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Abstract

We introduce a filter mechanism to force convergence for augmented Lagrangian methods
for nonlinear programming. In contrast to traditional augmented Lagrangian methods, our
approach does not require the use of forcing sequences that drive the first-order error to zero.
Instead, we employ a filter to drive the optimality measures to zero. Our algorithm is flexible
in the sense that it allows for equality constraint quadratic programming steps to accelerate
local convergence. We also include a feasibility restoration phase that allows fast detection of
infeasible problems. We give a convergence proof that shows that our algorithm converges to
first-order stationary points.
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1 Introduction

Nonlinearly constrained optimization is one of the most fundamental problems in scientific com-
puting with a broad range of engineering, scientific, and operational applications. Examples in-
clude nonlinear power flow [4, 27, 51, 53, 58], gas transmission networks [28, 50, 15], the coordina-
tion of hydroelectric energy [21, 17, 55], and finance [26], including portfolio allocation [45, 38, 64]
and volatility estimation [23, 2]. Chemical engineering has traditionally been at the forefront of
developing new applications and algorithms for nonlinear optimization; see the surveys [11, 12].
Applications in chemical engineering include process flowsheet design, mixing, blending, and
equilibrium models. Another area with a rich set of applications is optimal control [10]. Optimal
control applications include the control of chemical reactions, the shuttle re-entry problem [16, 10],
and the control of multiple airplanes [3]. More important, nonlinear optimization is a basic build-
ing block of more complex design and optimization paradigms such as integer and nonlinear
optimization [1, 29, 42, 46, 13, 5] and optimization problems with complementarity constraints
[47, 56, 48].
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Nonlinearly constrained optimization has been studied intensely for more than 30 years, re-
sulting in a range of algorithms, theory, and implementations. Current methods fall into two
competing classes: active set [39, 40, 30, 18, 22, 34] and interior point [35, 44, 63, 62, 8, 61, 19, 20].
Both classes are Newton-like schemes; and while both have their relative merits, interior-point
methods have emerged as the computational leader for large-scale problems.

The Achilles heel of interior-point methods is our inability to efficiently warm-start these meth-
ods. Despite significant recent advances [41, 6, 7], interior-point methods cannot compete with
active-set approaches when solving mixed-integer nonlinear programs [14]. This deficiency is
at odds with the rise of complex optimization paradigms such as nonlinear integer optimization
that require the solution of thousands of closely related nonlinear problems and drive the de-
mand for efficient warm-start techniques. On the other hand, active-set methods enjoy excellent
warm-starting potential. Unfortunately, current active-set methods rely on pivoting approaches
and do not readily scale to multicore architectures (some successful parallel approaches to linear
programming (LP) active-set solvers can be found in the series of papers [43, 60, 49]). To over-
come this challenge, we study augmented Lagrangian methods, which combine better parallel
scalability potential with good warm-starting capabilities.

We consider solving the following nonlinear program (NLP),

minimize
x

f(x) subject to c(x) = 0, x ≥ 0, (NLP)

where x ∈ IRn, f : IRn → IR, c : IRn → IRm are twice continuously differentiable. We use super-
scripts, x(k), to indicate iterates and evaluation of nonlinear functions, such as f (k) := f(x(k)) and
∇c(k) = ∇c(x(k)). The Lagrangian of (NLP) is defined as L0(x, y) = f(x)− yT c(x), where y ∈ IRm

is a vector of Lagrange multipliers of c(x) = 0.

The first-order optimality conditions of (NLP) can be written as

min {∇xL0(x, y) , x} = 0, (1.1a)

c(x) = 0, (1.1b)

where the min is taken componentwise and (1.1a) corresponds to the usual first-order condition,
0 ≤ x ⊥ ∇xL0(x, y) ≥ 0.

1.1 Augmented Lagrangian Methods

The augmented Lagrangian is defined as

Lρ(x, y) = f(x)− yT c(x) + 1
2ρ‖c(x)‖2. (1.2)

Augmented Lagrangian methods have been studied by [9, 54, 52, 57]. Recently, researchers have
expressed renewed interest in augmented Lagrangian methods because of their good scalability
properties, which had already been observed in [24]. The key computational step in augmented
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Lagrangian methods is the minimization of Lρk(x, y(k)) for fixed ρk, y(k), giving rise to the bound-
constrained Lagrangian (BCL(y(k), ρk)) problem:

minimize
x≥0

Lρk(x, y(k)) = f(x)− y(k)T c(x) +
1

2
ρk‖c(x)‖2 = L0 +

1

2
ρk‖c(x)‖2 (BCL(y(k), ρk))

for given ρk > 0 and y(k) ∈ IRm. We denote the solution of (BCL(y(k), ρk)) by x(k+1). A basic
augmented Lagrangian method solves (BCL(y(k), ρk)) approximately and updates the multipliers
using the so-called first-order multiplier update:

y(k+1) = y(k) − ρkc(x(k+1)). (1.3)

Traditionally, augmented Lagrangian methods have used two forcing sequences, ηk ↘ 0 and
ωk ↘ 0, to control the infeasibility and first-order error and enforce global convergence. Sophisti-
cated update schemes for η, ω can be found in [25]. A rough outline of an augmented Lagrangian
method is given in Algorithm 1.

Given sequences ηk ↘ 0 and ωk ↘ 0; an initial point (x(0), y(0)), and ρ0, set k = 0;
while (x(k), y(k)) not optimal do

Find an ωk-optimal solution, x(k+1), of (BCL(y(k), ρk)) ;
if ‖c(x(k+1)‖ ≤ ηk then

Update the multipliers: y(k+1) = y(k) − ρkc(x̂(k));
else

Increase the penalty parameter: ρk+1 = 2ρk;

Algorithm 1: Bound-Constrained Augmented Lagrangian Method
Our goal is to improve traditional augmented Lagrangian methods in three ways, extending

the augmented Lagrangian filter methods developed in [37] for quadratic programs to general
NLPs.

1. Replace the forcing sequences, ηk, ωk by a less restrictive algorithmic construct, namely, a
filter (defined in Section 2).

2. Introduce a second-order step to promote fast local convergence, similar to recent sequential
linear quadratic programming (SLQP) methods [18, 22, 34].

3. Equip the augmented Lagrangian method with fast and robust detection of infeasible sub-
problems [32].

Ultimately, we would like to develop new active-set methods that can take advantage of emerging
multicore architectures. Traditional sequential quadratic programming (SQP) and newer SLQP
approaches [18, 22, 34] that rely on pivoting techniques to identify the optimal active set are not
suitable because the underlying active-set strategies are not scalable to multicore architectures. On
the other hand, the main computational kernels in augmented Lagrangian methods (bound con-
strained minimization and the solution of augmented systems) enjoy better scalability properties.



4 Sven Leyffer

This paper is organized as follows. The next section defines the filter for augmented La-
grangians, and outlines our method. Section 3 presents the detailed algorithm and its components,
and Section 4 presents the global convergence proof. We close the paper with some conclusions
and outlooks.

2 An Augmented Lagrangian Filter

This section defines the basic concepts of our augmented Lagrangian filter algorithm. We start by
defining a suitable filter and related step acceptance conditions. We then provide an outline of the
algorithm that is described in more detail in the next section.

The new augmented Lagrangian filter is defined by using the residual of the first-order condi-
tions (1.1), namely,

ω(x, y) := ‖min{x,∇xL0(x, y)}‖ (2.4a)

η(x) := ‖c(x)‖. (2.4b)

Augmented Lagrangian methods use forcing sequences ωk, ηk to drive (ω(x, y), η(x)) to zero.
Here, we instead use the filter mechanism [33, 31] to achieve convergence to first-order points.
A filter is formally defined as follows.

Definition 2.1. A filter F is a list of pairs (ηl, ωl) :=
(
η(x(l)), ω(x(l), y(l))

)
such that no pair dominates

another pair. A point (x(k), y(k)) is acceptable to the filter F if and only if

η(x(k)) ≤ βηl or ω(x(k), y(k)) ≤ ωl − γη(x̂), ∀l ∈ F . (2.5)

The fact that (η(x), ω(x, y)) ≥ 0 implies that we have an automatic upper bound on η(x):

η(x) ≤ U := max (ωmin/γ, βηmin) , (2.6)

where ωmin is the smallest first-order error of any filter entry, that is ωmin := min {ωl : l ∈ F}, and
ηmin is the corresponding value of η.

We note that our filter is based on the Lagrangian and not on the augmented Lagrangian. This
choice is deliberate because one can show that the gradient of the Lagrangian after the first-order
multiplier update, (1.3), equals the gradient of the augmented Lagrangian, namely,

∇xL0(x(k), y(k)) = ∇xLρ(x(k), y(k−1)). (2.7)

Thus, by using the Lagrangian, we ensure that filter-acceptable points remain acceptable after
the first-order multiplier update. Moreover, (2.7) shows that the filter acceptance can be readily
checked during the minimization of the augmented Lagrangian, in which the multiplier is fixed
and we iterate over x only.

The filter envelope defined by β and γ ensures that iterates cannot accumulate at points where
η > 0, and it promotes convergence (see Lemma 4.4). A benefit of the filter approach is that we do
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Figure 1: Left: Example of an augmented Lagrangian filter, F , with three entries. The filter is in
blue, the dashed green line shows the envelope, and the upper bound U is implied by the sloping
envelope condition (2.5) and ω ≥ 0. Values above and to the right of the filter are not acceptable.
Right: Illustration of proof of Lemma 4.2; the green area shows the set of acceptable filter entries.

Given x(0), y(0), and ρ0, set ω0 = ω(x(0), y(0)), η0 = η(x(0)), k = 0, and Fk = {(ηk, ωk)};
while (x(k), y(k)) not optimal do

Set j = 0 and initialize x̂(j) = x(k);
repeat

x̂(j+1) ← approximate argmin
x≥0

Lρk(x, y(k)) from x̂(j);

if restoration switching condition holds then
Increase penalty: ρk+1 = 2ρk & switch to restoration to find acceptable (η̂j , ω̂j);

Update multipliers: ŷ(j+1) = ŷ(j) − ρkc(x̂(j+1)), and set j = j + 1;

until (η̂j , ω̂j) acceptable to Fk;
Set (x(k+1), y(k+1)) = (x̂(j), ŷ(j));
if ηk+1 > 0 then add (ηk+1, ωk+1) to Fk;
Set k = k + 1 ;

Algorithm 2: Outline of Augmented Lagrangian Filter Method

not need to assume that the multipliers remain bounded or that the iterates remain in a compact
set. We outline the main algorithmic ideas in Algorithm 2; in the next section we provide a detailed
description of the algorithm and its main components.

The algorithm has an inner iteration in which we minimize the augmented Lagrangian until
a filter-acceptable point is found. Inner iterates are distinguished by a “hat”, that is x̂(j). Outer
iterates are denoted as x(k). The algorithm has a restoration phase that is invoked if the iterates fail
to make progress toward feasibility. The outline of our algorithm is deliberately vague to convey
the main ideas. Details of the conditions of switching to restoration, termination of the inner
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iteration, and increasing the penalty parameter are developed in the next section. The algorithm
allows for an optional penalty increase condition, which allows us to use a heuristic to estimate
the penalty parameter. In addition, our algorithm has an optional second-order step on the set
of active constraints. Our analysis, however, concentrates on the plain augmented Lagrangian
approach.

3 Detailed Algorithm Statement

We start by describing the four algorithmic components not presented in our outline: the penalty
update, the restoration switching condition, the termination condition for the inner iteration, and
the second-order step. We then discuss the complete algorithm.

3.1 Optional Penalty Update Heuristic

Augmented Lagrangian methods can be shown to converge provided that the penalty parameter
is sufficiently large and the multiplier estimate is sufficiently close to the optimal multiplier; see,
for example, [9]. Here, we extend the penalty estimate from [37] to nonlinear functions. We stress
that this step of the algorithm is not needed for global convergence, although it improves the
behavior of our method. We will show in Section 4 that the penalty update is bounded, so that
our heuristic does not harm the algorithm.

Consider the Hessian of the augmented Lagrangian:

∇2Lρ = ∇2L0 + ρ∇c∇cT + ρ
m∑
i=1

ci∇2ci. (3.8)

Ideally, we would want to ensure∇2Lρ � 0. Instead, we drop the∇2ci terms and consider

∇2Lρ ≈ ∇2L0 + ρ∇c∇cT . (3.9)

Now, we use the same ideas as in [37] to develop a penalty estimate that ensures that the aug-
mented Lagrangian is positive definite on the null-space of the active inequality constraints. We
define the active set and the inactive set as

Ak := A(x(k)) :=
{
i : x

(k)
i = 0

}
and Ik := {1, 2, . . . , n} − Ak, (3.10)

respectively. One can show that a sufficient condition for∇2Lρ � 0 on the active set is

ρ ≥ ρmin(Ak) :=
max{0,−λmin(W̃k)}

σmin(Ãk)2
, (3.11)

where W̃k is the reduced Hessian of the Lagrangian; Ãk is the reduced Jacobian of the equality
constraints; and λmin(·) and σmin(·) denote the smallest eigenvalue and singular value, respec-
tively. Computing (3.11) directly would be prohibitive for large-scale problems, and we use the
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following estimate instead:

ρmin(Ak) := max

1,
‖Hk‖1

max
{

1√
|Ik|
‖Ak‖∞ , 1√

m
‖Ak‖1

}
 , (3.12)

where |Ik| is the number of free variables and m is the number of general equality constraints. If
ρk < ρmin(Ak), then we increase the penalty parameter to ρk+1 = 2ρmin(Ak). We could further im-
prove this estimate by taking the terms ρci∇2ci into account, which would change the numerator
in (3.12).

3.2 Switching to Restoration Phase

In practice, many NLPs are not feasible, a situation that happens frequently especially when solv-
ing MINLPs. In this case, it is important that the NLP solver quickly and reliably finds a minimum
of the constraint violation, η(x)2. To converge quickly to such a point, we either have to drive the
penalty parameter to infinity or switch to the minimization of η(x). We prefer the latter approach
because it provides an easy escape if we determine that the NLP appears to be feasible after all
(unlike linear programming, there cannot be a phase I/phase II approach for NLPs).

We define a set of implementable criteria that force the algorithm to switch to the minimization
of the constraint violation. Recall that the augmented Lagrangian filter implies an upper bound,
U = max{ωmin/γ, βηmin} from (2.6). Thus any inner iteration that generates

η̂j+1 = η(x̂(j+1)) ≥ βU (3.13)

triggers the restoration phase. The second test to trigger the restoration phase is connected to the
first-order conditions of a minimum of the constraint violation. We note that x̂(j) is an approximate
minimizer of the infeasibility, η(x)2, if∥∥min

(
∇c(x̂(j))c(x̂(j)), x̂(j)

)∥∥ ≤ ε and ‖c(x̂(j))‖ ≥ βηmin, (3.14)

where ε > 0 is a constant and ηmin is the smallest constraint violation of any filter entry, namely,
ηmin := min{ηl : l ∈ F} > 0. In our algorithm, we switch to restoration if (3.13) or (3.14) hold.

Each time we do this switch,we increase the penalty parameter and start a new major iteration.
The outcome of the restoration phase is either a (local) minimum of the infeasibility or a new point
that is filter acceptable. The mechanism of the algorithm ensures that we can always find such a
point because ηmin > 0, which is formalized in the following lemma.

Lemma 3.1. Either the restoration phase converges to a minimum of the constraint violation, or it finds an
acceptable x(k+1) in a finite number of steps.

Proof. The restoration phase minimizes η(x)2 and hence either converges to a local minimum of
the constraint violation or generates a sequence of iterates x(j) with η(x(j)) → 0. Because ηl > 0

for all l ∈ Fk, it follows that we must find a filter-acceptable point in a finite number of iterations
in the latter case. 2
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3.3 Termination of Inner Minimization

The filter introduced in Section 2 ensures convergence only to feasible limit points; see Lemma 4.4.
Thus, we need an additional condition that ensures that the limit points are also first-order opti-
mal. We introduce a sufficient reduction condition that will ensure that the iterates are stationary.
A sufficient reduction condition is more natural (since it corresponds to a Cauchy-type condition,
which holds for all reasonable optimization routines) than is a condition that explicitly links the
progress in first-order optimality ωk to progress toward feasibility ηk.

In particular, we require that the following condition be satisfied on each inner iteration:

∆L(j)
ρk

:= Lρk(x̂(j), y(k))− Lρk(x̂(j+1), y(k)) ≥ σω̂j , (3.15)

where σ > 0 is a constant. This condition can be satisfied, for example, by requiring Cauchy
decrease on the augmented Lagrangian for fixed ρk and y(k).

We will show that this sufficient reduction condition of the inner iterates in turn implies a
sufficient reduction condition of the outer iterates as we approach feasibility; see (4.18). This outer
sufficient reduction leads to a global convergence result. To the best of our knowledge, this is the
first time that a more readily implementable sufficient reduction condition has been used in the
context of augmented Lagrangians.

3.4 Optional Second-Order Step

Our algorithm allows for an additional second-order step. The idea is to use the approximate
minimizers of the augmented Lagrangian, x(k), identify the active inequality constraints, x(k)

i = 0,
and then solve an equality-constrained QP (EQP) on those active constraints, similar to popular
SLQP approaches. Given a set of active and inactive constraints, (3.10), our goal is to solve an
EQP with x(k)

i = 0, ∀i ∈ A(x(k)). Provided that the EQP is convex, its solution can be obtained by
solving an augmented linear system. For a set of row and column indices R, C and a matrix M,
we define the submatrix MR,C as the matrix with entries Mij for all (i, j) ∈ R× C (we also use the
Matlab notation “:” to indicate that all entries on a dimension are taken).

With this notation, the convex EQP is equivalent to the following augmented system,

[
H

(k+1)
I,I A

(k+1)
:,I

A
(k+1)T

:,I

](
∆xI

∆y

)
=

(
−∇f (k+1)

I
−c(x(k+1))

)
, (3.16)

where A = A(k+1), I = I(k+1), that is ∆xA = 0. We note that, in general, we cannot expect that
the solution x(k+1) + ∆xI is acceptable to the filter (or even can be a descent direction). Hence, we
add a back-tracking line search to our algorithm to find an acceptable point. We note that because
(x(k+1), y(k+1)) is known to be acceptable, we can terminate the line search if the step size is less
that some αmin > 0 and instead accept (x(k+1), y(k+1)).
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Given x(0), y(0) and ρ0,set ω0 = ω(x(0), y(0)), η0 = η(x(0)), k = 0, and Fk = {(ηk, ωk)};
while (x(k), y(k)) not optimal do

Set j = 0, RestFlag = false, and initialize x̂(j) = x(k);
repeat

Approximately minimize the augmented Lagrangian for x̂(j+1) starting at x̂(j):

minimize
x≥0

Lρk(x, y(k)) = f(x)− y(k)T c(x) + 1
2ρk‖c(x)‖2

such that the sufficient reduction condition (3.15) holds.
if restoration switching condition (3.13) or (3.14) hold then

Set RestFlag = true, and increase penalty parameter: ρk+1 = 2ρk;
Switch to restoration phase to find (x̂(j+1), ŷ(j+1)) acceptable to F ;
... or find nonzero minimizer of ‖c(x)‖ subject to x ≥ 0;

else
Provisionally update multipliers: ŷ(j+1) = y(k) − ρkc(x̂(j+1));
Compute ω̂j+1 = ω(x̂(j+1), ŷ(j+1)) and η̂j+1 = η(x̂(j+1)).

Set j = j + 1;

until (η̂j , ω̂j) acceptable to Fk;
Set (x̂(k+1), ŷ(k+1)) = (x̂(j), ŷ(j)) and solve EQP (3.16) for (∆x(k+1),∆y(k+1));
Line-search: Find αk ∈ {0} ∪ [αmin, 1] such that

(x(k+1), y(k+1)) = (x̂(k+1), ŷ(k+1)) + αk+1(∆x(k+1),∆y(k+1)) acceptable to Fk

Compute ωk+1 = ω(x(k+1), y(k+1)), ηk+1 = η(x(k+1));
if ηk+1 > 0 then add (ηk+1, ωk+1) to filter: Fk+1 = Fk ∪ {(ηk+1, ωk+1)};
if (not RestFlag) and (ρk < ρmin(Ak) in (3.12)) then

Increase penalty ρk+1 = 2ρmin(Ak);
else

Leave penalty parameter unchanged: ρk+1 = ρk;

Set k = k + 1;

Algorithm 3: Augmented Lagrangian Filter Method.

3.5 Complete Algorithm

The complete algorithm is stated next. It has an inner loop that minimizes the augmented La-
grangian for a fixed penalty parameter and multiplier until a filter-acceptable point is found.
Quantities associated with the inner loop are indexed by j and have a “hat.” The outer loop
corresponds to major iterates and may update the penalty parameter. The inner iteration also
terminates when we switch to the restoration phase. Any method for minimizing η(x)2 (or any
measure of constraint infeasibility) can be used in this phase. Note that the penalty parameter
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is also increased every time we switch to the restoration phase, although we could use a more
sophisticated penalty update in that case, too. A complete description of the algorithm is given in
Algorithm 3.

We note, that Algorithm 3 uses a flag, RestFlag, to indicate whether we entered the restoration
phase or not. If we enter the restoration phase, then we increase the penalty parameter in the
outer loop iterates, k. Two possible outcomes for the restoration phase exist: either we find a
nonzero (local) minimizer of the constraint violation indicating that problem (NLP) is infeasible,
or we find a filter-acceptable point and exit the inner iteration. In the latter case, RestFlag is true
and ensures that we do not update the penalty parameter using (3.12), which does not make sense
in this situation.

4 Convergence Proof

This section establishes a global convergence result for Algorithm 3, without the second-order
step for the sake of simplicity. We make the following assumptions throughout this section.

Assumption 4.1. Consider problem (NLP), and assume that the following hold:

A1 The problem functions f, c are twice continuously differentiable.

A2 The constraint norm satisfies ‖c(x)‖ → ∞ as ‖x‖ → ∞.

Assumption A1 is standard. Assumption A2 implies that our iterates remain in a compact set
(see Lemma 4.1). This assumption could be replaced by an assumption that we optimize over
finite bounds l ≤ x ≤ u. Both assumptions together imply that f(x) and c(x) and their derivatives
are bounded for all iterates.

Algorithm 3 has three distinct outcomes.

1. There exists an infinite sequence of restoration phase iterates, x(kl), indexed byR := {k1, k2, . . .},
whose limit point x∗ := limx(kl) is a minimum of the constraint violation η(x∗) > 0.

2. There exists an infinite sequence of successful major iterates, x(kl), indexed by S := {k1, k2, . . .},
and the linear independence constraint qualification fails to hold at the limit x∗ := limx(kl),
which is a Fritz-John point of (NLP).

3. There exists an infinite sequence of successful major iterates, x(kl), indexed by S := {k1, k2, . . .},
and the linear independence constraint qualification holds at the limit x∗ := limx(kl), which
is a Karush-Kuhn-Tucker point of (NLP).

Outcomes 1 and 3 are normal outcomes of NLP solvers in the sense that we cannot exclude the
possibility that (NLP) is infeasible without making restrictive assumptions such as Slater’s con-
straint qualification. Outcome 2 corresponds to the situation where a constraint qualification fails
to hold at a limit point.
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Outline of Convergence Proof. We start by showing that all iterates remain in a compact set.
Next, we show that the algorithm is well defined by proving that the inner iteration is finite,
which implies the existence of an infinite sequence of outer iterates x(k), unless the restoration
phase fails or the algorithm converges finitely. We then show that the limit points are feasible and
stationary. Finally, we show that the penalty estimate (3.12) is bounded.

We first show that all iterates remain in a compact set.

Lemma 4.1. All major and minor iterates, x(k) and x̂(j), remain in a compact set, C.

Proof. The upper bound, U , on η(x) implies that ‖c(x(k))‖ ≤ U or all k. The switching condition
(3.13) implies that ‖c(x̂(j))‖ ≤ U or all j. The feasibility restoration minimizes η(x), implying that
all its iterates in turn satisfy ‖c(x(k))‖ ≤ U . Assumptions A1 and A2 now imply that the iterates
remain in a bounded set, C. 2

The next lemma shows that the mechanism of the filter ensures that there exists a neighbor-
hood of the origin in the filter that does not contain any filter points, as illustrated in Figure 1
(right).

Lemma 4.2. There exists a neighborhood of (η, ω) = (0, 0) that does not contain any filter entries.

Proof. The mechanism of the algorithm ensures that ηl > 0, ∀l ∈ Fk. First, assume that ωmin :=

min{ωl : l ∈ F} > 0. Then it follows that there exist no filter entries in the quadrilateral bounded
by (0, 0), (0, ωmin), (βηmin, ωmin−γβηmin), (βηmin, 0), illustrated by the green area in Figure 1 (right).
Next, if there exists a filter entry with ωl = 0, then define ωmin := min{ωl > 0 : l ∈ F} > 0, and
observe that the quadrilateral (0, 0), (0, ωmin), (βηmin, ωmin), (βηmin, 0) contains no filter entries. In
both cases, the area is nonempty, thus proving that there exists a neighborhood of (0, 0) with filter
acceptable points. 2

Next, we show that the inner iteration is finite and the algorithm is well defined.

Lemma 4.3. The inner iteration is finite.

Proof. If the inner iteration finitely terminates with a filter acceptable point or switches to the
restoration phase, then there is nothing to prove. Otherwise, there exists an infinite sequence
of inner iterates x̂(j) with η̂j ≤ βU . Lemma 4.1 implies that this sequence has a limit point, x∗ =

lim x̂(j). We note that the penalty parameter and the multiplier are fixed during the inner iteration,
and we consider the sequence Lρ(x̂(j), y) for fixed ρ = ρk and y = y(k). The sufficient reduction
condition (3.15) implies that

∆L(j)
ρ := Lρ(x̂(j), y)− Lρ(x̂(j+1), y) ≥ σω̂j .

If ω̂j → 0, we would exit the inner iteration according to Lemma 4.2, because η̂j ≤ βU . We now
assume that ω̂j ≥ ω̄ > 0 and seek a contradiction. However, ω̂j ≥ ω̄ > 0 implies that Lρ(x̂(j), y)

is unbounded below, which contradicts the fact that f(x), ‖c(x)‖ are bounded by Assumption
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A1 and Lemma 4.1. Thus, it follows that ω̂j → 0, and we exit the inner iteration according to
Lemma 4.2. 2

The next lemma shows that all limit points of the outer iteration are feasible.

Lemma 4.4. Assume that there exist an infinite number of outer iterations. Then it follows that η(x(k))→
0.

Proof. Every outer iteration for which ηk > 0 adds an entry to the filter. The proof follows directly
from [22, Lemma 1]. 2

The next two lemmas show that the first-order error, ωk, also converges to zero. We split the
argument into two parts depending on whether the penalty parameter remains bounded or not.

Lemma 4.5. Assume that the penalty parameter is bounded, ρk ≤ ρ̄ < ∞, and consider an infinite
sequence of outer iterations. Then it follows that ω(x(k))→ 0.

Proof. Because the penalty parameter is bounded, it is updated only finitely often. Hence, we
consider the tail of the sequence x(k) for which the penalty parameter has settled down, namely,
ρk = ρ̄. We assume that ωk ≥ ω̄ > 0 and seek a contradiction. The sufficient reduction condition
of the inner iteration (3.15) implies that

∆Lin
ρ̄,k := Lρ̄(x(k), y(k))− Lρ̄(x(k+1), y(k)) ≥ σωk ≥ σω̄ > 0. (4.17)

We now show that this “inner” sufficient reduction (for fixed y(k)) implies an “outer” sufficient
reduction. We combine (4.17) with the first-order multiplier update (1.3) and obtain

∆Lout
ρ̄,k := Lρ̄(x(k), y(k))− Lρ̄(x(k+1), y(k+1)) = ∆Lin

ρ̄,k − ρ̄‖c(x(k+1))‖22 ≥ σω̄ − ρ̄η2
k+1. (4.18)

Lemma 4.4 implies that ηk → 0; hence, as soon as ηk+1 ≤ σ ω̄
2ρ̄ for all k sufficiently large, we obtain

the following sufficient reduction condition for the outer iteration:

∆Lout
ρ̄,k ≥ σ

ω̄

2
,

for all k sufficiently large. Thus, if ωk ≥ ω̄ > 0 is bounded away from zero, then it follows that
the augmented Lagrangian must be unbounded below. However, because all x(k) ∈ C remain in
a compact set, it follows from Assumption A1 that f(x) and ‖c(x)‖ are bounded below and hence
that Lρ̄(x, y) can be unbounded below only if −yT c(x) is unbounded below.

We now show that c(x(k))T y(k) ≤ M for all major iterates. The first-order multiplier update
implies that y(k) = y(0) − ρ̄

∑
c(l) and hence that

c(x(k))T y(k) =

(
y(0) − ρ̄

k∑
l=1

c(l)

)T
c(k)

≤

(
‖y(0)‖+ ρ̄

k∑
l=1

‖c(l)‖

)
‖c(k)‖

=

(
y0 + ρ̄

k∑
l=1

ηl

)
ηk , (4.19)
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where y0 = ‖y(0)‖, and we have assumed without loss of generality that ρ̄ is fixed for the whole
sequence. Now define Ek := maxl≥k ηl, and observe that Ek → 0 from Lemma 4.4. The definition
of the filter then implies that Ek+1 ≤ βEk, and we obtain from (4.19) that

c(x(k))T y(k) ≤

(
y0 + ρ̄

k∑
l=1

El

)
Ek =

(
y0 + ρ̄

k∑
l=1

βlE0

)
βkE0 =

(
y0 + ρ̄β

1− βk

1− β
E0

)
βkE0 < M.

Moreover, because E0 < ∞, ρ̄ < ∞ and 0 < β < 1 it follows that this expression is uniformly
bounded as k →∞. Hence it follows that c(x(k))T y(k) ≤M for all k, andLρ̄(x, y) must be bounded
below, which contradicts the assumption that ωk ≥ ω̄ > 0 is bounded away from zero. Hence, it
follows that ωk → 0. 2

We now consider the case where ρk → ∞. In this case, we must assume that the linear inde-
pendence constraint qualification (LICQ) holds at every limit point. If LICQ fails at a limit point,
then we cannot guarantee that the limit is a KKT point; it may be a Fritz-John point instead. The
following lemma formalizes this result.

Lemma 4.6. Consider the situation where ρk → ∞. Then any limit point, x(k) → x∗, is a Fritz-John
point. If in addition LICQ holds at x∗, then it is a KKT point, and ωk → 0.

Proof. Lemma 4.4 ensures that the limit point is feasible. Hence, it is trivially a Fritz-John point.
Now assume that LICQ holds at x∗. We use standard augmented Lagrangian theory to show that
this limit point also satisfies ω(x∗) = 0. Following Theorem 2.5 of [36], we need to show that for all
restoration iterations,R := {k1, k2, k3, . . .} on which we increase the penalty parameter, it follows
that the quantity

∞∑
l=1

ηkν+l

remains bounded as ν → ∞. Similar to the proof of Lemma 4.5, the filter acceptance ensures that
ηkν+l ≤ βlηkν , which gives the desired result. Thus, we can invoke Theorem 2.5 of [36], which
shows that the limit point is a KKT point. 2

The preceding lemmas are summarized in the following result.

Theorem 4.1. Assume that Assumptions A1 and A2 hold. Then either Algorithm 3 terminates after a
finite number of iterations at a KKT point, that is, for some finite k, x(k) is a first-order stationary point
with η(x(k)) = 0 and ω(x(k)) = 0, or there exists an infinite sequence of iterates x(k) and any limit point,
x(k) → x∗, satisfies one of the following.

1. The penalty parameter is updated finitely often, and x∗ is a KKT point.

2. There exists an infinite sequence of restoration steps on which the penalty parameter is updated. If x∗

satisfies an LICQ, then it is a KKT point. Otherwise, it is a Fritz-John point.

3. The restoration phase converges to a minimum of the infeasibility.
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Remark 4.1. We seem to be able to show that the limit point is a KKT point without assuming a constraint
qualification, as long as the penalty parameter remains bounded. On the other hand, without a constraint
qualification, we would expect the penalty parameter to be unbounded. It would be interesting to test these
results in the context of mathematical program with equilibrium constraints (MPECs). We suspect that
MPECs that satisfy a strong-stationarity condition would have a bounded penalty but that those that do
not have strongly stationary points would require for the penalty to be unbounded.

Remark 4.2. The careful reader may wonder whether Algorithm 3 can cycle, because we do not add iterates
to the filter for which ηk = 0. We can show, however, that this situation cannot happen. If we have an
infinite sequence of iterates for which ηk = 0, then the sufficient reduction condition (3.15) implies that we
must converge to a stationary point, similar to the arguments in Lemma 4.5. If we have a sequence that
alternates between iterates for which ηk = 0 and iterates for which ηk > 0, then we can never revisit any
iterates for which ηk > 0 because those iterates have been added to the filter. By Lemma 4.4, any limit point
is feasible. Thus, if LICQ holds, then the limit is a KKT point; otherwise, it may be a Fritz-John point. We
note that these conclusions are consistent with Theorem 4.1.

5 Conclusions

We have introduced a new filter method for augmented Lagrangian methods that removes the
need for the traditional forcing sequences. We prove convergence of our method to first-order
stationary points of nonlinear programs under mild conditions, and we present a heuristic for
adjusting the penalty parameter based on matrix-norm estimates. We show that second-order
steps are readily integrated into our method to accelerate local convergence.

The proposed method is closely related to Newton’s method in the case of equality constraints
only. If no inequality constraints exist, that is, x ∈ IRn, then our algorithm reverts to standard
Newton/SQP for equality constrained optimization with a line-search safeguard. In this case, we
only need to compute the Cauchy point to the augmented Lagrangian step that is acceptable to
the filter. Of course, a more direct implementation would be preferable.

Our proof leaves open a number of questions. First, we did not show second-order conver-
gence, but we believe that such a proof follows directly if we use second-order correction steps
as suggested in [62] or if we employ a local non-monotone filter similar to [59]. A second open
question is how the proposed method performs in practice. We have some promising experience
with large-scale quadratic programs [37], and we are working on an implementation for nonlinear
programs.
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