(QP(x(k),∆
(l)
TR))

The radius ∆
(l)
TR is reduced until the trial iterate x̂(k+1,l) def

= x(k) + d(k,l) is accepted by the glob-

alization strategy or until (QP(x(k),∆
(l)
TR)) becomes infeasible. Usually, ∆

(l)
TR is increased in suc-

cessful iterations if the trust region is active at d(k,l), and it is decreased to a value smaller than

min(∆
(l)
TR, ∥d(k,l)∥∞) when the trial iterate is rejected. A positive definite Hessian W

(k)
1 is not re-

quired (as long as the QP solver can handle problems with an indefinite Hessian), because directions

of negative curvature are bounded by the trust region.

2.2.2 Line Search Methods

Line-search methods solve QP(x(k)) and search for an acceptable iterate along d(k) by varying the

step size α(k,l) ∈ (0, 1]: the trial iterate is denoted by x̂(k+1,l) def
= x(k) + α(k,l)d(k). Here we opt

for a backtracking line search that seeks the largest step size in the sequence a(k,l) ∈ {2−l | l =
0, 1, . . .} such that the trial iterate is acceptable to the globalization strategy. A positive definite

approximation of the Hessian W (k) is required to guarantee the well-posedness of QP(x(k)).

The key difference with trust-region methods is that no additional QPs need be solved if a trial

iterate is rejected. On the other hand, the step α(k,l)d(k) is usually not optimal (or even feasible)

within the equivalent trust region, ∥d∥∞ ≤ α(k,l)∥d(k)∥∞.

2.3 Constraint Relaxation Strategy: Feasibility Restoration

An infeasible quadratic subproblem results from inconsistent linearized or bound constraints. This

situation can indicate that (NCO) is infeasible. In this case the method reverts to the feasibility

restoration phase: the original objective is temporarily discarded, and the following feasibility

problem (e.g., with the ℓ1 norm) is solved instead:

min
x
∥c(x)∥1

s.t. x ≥ 0.
(4)

Other subproblems are also possible and do not influence the proof of global convergence. Feasibility

restoration improves feasibility until a minimum of the constraint violation is obtained or the

subproblem becomes feasible again, in which case solving the original problem (the optimality

phase) is resumed. Any (local) solution x∗ ≥ 0 of (4) with ∥c(x∗)∥1 > 0 is an indication that
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(NCO) is (locally) infeasible. Because (4) is essentially a bound-constrained problem, we will not

analyze the convergence to infeasible stationary points here and instead assume without loss of

generality that a convergent globalization is available.

In our implementation we use a smooth reformulation of the ℓ1 feasibility problem (possibly

with a trust-region constraint). The feasible quadratic subproblem is given by

min
d,u,v

1
2d

TW
(k)
0 d + eTu+ eT v

s.t. c(k) + (∇c(k))Td − u+ v = 0

x(k) + d ≥ 0,
(
∥d∥∞ ≤ ∆

(l)
TR

)
u ≥ 0, v ≥ 0,

(FQP(x(k),∆
(l)
TR))

where we indicate the presence/absence of the trust-region constraint for trust-region/line-search

methods, respectively. Here e is a vector of ones of appropriate size. We note that introducing the

elastic variables u, v makes the constraint Jacobian full rank, which guarantees linear independence

constraint qualification. Moreover, we add the trust-region bound only to the original variables,

thus ensuring that (FQP(x(k),∆
(l)
TR)) is feasible for any trust-region radius. For the line-search

variant, we will refer to (FQP (x(k))).

2.4 Globalization Strategies

Constrained optimization is concerned with the realization of two competing goals: minimizing the

constraint violation and minimizing the objective value. Filter methods [11, 14] interpret (NCO)

as a bi-objective optimization problem. Instead of combining the objective and the constraint

violation in a merit function, they decompose the optimization problem into two separate goals:

reducing the objective function and reducing the constraint violation (the latter takes precedence).

The great advantage is that they do not require a priori knowledge or the update of a penalty

parameter. Funnel methods adaptively define an acceptable threshold of constraint violation and

accept steps that satisfy a sufficient decrease condition either for the constraint violation or for the

objective. The rationale for funnel methods is that close to a local minimum and near the feasible

set, we can expect the QP model to be a good predictor for the decrease of the objective, while far

from the feasible set the QP step is more likely to reduce the constraint violation. Both the funnel

and filter methods employ a natural switching condition that is capable of recognizing these two

scenarios. In the following, we first discuss the common progress measure for the funnel and filter

methods, then introduce them in detail, and highlight their close connections and similarities.

2.4.1 Progress Measures

Without loss of generality, the bound constraints on x are always feasible throughout SQP iter-

ations. To quantify progress regarding the constraint violation or the objective, we monitor the

measure of infeasibility h(x)
def
= ∥c(x)∥1 and the objective f(x) throughout the optimization process.

Local models of h(x) and f(x) at an iterate x(k) are defined by

m
(k)
h (d)

def
=

∥∥c(k) + (∇c(k))Td
∥∥
1
, (5a)

m
(k)
f (d)

def
=

1

2
dTW

(k)
1 d+ (∇f (k))Td+ f (k). (5b)
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We define the respective predicted reductions by

∆m
(k)
h (d)

def
= m

(k)
h (0)−m

(k)
h (d) = h(k) −m

(k)
h (d), (6a)

∆m
(k)
f (d)

def
= m

(k)
f (0)−m

(k)
f (d) = −1

2
dTW

(k)
1 d− (∇f (k))Td. (6b)

The actual reductions are defined by

∆f (k)(d)
def
= f (k) − f(x(k) + d), (7a)

∆h(k)(d)
def
= h(k) − h(x(k) + d). (7b)

2.4.2 Funnel Method

A funnel (illustrated in Figure 1) describes a relaxation of the feasible set that allows a constraint

violation up to a given upper bound τ (k) > 0. At iteration k, a necessary condition for acceptance

of the trial iterate is the funnel condition

h(x) ≤ τ (k). (8)

The initial funnel width is given by

τ (0) = max
[
τ̄ , κ̄h(0)

]
(9)

with τ̄ > 0 and κ̄ > 1 to ensure that the initial point is acceptable. All iterates stay within the

funnel whose width is monotonically non-increasing; that is, τ (k+1) ≤ τ (k) for all k ≥ 0. This

property combined with a constraint relaxation strategy controls the feasibility of the iterates and

ensures a feasible limit point.

F

h(k) ≤ τ (k)

h(k) ≤ βτ (k)

Figure 1: Funnel (in gray) around the feasible set F . The frontier of the funnel envelope (12) is

shown as a dashed curve.

Similarly to filter methods, a switching condition (with δ ∈ (0, 1))

∆m
(k)
f (d) ≥ δ(h(k))2 (10)

ensures that the algorithm does not take infinitely small steps and thus avoids convergence toward

infeasible points. It distinguishes between two types of iterations: f -type iterations that improve

optimality and h-type iterations that improve feasibility:
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• If the switching condition (10) is satisfied, the trial iterate is accepted if an Armijo-type

sufficient decrease condition

∆f (k) ≥ σ∆m
(k)
f (d) (11)

holds with σ ∈ (0, 1), that is, if the current iterate yields a sufficient decrease of the objective

function. This is an f -type iteration.

• If the switching condition (10) is violated and if the funnel sufficient decrease condition

h(x̂(k+1,l)) ≤ βτ (k) (12)

holds with β ∈ (0, 1), the trial iterate is accepted, and the funnel width is decreased:

τ (k+1) = (1− κ)h(x̂(k+1,l)) + κτ (k) (13)

for κ ∈ (0, 1). This is an h-type iteration.

Otherwise, if none of the above conditions is satisfied, the step is rejected, and either the trust-

region radius or the step size is reduced. The complete funnel method is summarized in Algorithm 2

in the context of feasibility restoration. Here, xresto is the point at which the algorithm switches

from the optimality phase to the feasibility restoration phase; it is set in Algorithms 4 and 5. In the

feasibility restoration phase, we simply enforce the Armijo condition on the constraint violation.

Algorithm 2: Restoration funnel acceptance test

Input: trial iterate x̂(k+1), direction d(k,l)

constraint relaxationacceptable ← false

if ∥d(k,l)∥ = 0 then

acceptable ← true // KKT point found

else

if phase = Restoration and subproblem feasible and h(x̂(k+1,l)) ≤ βmin(τ (k), h(xresto)) then

phase ← Optimality

globalization strategyτ (k+1) ← (1− κ)h(x̂(k+1)) + κτ (k)

if phase = Optimality then

globalization strategyif trial iterate is acceptable to funnel: h(x̂(k+1)) ≤ τ (k) then

if switching condition is satisfied: ∆m
(k)
f (d) ≥ δ

(
h(k)

)2
then // f-type step

if Armijo condition is satisfied: f (k) − f(x̂(k+1)) ≥ σ∆m
(k)
f (d) then

acceptable ← true

else if funnel is sufficiently reduced: h(x̂(k+1)) ≤ βτ (k) then // h-type step

acceptable ← true

τ (k+1) ← (1− κ)h(x̂(k+1)) + κτ (k)

else if phase = Restoration then

globalization strategyif Armijo condition is satisfied: h(k) − h(x̂(k+1)) ≥ σ∆m
(k)
h (d) then

acceptable ← true

return acceptable

Inspired by [26], the principle of the funnel is illustrated in Figure 2. In Figure 2a, the funnel

width is the solid vertical line, and the funnel envelope is represented by the dotted line. The
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black dot is the current iterate, the green dots show possible acceptable iterates, and the red dot

lies outside of the funnel and is rejected. Figure 2b represents an h-type iteration: the switching

condition is not satisfied, but the funnel sufficient decrease condition is satisfied. The trial iterate is

accepted, and the funnel width is decreased according to (13). This guarantees that the feasibility

of the iterates is driven to zero. The previous funnel width is shown in gray. Figure 2c represents

an f -type iteration: both the switching condition and the Armijo sufficient decrease condition are

satisfied. The trial iterate is accepted, but the funnel width is not updated. Figure 2d shows the

convergence of the funnel method to the optimal solution.

f(x)

h(x)

(a) Satisfaction of funnel condition.

f(x)

h(x)

(b) h-type iteration.

f(x)

h(x)

(c) f -type iteration.

f(x)

h(x)
(0, f∗)

(d) Convergence of funnel method.

Figure 2: Illustration of the funnel method [26].

A note on the funnel reduction mechanism. In the first paper on funnel methods [19], the

funnel update was given by

τ (k+1) = max
[
βτ (k), (1− κ)h(x̂(k+1,l)) + κh(k)

]
. (14)

This keeps the iterates within the funnel if h(x̂(k+1,l)) ≤ h(k). In our case, this cannot be guaranteed

since we also allow steps that increase both optimality and infeasibility. We tried out different

update strategies inspired by [19], but all had similar performance. Therefore, we opted for (13),

which is the second term in the max. More important is the choice of the parameter κ. If κ is

large such that the funnel width is slowly decreased, the funnel method allows for too much non-

monotonicity, and performance can be degraded. We note that we decrease the funnel width only

in h-type iterations.

10



2.4.3 Filter Methods

Using the notion of [30], we can define a filter as a taboo region in the {(h, f) ∈ R2 : h ≥ 0} half-
plane, defined by a list of points (h(xp), f(xp)) (typically, previous iterates). The filter at iteration

k is denoted by F (k). A trial iterate x̂(k+1,l) is acceptable to the filter if it sufficiently decreases

feasibility or optimality (or both),

h(x̂(k+1,l)) ≤ βh(xp) or f(x̂(k+1,l)) ≤ f(xp)− γh(x̂(k+1,l)) for all (h(xp), f(xp)) ∈ F (k),

where β, γ > 0. The first condition is similar to (12), and the second condition is a sufficient

decrease of the objective. During the optimization process, it is ensured that every iterate does

not lie within the taboo region. Often the filter is initialized with an upper bound hmax on the

constraint violation that mimics a filter entry (hmax,−∞). The acceptability of a trial iterate with

respect to hmax is given by

h(x̂(k+1,l)) ≤ βhmax. (15)

Filter methods also distinguish between f -type and h-type iterations by means of a switching

condition. In the case of an f -type iteration, an Armijo condition checks for sufficient decrease,

and the filter remains unchanged. In h-type iterations, the trial iterate is accepted if it satisfies

sufficient reduction with respect to the current iterate:

f(x̂(k+1)) ≤ f (k) − γh(x̂(k+1)) or h(x̂(k+1)) ≤ βh(k),

in which case the current iterate is added to the filter. This prevents the algorithm from cy-

cling. We note that in the unconstrained case, we have to take more care to accept steps, because

h(x̂(k+1)) ≤ βh(k) holds trivially in that case, and we instead enforce a sufficient reduction condition

on f as usual for unconstrained optimization.

2.4.4 Connections between Funnel and Filter Methods

An interesting connection exists between filter and funnel methods. In practical implementations of

filter methods, we limit the number of filter entries to a maximum number, say NF , and initialize

the filter with an upper bound on the constraint violation hmax = max{κ1h(x(0)), κ2}, where

κ1, κ2 > 1 are constants that ensure that the initial point x(0) is acceptable. If the capacity NF of

the filter is reached, we reduce the upper bound by replacing it with an upper bound derived from

the filter entry that has the maximum constraint violation (h+, f+) ∈ F , resulting in a new upper

bound (h+,−∞). This approach frees one filter entry and ensures that the current point remains

filter-acceptable, and we cannot cycle.

We can now interpret the funnel as a filter with a single entry, NF = 1, that corresponds to

the upper bound on the constraint violation, and we update this upper bound on h-type iterations.

The main difference between this interpretation and the actual funnel method is the update rule

(13). This interpretation allows us to provide a streamlined convergence proof.

3 A Unified Funnel Restoration SQP Algorithm

The complete method is presented in Algorithms 2, 3, 4, and 5. It follows the double-loop frame-

work of Algorithm 1: the outer loop updates the current iterate and the inner loop computes an
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acceptable point (either in the optimality phase or in the feasibility restoration phase). Algorithm

2 implements the funnel globalization strategy; Algorithms 3 and 4 implement the double-loop

SQP with a trust-region and with a line-search globalization mechanism, respectively; and, Algo-

rithm 5 implements the direction computation. We deliberately split the two methods into separate

components to emphasize the modularity of the Uno framework.

Algorithm 3: Uno: trust-region funnel restoration SQP method.

Input: initial primal-dual iterate (x(0), λ(0), µ(0))

k ← 0

termination ← false

constraint relaxationphase ← Optimality

globalization strategyτ (0) = max
[
τ̄ , κ̄h(0)

]
repeat

globalization mechanismSet inner iteration counter l← 0

repeat

constraint relaxationCompute primal-dual solution (d(k,l), λ̂(k+1), µ̂(k+1)) (Algorithm 5)

Assemble trial iterate x̂(k+1,l) def
= x(k) + d(k,l)

Reset the multipliers corresponding to the active trust region

constraint relaxationDetermine whether trial iterate is acceptable (Algorithm 2)

if acceptable then

if trust region is active at d(k,l) then increase radius ∆
(l)
TR

else

Decrease radius ∆
(l)
TR

l← l + 1

until (x̂(k+1,l), λ̂(k+1,l), µ̂(k+1,l)) is acceptable

Update (x(k+1), λ(k+1), µ(k+1)← (x̂(k+1,l), λ̂(k+1,l), µ̂(k+1,l))

if termination criteria satisfied at (x(k+1), λ(k+1), µ(k+1) then termination ← true

k ← k + 1

until termination

return (x(k), λ(k), µ(k))

4 Global Convergence of Trust-Region Funnel SQP Algorithm

In this section we prove that the trust-region funnel SQP method converges either to a feasible

point, which is a KKT point if a constraint qualification holds, or to a stationary point of the

constraint violation. We start by stating our basic assumptions.

Assumption 1 (Standard assumptions [11]).

1. All points attained by the funnel algorithm lie in a nonempty compact set X.

2. The functions f and c are twice continuously differentiable on an open set containing X.

3. The Hessian matrices of the objective and constraints are uniformly bounded for all x ∈ X; in

other words, there exists an M > 0 such that the Hessian matrices H(x) satisfy ∥H(x)∥2 ≤M

for all x ∈ X.

In particular, these assumptions ensure that the problem functions are bounded and that the

objective function f is bounded from below.

12



Algorithm 4: Uno: line-search funnel restoration SQP method.

Input: initial primal-dual iterate (x(0), λ(0), µ(0))

k ← 0

termination ← false

constraint relaxationphase ← Optimality

globalization strategyτ (0) = max
[
τ̄ , κ̄h(0)

]
repeat

globalization mechanismconstraint relaxationCompute primal-dual solution (d(k), λ̂(k+1), µ̂(k+1)) (Algorithm 5)

α(0) ← 1

Set inner iteration counter l← 0

repeat

Assemble trial iterate x̂(k+1,l) def
= x(k) + α(l)d(k)

constraint relaxationDetermine whether trial iterate is acceptable (Algorithm 2)

if not acceptable then

Decrease step length α(l)

l← l + 1

if α(l) < αmin (step-size too small) then

constraint relaxationphase ← Restoration

xresto ← x(k)

Compute primal-dual solution (d(k), λ̂(k+1), µ̂(k+1)) (Algorithm 5)

α(l) ← 1

until (x̂(k+1,l), λ̂(k+1,l), µ̂(k+1,l)) is acceptable

Update (x(k+1), λ(k+1), µ(k+1)← (x̂(k+1,l), λ̂(k+1,l), µ̂(k+1,l))

if termination criteria satisfied at (x(k+1), λ(k+1), µ(k+1) then termination ← true

k ← k + 1

until termination

return (x(k), λ(k), µ(k))

Algorithm 5: Uno: QP direction computation

Input: current iterate (x(k), λ(k), µ(k))

constraint relaxationif phase = Optimality then

(d(k,l), λ̂(k+1), µ̂(k+1))← solve subproblem QP(x(k)) or QP(x(k),∆
(l)
TR)

if subproblem infeasible then

phase ← Restoration

xresto ← x(k)

λ(k) ← 0

if phase = Restoration then

(d(k,l), λ̂(k+1), µ̂(k+1))← solve feasibility subproblem (FQP (x(k))) or FQP(x(k),∆
(l)
TR)

return (d(k,l), λ̂(k+1), µ̂(k+1))

4.1 Convergence to Feasibility

The convergence to a feasible point is independent of whether we use a trust-region or a line

search mechanism and instead relies on the switching condition, the boundedness of f , and the

funnel mechanism. In Theorem 1 we prove that the algorithm generates a sequence of iterates that

converges toward feasibility. This theorem implicitly assumes that the algorithm is well defined
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(i.e., that the inner iteration terminates) and generates an infinite sequence, which is shown below

in Lemma 5 for the trust-region method (a similar result follows easily for the line-search method

because we switch to a restoration phase once the step size α becomes smaller than αmin).

Theorem 1. Assume that the algorithm does not terminate finitely at a KKT point, and consider

sequences {τ (k)}, {h(k)}, and {f (k)} such that h(k) ≥ 0, f (k) is bounded below and h(k+n) ≤ βτ (k)

for all k, n ∈ N. Furthermore, let constants β ∈ (0, 1), κ ∈ (0, 1) be given. It holds either that

(h-type step) h(k+1) ≤ βτ (k) and τ (k+1) = (1− κ)h(k+1) + κτ (k) (16)

or that

(f -type step) τ (k+1) = τ (k) and f (k) − f (k+1) ≥ σδ(h(k))2. (17)

In both cases, it follows that h(k) → 0 for k →∞.

Proof. We study two cases, depending on whether there exists an infinite sequence of h-type steps.

1. If the number of h-type updates (16) is infinite, the funnel update rule implies that

τ (k+1) = (1− κ)h(k+1) + κτ (k)

≤ (1− κ)βτ (k) + κτ (k)

≤ (1− (1− β)(1− κ)) τ (k).

Therefore, τ (k+1) ≤ θτ (k), where θ
def
= 1− (1− β)(1− κ) ∈ (0, 1). Thus τ (k) → 0 for k →∞.

2. If the number of h-type steps is finite, there exists a k ∈ N such that for all k ≥ k only

f -type updates are performed, that is, both the switching condition ∆m
(k)
f (d) ≥ δ(h(k))2 and

the Armijo sufficient decrease condition ∆f (k) ≥ σ∆m
(k)
f (d) are satisfied. In the case of the

line-search mechanism we have ∆f (k) ≥ ασ∆m
(k)
f (d) > αminσ∆m

(k)
f (d), because the step was

not a restoration step. We then sum the switching condition (17) over k from k to a given

k +N and observe that

k+N∑
k=k

(
f (k) − f (k+1)

)
≥ σδ

k+N∑
k=k

(h(k))2,

which is equivalent to

f (k) − f (k+N) ≥ σδ

k+N∑
k=k

(h(k))2,

where the right-hand side is multiplied by αmin > 0 for the line-search mechanism. For

N →∞,

k+N∑
k=k

(h(k))2 is bounded (because f is bounded below by Assumption 1), and therefore

h(k) → 0.
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4.2 Global Convergence of Trust-Region Funnel Method to Stationary Points

The remainder of the global convergence analysis for trust-region and line-search methods differs

significantly, and here we analyze only trust-region methods.

The trust-region funnel SQP method has three possible outcomes: (1) it terminates finitely or

converges in the limit at a KKT point that satisfies MFCQ; (2) it converges to a Fritz John point

at which MFCQ fails; or (3) it converges to a stationary point of the constraint violation. Outcome

(3) is as strong as we can hope for in some sense, because finding a feasible point of (NCO) is just

as hard as finding a stationary point.

In our analysis we concentrate on outcomes (1) and (2) and consider only infinite sequences.

Similar to the global convergence paper of the filter method [14], we first show properties in a

neighborhood of the feasible set. We start with two lemmas proven in [14] (due to a different

definition of (NCO), we give an adjusted proof).

Lemma 1 (Lemma 2 in [14]). Consider minimizing a quadratic function ϕ(α), ϕ : R → R on the

interval α ∈ [0, 1] when ϕ′(0) < 0. A necessary and sufficient condition for the minimizer to be at

α = 1 is ϕ′′ + ϕ′(0) ≤ 0. In this case it follows that ϕ(0)− ϕ(1) ≥ −1
2ϕ
′(0).

Lemma 2. Let the standard assumptions hold, and let d be a feasible point of QP(x(k),∆
(l)
TR). It

then follows that

∆f (k) ≥ ∆m
(k)
f − n(∆

(l)
TR)

2M, (18)∣∣∣ci (x(k) + d
)∣∣∣ ≤ 1

2
n(∆

(l)
TR)

2M, i ∈ {1, . . . ,m}. (19)

Proof. Relation (18) is derived in [14]. For i ∈ {1, . . . ,m}, there exists z on the line segment from

x(k) to x(k) + d such that

ci

(
x(k) + d

)
= c

(k)
i + (∇c(k)i )Td+

1

2
dT∇2ci(z)d =

1

2
dT∇2ci(z)d

by feasibility of d. Taking the absolute value and using the estimates similar to [14], we get (19).

Lemma 3. Let standard assumptions hold. If d solves QP(x(k),∆
(l)
TR), x

(k)+ d is acceptable to the

funnel if ∆2
TR ≤ 2βτ (k)/(mnM).

Proof. It holds that

h(x(k) + d) = ∥c(x(k) + d)∥1 =
m∑
i=1

|ci(x(k) + d)| ≤
m∑
i=1

1

2
n∆2

TRM =
1

2
nm∆2

TRM.

If ∆2
TR ≤ 2βτ (k)/(nmM), then h(x(k) + d) ≤ βτ (k); in other words, the step is acceptable to the

funnel.

We note that Lemma 3 actually proves the funnel sufficient condition.

Lemma 4. Let standard assumptions hold, and let x◦ ∈ X be a feasible point of problem (NCO)

at which MFCQ holds but which is not a KKT point. Then, there exist a neighborhood N ◦ of x◦

and positive constants ε, µ, and κ such that for all x ∈ N ◦ ∩X and all ∆TR for which

µh(x) ≤ ∆TR ≤ κ
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it follows that QP(x(k),∆
(l)
TR) has a feasible solution d at which the predicted reduction (6) satisfies

∆mf ≥
1

3
∆TRε, (20)

the sufficient reduction condition (11) holds, and the actual reduction (7) satisfies

∆f ≥ ∆TRσh(x+ d). (21)

Proof. The proof follows directly from the proof of [14, Lemma 4].

Lemma 5. Let standard assumptions hold. Then the inner iterations terminate finitely.

Proof. The active set at a feasible point x is the set of all bound constraints that hold with equality:

A(x) def
= {i ∈ {1, . . . , n} | xi = 0}.

We denote by d the global solution of QP(x(k),∆
(l)
TR). If x

(k) is a KKT point of (NCO), d = 0,

and the inner loop terminates. Otherwise, we consider two cases:

1. h(k) > 0: There exists an i ∈ {1, . . . ,m} such that, without loss of generality, c
(k)
i > 0. For

all d such that ∥d∥∞ ≤ ∆TR, it holds that

c
(k)
i + (∇c(k)i )Td ≥ c

(k)
i −∆TR∥∇c(k)i ∥1.

If either ∥∇c(k)i ∥ = 0 or ∆TR < |c(k)i |/∥∇c
(k)
i ∥1, we have c

(k)
i − ∆TR∥∇c(k)i ∥1 > 0. Thus for

∆TR sufficiently small, QP(x(k),∆
(l)
TR) is infeasible, and the inner loop terminates finitely.

2. h(k) = 0: Inactive bound constraints will stay inactive for any direction ∥d∥∞ ≤ ∆TR for

sufficiently small ∆TR. Therefore, we only consider equality and active inequality constraints.

Since x(k) is not a KKT point, there exists s with ∥s∥ = 1 and η > 0 such that

sT∇f (k) = −η < 0, sT∇c(k)i = 0 for i ∈ {1, . . . ,m}, si ≥ 0 for i ∈ A(k).

We consider the QP-feasible line segment α∆TRs, α ∈ [0, 1]. We construct the function

ϕ(α) = m
(k)
f (α∆TRs) with the properties

ϕ′(0) = −∆TRη, ϕ′′ = ∆2
TRs

TW
(k)
1 s ≤ ∆2

TRM.

Hence, if ∆TR ≤ η/M , then ϕ′(0) + ϕ′′ ≤ 0. From Lemma 1, it follows that ϕ(0) − ϕ(1) ≥
1
2∆TRη. Because d is globally optimal for QP(x(k),∆

(l)
TR), it holds that

∆m
(k)
f (d) ≥ ∆m

(k)
f (∆TRs) = m

(k)
f (0)−m

(k)
f (∆TRs) = ϕ(0)− ϕ(1) ≥ 1

2
∆TRη > 0. (22)

If we choose ∆TR ≤
(1− σ)η

2nM
, then, combining (18) and (22), we have

∆f (k)
(18)

≥ ∆m
(k)
f − n∆

(l)
TR∆

(l)
TRM

≥ ∆m
(k)
f − n

(1− σ)η

2nM
∆

(l)
TRM = ∆m

(k)
f − (1− σ)

1

2
∆

(l)
TRη

(22)

≥ ∆m
(k)
f − (1− σ)∆m

(k)
f (d) = σ∆m

(k)
f

> 0 = h(k).
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These are the necessary conditions of an f -type iteration. If ∆2
TR ≤

2βτ (k)

mnM
, x(k) + d is

acceptable to the funnel. Thus, if ∆TR is chosen small enough, an f -type step is taken.

Remark 1. We note that the condition that d be the global solution of QP(x(k),∆
(l)
TR) holds if the

Hessian is positive definite on the null space of the linearized equality constraints. Otherwise, it

can be replaced by a Cauchy-point construction that explicitly produces a unit step, s in (22), and

then requires that QP(x(k),∆
(l)
TR) compute a step that is at least as good as the Cauchy prediction.

Theorem 2. If standard assumptions hold, the funnel SQP algorithm has one of the following

outcomes:

1. The restoration phase fails to find a point x that is both acceptable to the funnel and for which

QP(x(k),∆
(l)
TR) has a feasible direction for some ∆TR ≥ ∆◦TR. In this case the restoration

phase converges to an infeasible limit point.

2. A KKT point of problem (NCO) is found (d = 0 solves QP(x(k),∆
(l)
TR) for some k).

3. There exists an accumulation point that is feasible and either is a KKT point or fails to satisfy

MFCQ.

Proof. It is enough to consider case 3. As proven in Lemma 5, the inner loop is finite, and therefore

the trust-region funnel SQP method produces an infinite sequence of iterates. All iterates lie in the

compact set X; therefore, there exists a converging subsequence. We consider two cases:

1. The main sequence contains an infinite number of h-type steps: in this case we pick a subse-

quence containing purely h-type steps. For h-type iterations, we know h(k) → 0 and τ (k) → 0.

In particular, τ (k+1) < τ (k). Therefore, there exists a converging subsequence whose index

set is denoted by S and whose limit point is denoted by x∞. For k ∈ S, it holds that

x(k) → x∞, h(k) → 0, τ (k+1) < τ (k).

Thus, x∞ must be feasible. We take another case distinction.

(a) MFCQ is not satisfied at x∞; then the claim holds.

(b) MFCQ is satisfied at x∞. For a proof by contradiction, we assume that x∞ is not a

KKT point. The vectors ∇c∞i for i ∈ {1, . . . ,m} are linearly independent, and the

MFCQ set is not empty. For sufficiently large k ∈ S, x(k) lies in the neighborhood N∞.

If QP (x(k),∆TR) has a feasible solution and

µh(k) ≤ ∆TR ≤ min


√

2βh
(k)
max

mnM
,κ

 ,

the algorithm performs an f -type iteration. For k sufficiently large, we get

µh(k) ≤ ∆TR ≤

√
2βh

(k)
max

mnM
.
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We see that the upper bound is more than twice the lower bound. Given the update

rule, we find a ∆TR that lies in the interval. Therefore an f -type step occurs, which is

a contradiction; that is, x∞ is a KKT point.

2. The main sequence contains finitely many h-type steps. Therefore, there exists an index

k such that for all k > k the sequence {f (k)} is strictly monotonically decreasing. From

Theorem 1 we know h(k) → 0 for k ≥ k. We deduce that any accumulation point x∞ is

feasible. Because f(x) is bounded on X and {f (k)} is converging and, in particular, it is a

Cauchy sequence, it follows that
∑

k≥k ∆f (k) is converging. Consider again two cases:

(a) MFCQ is not satisfied; then there is nothing to show.

(b) MFCQ is satisfied, and we proceed again by deriving a contradiction. A sufficient con-

dition for accepting an f -type step is that ∆TR lies in the following interval:

µh(k) ≤ ∆TR ≤ min


√

2βτ (k)

mnM
,κ

 .

The funnel parameter τ (k) on the right side is constant; therefore the right-hand side

is constant, and we denote it by ∆TR > 0. For sufficiently large k, we can guar-

antee that the right side is greater than twice the lower bound. The inner loop de-

creases ∆TR such that either it falls into the interval and will be accepted as an f -type

step or it is already accepted beforehand. This guarantees that a trust-region radius

∆
(k)
TR ≥ min{12∆TR,∆

◦
TR} is picked. We deduce from (20) and (11) that

∆f (k) ≥ 1
3σεmin{12∆TR,∆

◦
TR}, which is a contradiction to the convergence of

∑
k≥k̄ ∆f (k).

Hence, x∞ must be a KKT point.

5 Simulation Results

The funnel method has been implemented in Uno as a globalization strategy and is available at

https://github.com/david0oo/Uno/tree/funnel method. We compare four different algorithmic

configurations on a subset of 278 small instances of the CUTEst test set [17]. All four versions

employ the restoration SQP method but differ in their globalization strategy (filter or funnel) and

their globalization mechanism (line-search or trust-region method).

We have excluded unconstrained problems from the test set because filter and funnel methods

behave identically on these problems (the switching condition (10) is always satisfied, and the same

Armijo condition is enforced). In our numerical experiments we compare the funnel method with

the default filter methods of Uno: we start from a bird’s-eye position and move to a successively

more detailed analysis. We close this section with some test results on the Maratos effect.

5.1 Implementation Details

The algorithmic parameters of the funnel method and the filter method are chosen as in Table

1. Both methods are initialized with the same parameters to guarantee that they start in similar
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conditions. Following the discussion of the funnel update strategy in Section 2.4.2, we found that

balancing the update of the funnel width is important; in other words, the funnel reduction should

be neither too strict nor too slow. Therefore, we picked κ = 0.5, which worked well for our

simulations. The filter has a maximum capacity of 50 entries. For both methods, the initial upper

bound on the constraint violation is set according to Equation (9). The maximum number of outer

iterations is set to 4, 000.

Table 1: Parameter values of the funnel method and the filter method.

Parameter Value Parameter Value Parameter Value

Funnel method
τ̄ 100 κ̄ 1.25 κ 0.5

δ 0.999 σ 10−4 β 0.99

Filter method τ̄ 100 κ̄ 1.25 β 0.999

The QP solver available in Uno is bqpd [8,9], a reliable null-space method for indefinite quadratic

optimization. The trust-region method uses the exact Hessian matrix. A sufficient condition for

the well-posedness of the line-search subproblems is ensured by iteratively adding a multiple of the

identity to W (k) until the resulting matrix is positive definite [24, p. 51]. The inertia of the matrix

is computed by MA57 [21].

Uno terminates at (x∗, λ∗, µ∗) with one of the following outcomes:

• KKT point found, if the final iterate satisfies an approximate KKT condition:

∥∇L(x∗, 1, λ∗, µ∗)∥ ≤ ε, ∥c(x∗)∥ ≤ ε, ∥x∗ ⊙ µ∗∥ ≤ ε,

where the tolerance ε is set to 10−6 for our numerical results.

• Infeasible stationary point found, if an approximate KKT condition of the feasibility

problem holds:∥∥∥∥∥∥∥∥

∇L(x∗, 0, λ∗, µ∗)

e+ λ∗ − µ∗u

e− λ∗ − µ∗v


∥∥∥∥∥∥∥∥ ≤ ε, ∥c(x∗)∥ > ε,

∥∥∥∥∥∥∥∥

x∗ ⊙ µ∗

u∗ ⊙ µ∗u

v∗ ⊙ µ∗v


∥∥∥∥∥∥∥∥ ≤ ε,

where u, v ≥ 0 are the elastic variables introduced in FQP(x(k),∆
(l)
TR) and µu, µv ≥ 0 are the

corresponding bound multipliers.

• Maximum number of iterations, if we reached the iteration bound.

• Unbounded solution, if f(x∗) < −1020 for an ε-feasible point (∥c(x∗)∥ ≤ ε).

• Small feasible step, if the trust-region radius ∆TR ≤ 10−16 and ∥c(x∗)∥ ≤ ε. This indicates

that the problem may be ill-conditioned or may not be differentiable.

We consider a problem to be solved correctly if both methods found a KKT point or converged

to an infeasible stationary point. If one of the methods converged to an infeasible point while the
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other found a KKT point, the first method failed to solve the problem. Other reasons for failure

include the step size becoming too small or an excess of maximum number of iterations. The

simulations were carried out on an Intel Core i7-10810U CPU, and the corresponding log files are

available at https://github.com/david0oo/uno funnel results.

5.2 Comparison between Funnel and Filter

Detailed results of this comparison are tabulated in Appendices A and B. Figure 3 shows a compar-

ison of the four algorithmic configurations as a Dolan–Moré performance profile [7] for the number

of constraint evaluations. A point (α, β) on the graph means that a method solves the fraction β

of all test problems within α times the number of evaluations of the virtual best solver—the solver

that performs best for every instance [16]. The higher and the more to the left, the better. The

performance profiles demonstrate that the funnel method slightly outperforms the filter method

in terms of Hessian and constraint evaluations. For these two metrics, line-search methods per-

form much worse than trust-region methods. The cause seems to stem from the convexification

procedure: the trust-region methods solve indefinite QPs and exploit the negative curvature of

the problems. If the trust-region QPs are convexified as are the line-search QPs, the performance

similarly degrades.
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Figure 3: Performance profiles for all four algorithmic configurations with respect to constraint

evaluations.

Figure 4 presents a distribution plot of the filter and funnel methods with trust region (left)

and line search (right) on the CUTEst instances, using the number of constraint evaluations as

the metric. Each point corresponds to one problem instance. Points on the diagonal correspond

to instances where the funnel method and the filter method took the same number of iterations,

points above the diagonal correspond to instances where the funnel method was faster than the

filter method, and points below the diagonal correspond to instances where the filter method was

faster. We observe that on many instances, the two methods behave almost identically. For the

line-search methods, we observe that the funnel method has more wins (points above the diagonal)

than the filter method, which is also observed in the performance profiles.
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Figure 4: Distribution plot of constraint evaluations for funnel vs filter globalization strategies.

Next, we compared the number of iterations and the number of evaluations of all functions

and derivatives. This more detailed analysis reveals that both trust-region methods take different

iteration paths for only 49 instances. The results of the line-search methods also differ for only 49

of the problems. In Figures 5 and 6 we plot for each of these instances a vertical bar that shows

the number of f -type (blue), h-type (orange), and restoration steps (green) for the trust-region

and line-search methods, respectively. A missing bar means that the algorithm failed to solve

the problem. Overall, the ratio of the three iteration types seems to be similar, except for a few

outliers. We observe that fewer problems can be solved by line-search methods than by trust-region

methods, as is also shown in the performance profiles.

5.3 Insights from Illustrative Examples

We finish our discussion of the numerical results by zooming in to two illustrative examples that

highlight the similarities and differences between filter and funnel methods.

5.3.1 powellbs Example

The powellbs instance for the trust-region methods is given by

min
x∈R2

0

s.t. − 1 + 10000x1x2 = 0,

− 1.0001 + e−x1 + e−x2 = 0,

with initial point x(0) = (0, 1)T . The optimal solution is approximately (1.1× 10−5, 9.1)T . Figure 7

shows the infeasibility and the funnel width (in log scale) as functions of the outer iterations for
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Figure 5: Comparison of the number of f -type (blue), h-type (orange), and restoration steps (green)

for the trust-region funnel method and the trust-region filter method.
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Figure 6: Comparison of the number of f -type (blue), h-type (orange), and restoration steps (green)

for the line-search funnel method and the line-search filter method.
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the trust-region funnel and filter methods. The funnel width decreases linearly, because only h-

type steps are taken. Interestingly, both methods are identical until iteration 5. From iteration 6

onwards, the funnel allows more non-monotonicity, and the method enters the regime of quadratic

convergence, while the filter blocks progress. This causes infeasibility of the QP and triggers the

switch to feasibility restoration. Many iterations are required to find a filter-acceptable point, after

which the convergence is quadratic.
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funnel width

funnel trust-region
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Figure 7: Infeasibility and funnel width as functions of the outer iterations for trust-region funnel

and filter algorithms on the powellbs problem.

5.3.2 maratos Example

Filter (or funnel) methods do not fail for the standard maratos and can be shown to take unit steps

arbitarily close to a feasible point. However, in [15] another example was introduced proving that,

in general, filter methods (including filterSQP) do suffer from the Maratos effect:

min
x∈R2

2
(
x21 + x22 − 1

)
− x1

s.t. x21 + x21 − 1 = 0.

If the starting point is chosen as x = (cos(t), sin(t)) for t > 0 small and λ = 3
2 (−3

2 with our

notation), the quadratic model of the objective predicts a decrease although the objective increases,

which violates the Armijo condition. Thus, the full step is rejected.

The iterations of the trust-region funnel SQP and line-search funnel SQP methods starting

from (x1, x2, λ) = (
√
2
2 ,
√
2
2 ,−3

2) are given in Tables 2 and 3, respectively. We see in both cases

that in the first iteration, the full step increases the objective and the constraint violation, which

yields a step rejection. This demonstrates that the funnel method also suffers from the Maratos

effect. Therefore, appropriate measures such as second-order corrections, a watchdog strategy, or

non-monotone techniques are required for fast local convergence.
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Table 2: Iterations of trust-region funnel SQP method on maratos example.

k l ∆
(k,l)
TR τ (k) ∥d(k,l)∥∞ f (k) h(k) ∥∇L∥ status

0 – 1.00e+ 01 1.00e+ 02 – −0.707 5.28e− 10 7.65e− 01 initial point
1 1 1.00e+ 01 1.00e+ 02 5.00e− 01 −0.207 5.00e− 01 – rejected (Armijo)
– 2 2.50e− 01 1.00e+ 02 2.50e− 01 −0.707 1.25e− 01 – rejected (Armijo)
– 3 1.25e− 01 1.00e+ 02 1.25e− 01 −0.770 3.13e− 02 8.59e− 01 f-type step
2 1 2.50e− 01 1.00e+ 02 2.50e− 01 −0.814 8.69e− 02 4.18e− 01 f-type step
3 1 5.00e− 01 1.00e+ 02 2.71e− 01 −0.883 7.60e− 02 5.86e− 02 f-type step
4 1 5.00e− 01 1.00e+ 02 6.30e− 02 −0.992 5.06e− 03 2.86e− 03 f-type step
5 1 5.00e− 01 1.00e+ 02 2.55e− 03 −1.000 1.28e− 05 1.37e− 05 f-type step
6 1 5.00e− 01 1.00e+ 02 9.77e− 06 −1.000 1.37e− 10 1.88e− 10 ε-optimal

Table 3: Iterations of line-search funnel SQP method on maratos example.

k l α(l) regulariz. τ (k) ∥d(k,l)∥∞ f (k) h(k) ∥∇L∥ status
0 – – – 1.00e+ 02 – -0.707 5.28e− 10 7.65e− 01 initial point
1 1 1 1.00e− 04 1.00e+ 02 5.00e− 01 -0.207 5.00e− 01 – rejected (Armijo)
– 2 0.5 - 1.00e+ 02 2.50e− 01 -0.707 1.25e− 01 4.31e− 01 f-type step
2 1 1 1.00e− 04 1.00e+ 02 4.81e− 01 -0.605 2.58e− 01 – rejected (Armijo)
– 2 0.5 – 1.00e+ 02 2.40e− 01 -0.785 1.27e− 01 2.10e− 01 f-type step
3 1 1 1.00e− 04 1.00e+ 02 2.40e− 01 -0.913 5.79e− 02 2.30e− 02 f-type step
4 1 1 1.00e− 04 1.00e+ 02 2.76e− 02 -0.998 1.35e− 03 9.91e− 04 f-type step
5 1 1 1.00e− 04 1.00e+ 02 6.74e− 04 -1.000 8.86e− 07 1.24e− 06 f-type step
6 1 1 1.00e− 04 1.00e+ 02 8.65e− 07 -1.000 9.44e− 13 9.59e− 11 ε-optimal

6 Conclusion

We consider a generic double-loop framework for solving nonlinearly constrained optimization prob-

lems that has been implemented in the open-source solver Uno. To illustrate the framework, we

studied several variants of a restoration SQP method for nonlinearly constrained optimization prob-

lems, with an emphasis on a new globalization strategy called the funnel method. The method was

presented through the lens of filter methods, whose theory served as a starting point for a theo-

retical analysis. We derived the global convergence for the trust-region funnel SQP method and

outlined the main differences and similarities in the different proofs. An implementation of the

funnel strategy in the Uno solver proved to slightly outperform its filter counterpart with respect

to constraint evaluations for a subset of CUTEst instances, while being also easier to implement.
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A Detailed Results on CUTEst problems: Number of Function and

Derivative Evaluations for Trust-Region Algorithms

trust-region funnel method trust-region filter method

instance status f c ∇f ∇c ∇2L status f c ∇f ∇c ∇2L
aircrfta KKT 4 4 4 4 3 KKT 4 4 4 4 3

airport KKT 13 13 13 13 12 KKT 13 13 13 13 12

aljazzaf KKT 17 26 23 23 23 KKT 12 22 19 19 19

allinitc KKT 29 29 29 29 28 KKT 29 29 29 29 28

alsotame KKT 5 5 5 5 4 KKT 5 5 5 5 4

argauss infeasible 1 3 3 3 3 infeasible 1 3 3 3 3

avgasa KKT 2 2 2 2 1 KKT 2 2 2 2 1

avgasb KKT 2 2 2 2 1 KKT 2 2 2 2 1

avion2 KKT 23 23 11 11 10 KKT 23 23 11 11 10

batch KKT 9 9 9 9 8 KKT 9 9 9 9 8

biggsc4 KKT 2 2 2 2 1 KKT 2 2 2 2 1

booth KKT 2 2 2 2 1 KKT 2 2 2 2 1

bt1 infeasible 2 2 2 2 2 infeasible 2 2 2 2 2

bt10 KKT 7 7 7 7 6 KKT 7 7 7 7 6

bt11 KKT 7 7 7 7 6 KKT 7 7 7 7 6

bt12 KKT 5 5 5 5 4 KKT 5 5 5 5 4

bt13 KKT 105 110 73 73 75 KKT 58 71 42 42 46

bt2 KKT 13 13 13 13 12 KKT 13 13 13 13 12

bt3 KKT 2 2 2 2 1 KKT 2 2 2 2 1

bt4 KKT 8 8 7 7 6 KKT 8 8 7 7 6

bt5 KKT 9 9 8 8 7 KKT 9 9 8 8 7

bt6 KKT 11 11 10 10 9 KKT 11 11 10 10 9

bt7 KKT 23 23 18 18 17 KKT 17 21 13 13 14

bt8 KKT 12 12 12 12 11 KKT 12 12 12 12 11

bt9 KKT 19 19 15 15 14 KKT 19 25 18 18 18

byrdsphr KKT 8 23 14 14 14 KKT 8 23 14 14 14

cantilvr KKT 13 13 11 11 10 KKT 13 13 11 11 10

catena KKT 12 12 11 11 10 KKT 12 12 11 11 10

cb2 KKT 7 7 7 7 6 KKT 7 7 7 7 6

cb3 KKT 7 7 7 7 6 KKT 7 7 7 7 6

chaconn1 KKT 5 5 5 5 4 KKT 5 5 5 5 4

chaconn2 KKT 5 5 5 5 4 KKT 5 5 5 5 4

cluster KKT 10 10 10 10 9 KKT 10 10 9 9 8

concon KKT 5 11 10 10 10 KKT 7 16 12 12 16

congigmz KKT 5 6 6 6 6 KKT 5 6 6 6 6

coolhans KKT 3 3 3 3 2 KKT 3 3 3 3 2

core1 KKT 6 238 123 123 123 KKT 6 238 123 123 123

coshfun unbounded 86 86 75 75 74 unbounded 86 86 75 75 74

cresc4 KKT 131 161 84 84 85 KKT 84 99 53 53 60

csfi1 KKT 11 12 10 10 10 KKT 20 21 15 15 15

csfi2 KKT 7 12 12 12 12 KKT 13 38 24 24 28

dallass KKT 18 18 16 16 15 KKT 18 18 16 16 15

deconvc KKT 24 24 15 15 14 KKT 24 24 15 15 14

degenlpa KKT 2 2 2 2 1 KKT 2 2 2 2 1

degenlpb KKT 2 2 2 2 1 KKT 2 2 2 2 1

demymalo KKT 8 8 8 8 7 KKT 8 8 8 8 7

dipigri KKT 12 12 9 9 8 KKT 12 12 9 9 8
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disc2 infeasible 9 25 18 18 18 infeasible 5 17 13 13 15

discs error – – – – – error – – – – –

dixchlng KKT 10 10 10 10 9 KKT 10 10 10 10 9

dnieper KKT 4 4 4 4 3 KKT 4 4 4 4 3

dual1 KKT 2 2 2 2 1 KKT 2 2 2 2 1

dual2 KKT 2 2 2 2 1 KKT 2 2 2 2 1

dual4 KKT 2 2 2 2 1 KKT 2 2 2 2 1

dualc1 KKT 2 2 2 2 1 KKT 2 2 2 2 1

dualc2 KKT 2 2 2 2 1 KKT 2 2 2 2 1

dualc5 KKT 2 2 2 2 1 KKT 2 2 2 2 1

dualc8 KKT 2 2 2 2 1 KKT 2 2 2 2 1

eigencco KKT 34 34 18 18 17 KKT 20 20 12 12 11

eigmaxc KKT 5 6 6 6 6 KKT 5 6 6 6 6

eigminc KKT 5 6 6 6 6 KKT 5 6 6 6 6

expfita KKT 13 13 13 13 12 KKT 13 13 13 13 12

extrasim KKT 2 2 2 2 1 KKT 2 2 2 2 1

fccu KKT 4 4 4 4 3 KKT 4 4 4 4 3

fletcher infeasible 2 2 2 2 2 infeasible 2 2 2 2 2

genhs28 KKT 2 2 2 2 1 KKT 2 2 2 2 1

gigomez1 KKT 8 8 8 8 7 KKT 8 8 8 8 7

goffin KKT 3 3 3 3 2 KKT 3 3 3 3 2

gottfr KKT 8 8 8 8 7 KKT 14 30 15 15 35

gridnetg KKT 4 4 4 4 3 KKT 4 4 4 4 3

gridneth KKT 5 5 5 5 4 KKT 5 5 5 5 4

gridneti KKT 5 5 5 5 4 KKT 5 5 5 5 4

haifas KKT 12 12 9 9 8 KKT 12 12 9 9 8

haldmads KKT 40 40 22 22 21 KKT 25 26 16 16 16

hatfldf KKT 8 28 14 14 22 KKT 8 28 14 14 22

hatfldg KKT 5 18 10 10 10 KKT 5 18 10 10 10

hatfldh KKT 2 2 2 2 1 KKT 2 2 2 2 1

heart6 KKT 4 197 99 99 99 KKT 5 199 100 100 102

heart8 KKT 4 144 72 72 72 KKT 5 146 73 73 75

himmelba KKT 2 2 2 2 1 KKT 2 2 2 2 1

himmelbc KKT 6 6 6 6 5 KKT 5 6 5 5 5

himmelbd infeasible 4 10 7 7 7 infeasible 4 10 7 7 7

himmelbe KKT 2 2 2 2 1 KKT 2 2 2 2 1

himmelbk KKT 6 6 6 6 5 KKT 6 6 6 6 5

himmelp2 KKT 9 9 9 9 8 KKT 9 9 9 9 8

himmelp3 KKT 5 5 5 5 4 KKT 5 5 5 5 4

himmelp4 KKT 5 5 5 5 4 KKT 5 5 5 5 4

himmelp5 KKT 12 12 10 10 9 KKT 12 12 10 10 9

himmelp6 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hong KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs006 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs007 KKT 12 12 9 9 8 KKT 12 12 9 9 8

hs008 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs009 KKT 5 5 4 4 3 KKT 5 5 4 4 3

hs010 KKT 10 10 10 10 9 KKT 10 10 10 10 9

hs011 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs012 KKT 8 8 6 6 5 KKT 8 8 6 6 5

hs013 KKT 25 25 25 25 24 KKT 25 25 25 25 24

hs014 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs015 KKT 4 7 6 6 6 KKT 4 7 6 6 6
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hs016 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs017 KKT 8 8 7 7 6 KKT 8 8 7 7 6

hs018 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs019 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs020 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs021 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs022 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs023 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs024 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs026 KKT 18 18 18 18 17 KKT 18 18 18 18 17

hs027 KKT 17 17 16 16 15 KKT 21 22 16 16 16

hs028 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs029 KKT 8 8 7 7 6 KKT 8 8 7 7 6

hs030 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs031 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs032 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs033 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs034 KKT 8 8 8 8 7 KKT 8 8 8 8 7

hs035 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs036 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs037 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs039 KKT 19 19 15 15 14 KKT 19 25 18 18 18

hs040 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs041 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs042 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs043 KKT 9 9 8 8 7 KKT 9 9 8 8 7

hs044 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs046 KKT 19 19 19 19 18 KKT 19 19 19 19 18

hs047 KKT 21 21 18 18 17 KKT 21 21 18 18 17

hs048 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs049 KKT 17 17 17 17 16 KKT 17 17 17 17 16

hs050 KKT 9 9 9 9 8 KKT 9 9 9 9 8

hs051 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs052 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs053 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs054 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs055 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs056 KKT 15 16 16 16 16 KKT 15 16 16 16 16

hs057 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs059 KKT 11 12 10 10 10 KKT 11 12 10 10 10

hs060 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs061 infeasible 1 2 2 2 2 infeasible 1 2 2 2 2

hs062 KKT 8 8 7 7 6 KKT 8 8 7 7 6

hs063 KKT 9 11 10 10 10 KKT 8 10 8 8 9

hs064 KKT 12 17 17 17 17 KKT 12 17 17 17 17

hs065 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs066 KKT 9 9 9 9 8 KKT 9 9 9 9 8

hs067 KKT 12 12 12 12 11 KKT 12 12 12 12 11

hs070 KKT 40 40 28 28 27 KKT 40 40 28 28 27

hs071 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs072 KKT 15 18 16 16 16 KKT 15 18 16 16 16

hs073 KKT 4 4 4 4 3 KKT 4 4 4 4 3

hs074 KKT 6 26 19 19 19 KKT 6 26 19 19 19
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hs075 KKT 5 25 18 18 18 KKT 5 25 18 18 18

hs076 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs077 KKT 11 11 10 10 9 KKT 11 11 10 10 9

hs078 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs079 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs080 KKT 8 8 8 8 7 KKT 8 8 8 8 7

hs081 KKT 111 113 58 58 59 KKT 29 29 18 18 17

hs083 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs084 KKT 11 11 8 8 7 KKT 11 11 8 8 7

hs085 error – – – – – error – – – – –

hs086 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs087 KKT 7 10 10 10 10 KKT 7 10 10 10 10

hs088 KKT 22 29 20 20 21 KKT 21 24 21 21 22

hs089 KKT 23 24 17 17 17 KKT 23 24 17 17 17

hs090 KKT 81 89 50 50 51 KKT 74 82 50 50 51

hs091 KKT 125 126 59 59 59 KKT 51 52 29 29 29

hs092 KKT 96 106 50 50 51 KKT 40 51 28 28 30

hs093 infeasible 3 3 3 3 3 infeasible 3 3 3 3 3

hs095 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs096 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs097 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs098 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs099 small feasible 14 63 41 41 41 small feasible 14 63 41 41 41

hs100 KKT 12 12 9 9 8 KKT 12 12 9 9 8

hs100lnp KKT 14 14 12 12 11 KKT 12 12 9 9 8

hs100mod KKT 12 12 9 9 8 KKT 12 12 9 9 8

hs101 KKT 22 27 18 18 18 KKT 22 27 18 18 18

hs102 KKT 17 18 15 15 15 KKT 17 18 15 15 15

hs103 KKT 16 17 14 14 14 KKT 37 1678 843 843 848

hs104 KKT 31 36 25 25 25 KKT 17 23 15 15 15

hs106 KKT 771 771 386 386 385 KKT 16 16 15 15 14

hs107 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs108 KKT 21 21 14 14 13 KKT 25 25 19 19 18

hs109 KKT 6 24 18 18 18 KKT 6 24 18 18 18

hs111 KKT 35 35 21 21 20 KKT 40 40 25 25 24

hs111lnp KKT 35 35 21 21 20 KKT 40 40 25 25 24

hs112 KKT 12 12 12 12 11 KKT 12 12 12 12 11

hs113 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs114 infeasible 1 197 102 102 102 infeasible 1 197 102 102 102

hs116 KKT 12 12 12 12 11 KKT 12 12 12 12 11

hs117 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs118 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs119 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs21mod KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs268 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs35mod KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs44new KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs99exp KKT 12 42 32 32 32 KKT 12 42 32 32 32

hubfit KKT 2 2 2 2 1 KKT 2 2 2 2 1

hypcir KKT 6 6 6 6 5 KKT 6 7 6 6 6

kiwcresc KKT 11 11 9 9 8 KKT 11 11 9 9 8

lakes KKT 12 5456 2737 2737 2737 KKT 12 5456 2737 2737 2737

launch error – – – – – infeasible 1 1523 735 735 735
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lewispol infeasible 1 4 4 4 4 infeasible 1 4 4 4 4

linspanh KKT 2 2 2 2 1 KKT 2 2 2 2 1

loadbal KKT 8 8 8 8 7 KKT 8 8 8 8 7

lootsma KKT 5 5 5 5 4 KKT 5 5 5 5 4

lotschd KKT 3 3 3 3 2 KKT 3 3 3 3 2

lsnnodoc KKT 7 7 7 7 6 KKT 7 7 7 7 6

lsqfit KKT 2 2 2 2 1 KKT 2 2 2 2 1

madsen KKT 14 14 11 11 10 KKT 14 14 11 11 10

makela1 KKT 12 12 10 10 9 KKT 12 12 10 10 9

makela2 KKT 5 5 5 5 4 KKT 5 5 5 5 4

makela3 KKT 22 22 20 20 19 KKT 22 22 20 20 19

makela4 KKT 3 3 3 3 2 KKT 3 3 3 3 2

maratos KKT 10 10 9 9 8 KKT 10 10 9 9 8

matrix2 KKT 12 12 12 12 11 KKT 12 12 12 12 11

mconcon KKT 5 11 10 10 10 KKT 7 16 12 12 16

mifflin1 KKT 10 10 9 9 8 KKT 10 10 9 9 8

mifflin2 KKT 11 11 8 8 7 KKT 10 10 8 8 7

minmaxbd KKT 32 45 25 25 27 KKT 22 25 18 18 18

minmaxrb KKT 3 3 3 3 2 KKT 3 3 3 3 2

mistake KKT 27 27 17 17 16 KKT 22 22 19 19 18

model KKT 2 2 2 2 1 KKT 2 2 2 2 1

mwright KKT 9 9 7 7 6 KKT 9 9 7 7 6

nuffield1 KKT 5 5 5 5 4 KKT 5 5 5 5 4

odfits KKT 7 7 7 7 6 KKT 7 7 7 7 6

optcntrl KKT 4 4 4 4 3 KKT 4 4 4 4 3

optmass KKT 9 9 7 7 6 KKT 9 9 7 7 6

optprloc KKT 18 18 10 10 9 KKT 16 16 9 9 8

orthregb KKT 2 2 2 2 1 KKT 2 2 2 2 1

orthrege KKT 2334 2364 1183 1183 1185 KKT 2896 2898 1450 1450 1450

pentagon KKT 8 8 6 6 5 KKT 8 8 6 6 5

polak1 KKT 8 8 8 8 7 KKT 8 8 8 8 7

polak2 KKT 22 31 20 20 23 KKT 46 55 32 32 35

polak3 KKT 21 26 15 15 15 KKT 21 26 15 15 15

polak4 KKT 5 5 5 5 4 KKT 5 5 5 5 4

polak5 KKT 43 57 45 45 45 KKT 82 96 47 47 47

polak6 KKT 31 34 17 17 18 KKT 43 48 23 23 25

portfl1 KKT 2 2 2 2 1 KKT 2 2 2 2 1

portfl2 KKT 2 2 2 2 1 KKT 2 2 2 2 1

portfl3 KKT 2 2 2 2 1 KKT 2 2 2 2 1

portfl4 KKT 2 2 2 2 1 KKT 2 2 2 2 1

portfl6 KKT 2 2 2 2 1 KKT 2 2 2 2 1

powellbs KKT 12 12 12 12 11 KKT 10 115 60 60 62

powellsq KKT 21 35 26 26 26 KKT 80 277 135 135 216

prodpl0 KKT 9 9 9 9 8 KKT 9 9 9 9 8

prodpl1 KKT 7 7 7 7 6 KKT 7 7 7 7 6

recipe KKT 2 2 2 2 1 KKT 2 2 2 2 1

res KKT 2 2 2 2 1 small feasible 3 3 2 2 1

rk23 KKT 5 5 5 5 4 KKT 7 9 7 7 7

robot KKT 14 21 12 12 12 KKT 14 21 12 12 12

rosenmmx KKT 24 27 14 14 14 KKT 36 40 19 19 20

s365mod KKT 32 48 27 27 32 KKT 23 29 18 18 18

simpllpa KKT 2 2 2 2 1 KKT 2 2 2 2 1

1full name: nuffield continuum, which this table is too narrow to contain.
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simpllpb KKT 2 2 2 2 1 KKT 2 2 2 2 1

snake KKT 3 3 3 3 2 KKT 3 3 3 3 2

spanhyd KKT 4 4 4 4 3 KKT 4 4 4 4 3

spiral KKT 26 26 21 21 20 KKT 113 117 88 88 90

ssnlbeam KKT 5 5 5 5 4 KKT 5 5 5 5 4

stancmin KKT 2 2 2 2 1 KKT 2 2 2 2 1

supersim KKT 2 2 2 2 1 KKT 2 2 2 2 1

swopf KKT 5 5 5 5 4 KKT 5 5 5 5 4

synthes1 KKT 5 5 5 5 4 KKT 5 5 5 5 4

tame KKT 2 2 2 2 1 KKT 2 2 2 2 1

try-b KKT 8 8 8 8 7 KKT 8 8 8 8 7

twobars KKT 8 8 8 8 7 KKT 8 8 8 8 7

vanderm4 infeasible 1 17 17 17 17 infeasible 1 17 17 17 17

womflet KKT 33 41 27 27 27 KKT 42 46 24 24 25

zangwil3 KKT 2 2 2 2 1 KKT 2 2 2 2 1

zecevic2 KKT 2 2 2 2 1 KKT 2 2 2 2 1

zecevic3 KKT 10 15 10 10 10 KKT 10 15 10 10 10

zecevic4 KKT 6 6 6 6 5 KKT 6 6 6 6 5

zigzag KKT 11 11 11 11 10 KKT 11 11 11 11 10

zy2 KKT 5 5 5 5 4 KKT 5 5 5 5 4

B Detailed Results on CUTEst problems: Number of Function and

Derivative Evaluations for Line-Search Algorithms

line-search funnel method line-search filter method

instance status f c ∇f ∇c ∇2L status f c ∇f ∇c ∇2L
aircrfta KKT 4 4 4 4 3 KKT 4 4 4 4 3

airport KKT 13 13 13 13 12 KKT 13 13 13 13 12

aljazzaf KKT 58 58 34 34 33 KKT 131 171 40 40 40

allinitc KKT 29 29 29 29 28 KKT 29 29 29 29 28

alsotame KKT 5 5 5 5 4 KKT 5 5 5 5 4

argauss infeasible 1 3 3 3 3 infeasible 1 3 3 3 3

avgasa KKT 3 3 3 3 2 KKT 3 3 3 3 2

avgasb KKT 3 3 3 3 2 KKT 3 3 3 3 2

avion2 KKT 3 3 3 3 2 KKT 3 3 3 3 2

batch KKT 9 9 9 9 8 KKT 9 9 9 9 8

biggsc4 KKT 4 4 4 4 3 KKT 4 4 4 4 3

booth KKT 2 2 2 2 1 KKT 2 2 2 2 1

bt1 infeasible 2 2 2 2 2 infeasible 2 2 2 2 2

bt10 KKT 7 7 7 7 6 KKT 7 7 7 7 6

bt11 KKT 7 7 7 7 6 KKT 7 7 7 7 6

bt12 KKT 5 5 5 5 4 KKT 5 5 5 5 4

bt13 KKT 24 24 21 21 20 KKT 24 24 21 21 20

bt2 KKT 13 13 13 13 12 KKT 13 13 13 13 12

bt3 KKT 3 3 3 3 2 KKT 3 3 3 3 2

bt4 KKT 50 50 50 50 49 KKT 50 50 50 50 49

bt5 KKT 37 37 37 37 36 KKT 37 37 37 37 36

bt6 KKT 30 30 30 30 29 KKT 30 30 30 30 29

bt7 KKT 87 87 53 53 52 KKT 109 109 52 52 52

bt8 KKT 28 28 28 28 27 KKT 28 28 28 28 27

bt9 KKT 63 63 22 22 21 KKT 52 52 20 20 19
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byrdsphr error – – – – – KKT 5495 5589 453 453 498

cantilvr KKT 21 21 14 14 13 KKT 24 24 14 14 13

catena KKT 340 340 31 31 32 KKT 244 244 25 25 25

cb2 KKT 7 7 7 7 6 KKT 7 7 7 7 6

cb3 KKT 7 7 7 7 6 KKT 7 7 7 7 6

chaconn1 KKT 5 5 5 5 4 KKT 5 5 5 5 4

chaconn2 KKT 5 5 5 5 4 KKT 5 5 5 5 4

cluster KKT 9 9 9 9 8 KKT 9 9 9 9 8

concon KKT 5 5 5 5 4 KKT 5 5 5 5 4

congigmz KKT 5 5 5 5 4 KKT 5 5 5 5 4

coolhans KKT 6 6 6 6 5 KKT 57 65 11 11 11

core1 KKT 254 254 254 254 253 KKT 254 254 254 254 253

coshfun error – – – – – error – – – – –

cresc4 error – – – – – error – – – – –

csfi1 KKT 14 14 11 11 10 KKT 47 47 27 27 26

csfi2 KKT 72 72 31 31 30 KKT 88 88 31 31 30

dallass KKT 17 17 14 14 13 KKT 17 17 14 14 13

deconvc KKT 82 82 82 82 81 KKT 82 82 82 82 81

degenlpa KKT 2 2 2 2 1 KKT 2 2 2 2 1

degenlpb KKT 2 2 2 2 1 KKT 2 2 2 2 1

demymalo KKT 17 17 8 8 7 KKT 17 17 8 8 7

dipigri KKT 17 17 8 8 7 KKT 17 17 8 8 7

disc2 infeasible 2 198 198 198 198 infeasible 2 198 198 198 198

discs KKT 2758 2767 2767 2767 2767 KKT 2758 2767 2767 2767 2767

dixchlng KKT 224 224 208 208 207 error – – – – –

dnieper KKT 577 577 577 577 576 KKT 577 577 577 577 576

dual1 KKT 3 3 3 3 2 KKT 3 3 3 3 2

dual2 KKT 3 3 3 3 2 KKT 3 3 3 3 2

dual4 KKT 3 3 3 3 2 KKT 3 3 3 3 2

dualc1 KKT 2 2 2 2 1 KKT 2 2 2 2 1

dualc2 KKT 2 2 2 2 1 KKT 2 2 2 2 1

dualc5 error – – – – – error – – – – –

dualc8 KKT 2 2 2 2 1 KKT 2 2 2 2 1

eigencco KKT 13 13 13 13 12 KKT 13 13 13 13 12

eigmaxc KKT 6 7 7 7 7 KKT 6 7 7 7 7

eigminc KKT 6 7 7 7 7 KKT 6 7 7 7 7

expfita KKT 14 14 14 14 13 KKT 14 14 14 14 13

extrasim KKT 3 3 3 3 2 KKT 3 3 3 3 2

fccu KKT 3 3 3 3 2 KKT 3 3 3 3 2

fletcher infeasible 2 2 2 2 2 infeasible 2 2 2 2 2

genhs28 KKT 3 3 3 3 2 KKT 3 3 3 3 2

gigomez1 KKT 17 17 8 8 7 KKT 17 17 8 8 7

goffin KKT 3 3 3 3 2 KKT 3 3 3 3 2

gottfr KKT 8 8 8 8 7 KKT 8 8 6 6 5

gridnetg KKT 4 4 4 4 3 KKT 4 4 4 4 3

gridneth KKT 5 5 5 5 4 KKT 5 5 5 5 4

gridneti KKT 5 5 5 5 4 KKT 5 5 5 5 4

haifas KKT 31 31 9 9 8 KKT 31 31 9 9 8

haldmads KKT 143 143 136 136 135 error – – – – –

hatfldf KKT 9 9 8 8 7 infeasible 47 3267 1524 1524 1524

hatfldg KKT 17 17 9 9 8 KKT 21 21 9 9 8

hatfldh KKT 4 4 4 4 3 KKT 4 4 4 4 3

heart6 KKT 3 2846 2843 2843 2843 KKT 3 2846 2843 2843 2843
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heart8 KKT 5 26 19 19 19 KKT 5 26 19 19 19

himmelba KKT 2 2 2 2 1 KKT 2 2 2 2 1

himmelbc KKT 6 6 6 6 5 KKT 7 7 6 6 5

himmelbd infeasible 134 181 37 37 37 infeasible 57 109 21 21 21

himmelbe KKT 3 3 3 3 2 KKT 3 3 3 3 2

himmelbk KKT 708 708 708 708 707 KKT 708 708 708 708 707

himmelp2 KKT 10 10 10 10 9 KKT 10 10 10 10 9

himmelp3 KKT 5 5 5 5 4 KKT 5 5 5 5 4

himmelp4 KKT 6 6 6 6 5 KKT 6 6 6 6 5

himmelp5 KKT 16 16 16 16 15 KKT 16 16 16 16 15

himmelp6 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hong KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs006 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs007 KKT 16 16 11 11 10 KKT 16 16 11 11 10

hs008 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs009 KKT 5 5 4 4 3 KKT 5 5 4 4 3

hs010 KKT 39 39 15 15 14 KKT 52 52 18 18 17

hs011 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs012 KKT 9 9 7 7 6 KKT 9 9 7 7 6

hs013 KKT 26 26 26 26 25 KKT 26 26 26 26 25

hs014 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs015 KKT 4 9 9 9 9 KKT 4 9 9 9 9

hs016 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs017 KKT 10 10 9 9 8 KKT 10 10 9 9 8

hs018 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs019 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs020 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs021 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs022 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs023 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs024 KKT 16 16 16 16 15 KKT 16 16 16 16 15

hs026 KKT 19 19 19 19 18 KKT 19 19 19 19 18

hs027 KKT 14 14 14 14 13 KKT 38 38 16 16 15

hs028 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs029 KKT 25 25 25 25 24 KKT 25 25 25 25 24

hs030 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs031 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs032 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs033 KKT 16 16 16 16 15 KKT 16 16 16 16 15

hs034 KKT 8 8 8 8 7 KKT 8 8 8 8 7

hs035 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs036 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs037 KKT 138 138 132 132 131 KKT 138 138 132 132 131

hs039 KKT 63 63 22 22 21 KKT 52 52 20 20 19

hs040 KKT 19 19 19 19 18 KKT 19 19 19 19 18

hs041 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs042 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs043 KKT 8 8 7 7 6 KKT 8 8 7 7 6

hs044 KKT 10 10 10 10 9 KKT 10 10 10 10 9

hs046 KKT 18 18 18 18 17 KKT 18 18 18 18 17

hs047 KKT 18 18 18 18 17 KKT 18 18 18 18 17

hs048 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs049 KKT 18 18 18 18 17 KKT 18 18 18 18 17
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hs050 KKT 10 10 10 10 9 KKT 10 10 10 10 9

hs051 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs052 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs053 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs054 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs055 KKT 2 2 2 2 1 KKT 2 2 2 2 1

hs056 KKT 102 102 102 102 101 KKT 102 102 102 102 101

hs057 KKT 26 26 26 26 25 KKT 26 26 26 26 25

hs059 KKT 18 18 12 12 11 KKT 18 18 12 12 11

hs060 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs061 infeasible 2 3 3 3 3 infeasible 2 3 3 3 3

hs062 KKT 7 7 6 6 5 KKT 7 7 6 6 5

hs063 KKT 42 44 43 43 43 KKT 42 44 43 43 43

hs064 KKT 16 16 16 16 15 KKT 16 16 16 16 15

hs065 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs066 KKT 9 9 9 9 8 KKT 9 9 9 9 8

hs067 error – – – – – error – – – – –

hs070 KKT 25 25 19 19 18 KKT 25 25 19 19 18

hs071 KKT 47 47 47 47 46 KKT 47 47 47 47 46

hs072 KKT 17 17 15 15 14 KKT 18 18 15 15 14

hs073 KKT 4 4 4 4 3 KKT 4 4 4 4 3

hs074 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs075 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs076 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs077 KKT 12 12 11 11 10 KKT 12 12 11 11 10

hs078 KKT 35 35 35 35 34 KKT 35 35 35 35 34

hs079 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs080 KKT 8 8 8 8 7 KKT 8 8 8 8 7

hs081 error – – – – – error – – – – –

hs083 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs084 KKT 2859 2859 2859 2859 2858 KKT 2859 2859 2859 2859 2858

hs085 infeasible 1 34 23 23 23 infeasible 1 34 23 23 23

hs086 KKT 5 5 5 5 4 KKT 5 5 5 5 4

hs087 KKT 20 20 20 20 19 KKT 20 20 20 20 19

hs088 infeasible 6 6 6 6 6 KKT 19 19 17 17 16

hs089 KKT 24 24 19 19 18 KKT 24 24 19 19 18

hs090 infeasible 4 4 4 4 4 KKT 18 18 12 12 11

hs091 KKT 32 32 29 29 28 KKT 39 39 25 25 24

hs092 infeasible 4 4 4 4 4 KKT 31 31 15 15 14

hs093 KKT 1558 1558 1558 1558 1557 KKT 1558 1558 1558 1558 1557

hs095 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs096 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs097 KKT 63 63 63 63 62 KKT 63 63 63 63 62

hs098 KKT 63 63 63 63 62 KKT 63 63 63 63 62

hs099 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs100 KKT 17 17 8 8 7 KKT 17 17 8 8 7

hs100lnp KKT 27 27 21 21 20 KKT 24 24 17 17 16

hs100mod KKT 25 25 10 10 9 KKT 25 25 10 10 9

hs101 KKT 24 24 18 18 17 KKT 24 24 18 18 17

hs102 KKT 21 21 19 19 18 KKT 87 96 26 26 26

hs103 KKT 14 14 12 12 11 KKT 35 35 27 27 26

hs104 KKT 41 41 41 41 40 KKT 126 130 51 51 51

hs106 KKT 748 748 744 744 743 KKT 724 724 721 721 720
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hs107 KKT 11 11 11 11 10 KKT 11 11 11 11 10

hs108 KKT 11 11 11 11 10 KKT 11 11 11 11 10

hs109 KKT 45 46 46 46 46 KKT 45 46 46 46 46

hs111 KKT 17 17 17 17 16 KKT 17 17 17 17 16

hs111lnp KKT 17 17 17 17 16 KKT 17 17 17 17 16

hs112 KKT 12 12 12 12 11 KKT 12 12 12 12 11

hs113 KKT 6 6 6 6 5 KKT 6 6 6 6 5

hs114 error – – – – – error – – – – –

hs116 error – – – – – error – – – – –

hs117 KKT 8 8 7 7 6 KKT 8 8 7 7 6

hs118 KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs119 KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs21mod KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs268 KKT 4 4 4 4 3 KKT 4 4 4 4 3

hs35mod KKT 3 3 3 3 2 KKT 3 3 3 3 2

hs44new KKT 7 7 7 7 6 KKT 7 7 7 7 6

hs99exp error – – – – – error – – – – –

hubfit KKT 3 3 3 3 2 KKT 3 3 3 3 2

hypcir KKT 6 6 6 6 5 KKT 6 6 5 5 4

kiwcresc KKT 215 215 23 23 24 KKT 152 154 22 22 22

lakes error – – – – – error – – – – –

launch error – – – – – error – – – – –

lewispol infeasible 1 4 4 4 4 infeasible 1 4 4 4 4

linspanh KKT 2 2 2 2 1 KKT 2 2 2 2 1

loadbal KKT 14 14 14 14 13 KKT 14 14 14 14 13

lootsma KKT 16 16 16 16 15 KKT 16 16 16 16 15

lotschd KKT 3 3 3 3 2 KKT 3 3 3 3 2

lsnnodoc KKT 7 7 7 7 6 KKT 7 7 7 7 6

lsqfit KKT 3 3 3 3 2 KKT 3 3 3 3 2

madsen KKT 10 10 10 10 9 KKT 10 10 10 10 9

makela1 KKT 18 18 9 9 8 KKT 18 18 9 9 8

makela2 KKT 14 14 6 6 5 KKT 14 14 6 6 5

makela3 KKT 83 83 28 28 27 KKT 71 71 23 23 22

makela4 KKT 3 3 3 3 2 KKT 3 3 3 3 2

maratos KKT 37 37 15 15 14 KKT 32 32 14 14 13

matrix2 KKT 22 22 22 22 21 KKT 22 22 22 22 21

mconcon KKT 5 5 5 5 4 KKT 5 5 5 5 4

mifflin1 KKT 48 48 15 15 14 KKT 39 39 13 13 12

mifflin2 KKT 56 56 14 14 13 KKT 60 60 14 14 13

minmaxbd KKT 59 59 15 15 14 KKT 74 74 19 19 18

minmaxrb KKT 4 4 4 4 3 KKT 4 4 4 4 3

mistake KKT 7 7 7 7 6 KKT 7 7 7 7 6

model KKT 3 3 3 3 2 KKT 3 3 3 3 2

mwright KKT 23 23 22 22 21 KKT 23 23 22 22 21

nuffield KKT 5 5 5 5 4 KKT 5 5 5 5 4

odfits KKT 7 7 7 7 6 KKT 7 7 7 7 6

optcntrl KKT 4 4 4 4 3 KKT 4 4 4 4 3

optmass KKT 808 808 808 808 807 KKT 808 808 808 808 807

optprloc KKT 8 8 6 6 5 KKT 8 8 6 6 5

orthregb KKT 3 3 3 3 2 KKT 3 3 3 3 2

orthrege error – – – – – error – – – – –

pentagon KKT 9 9 9 9 8 KKT 9 9 9 9 8

polak1 KKT 93 93 15 15 15 KKT 69 69 17 17 16
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polak2 KKT 593 641 454 454 455 KKT 553 587 451 451 451

polak3 KKT 53 53 15 15 14 KKT 87 96 18 18 18

polak4 KKT 5 5 5 5 4 KKT 5 5 5 5 4

polak5 KKT 30 30 25 25 24 KKT 66 66 42 42 41

polak6 KKT 73 73 16 16 15 KKT 67 67 15 15 14

portfl1 KKT 3 3 3 3 2 KKT 3 3 3 3 2

portfl2 KKT 3 3 3 3 2 KKT 3 3 3 3 2

portfl3 KKT 3 3 3 3 2 KKT 3 3 3 3 2

portfl4 KKT 3 3 3 3 2 KKT 3 3 3 3 2

portfl6 KKT 3 3 3 3 2 KKT 3 3 3 3 2

powellbs KKT 15 15 15 15 14 KKT 223 223 57 57 56

powellsq KKT 41 41 34 34 33 error – – – – –

prodpl0 KKT 9 9 9 9 8 KKT 9 9 9 9 8

prodpl1 KKT 8 8 8 8 7 KKT 8 8 8 8 7

recipe KKT 3 3 3 3 2 KKT 3 3 3 3 2

res KKT 2 2 2 2 1 error – – – – –

rk23 KKT 10 10 10 10 9 KKT 13 13 12 12 11

robot KKT 19 23 20 20 20 KKT 21 25 21 21 21

rosenmmx KKT 75 75 14 14 13 KKT 79 79 15 15 14

s365mod KKT 1333 1333 1333 1333 1332 KKT 1339 1339 1337 1337 1336

simpllpa KKT 3 3 3 3 2 KKT 3 3 3 3 2

simpllpb KKT 3 3 3 3 2 KKT 3 3 3 3 2

snake KKT 3 3 3 3 2 KKT 3 3 3 3 2

spanhyd KKT 6 6 6 6 5 KKT 6 6 6 6 5

spiral KKT 215 215 107 107 106 KKT 99 99 72 72 71

ssnlbeam error – – – – – error – – – – –

stancmin KKT 2 2 2 2 1 KKT 2 2 2 2 1

supersim KKT 2 2 2 2 1 KKT 2 2 2 2 1

swopf error – – – – – error – – – – –

synthes1 KKT 5 5 5 5 4 KKT 5 5 5 5 4

tame KKT 2 2 2 2 1 KKT 2 2 2 2 1

try-b KKT 9 9 9 9 8 KKT 9 9 9 9 8

twobars KKT 8 8 8 8 7 KKT 8 8 8 8 7

vanderm4 infeasible 1 22 22 22 22 infeasible 1 22 22 22 22

womflet error – – – – – error – – – – –

zangwil3 KKT 2 2 2 2 1 KKT 2 2 2 2 1

zecevic2 KKT 3 3 3 3 2 KKT 3 3 3 3 2

zecevic3 KKT 9 9 8 8 7 KKT 9 9 8 8 7

zecevic4 KKT 7 7 7 7 6 KKT 7 7 7 7 6

zigzag KKT 131 131 131 131 130 KKT 131 131 131 131 130

zy2 KKT 16 16 16 16 15 KKT 16 16 16 16 15
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