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Abstract

We present a pivoting algorithm for solving linear prograwith linear complementarity constraints.
Our method generalizes the simplex method for linear pragrang to deal with complementarity con-
ditions. We develop an anticycling scheme that can verifulB@and stationarity. We also give an
optimization-based technique to find an initial feasibleee Starting with a feasible vertex, our algo-
rithm always finds a minimizer or an unbounded descent sefirebtion in a finite number of pivoting
steps.

1 Introduction

In the past decade, extensivicegts have been spent on mathematical programming withieguih con-
straints (MPEC). These researdfoets center on constraint qualifications and stationadtyditions (Pang
and Fukushima, 1999; Scheel and Scholtes, 2000; Ye, 2009) Hd algorithms based on nonlinear pro-
gramming (NLP) techniques to obtain stationary points {@stu, 2005; Anitescu et al., 2007; Benson et al.,
2006; Facchinei et al., 1999; Fletcher and fteg; 2004; Fletcher et al., 2006; Fukushima and Tseng, 2002;
Hu and Ralph, 2004; Jiang and Ralph, 2000, 2004 flleey2005, 2006; Lefer et al., 2006; Scholtes, 2001).

A common drawback of the NLP-based approach for MPECs igttbah converge to spurious station-
ary points, such as C-stationary or M-stationary pointshwrivial descent directions. Recently a robust
method for solving MPECs was proposed (fey and Munson, 2007), based on sequentially solving a lin-
ear model of an MPEC, a linear program with linear complemugtyt constraints (LPCC). It motivates us
to investigate new techniques to solve LPCCs.

LPCC is closely related to bilevel linear programming ancediinteger programming. Indeed an
LPCC is always transformable to a mixed-integer progrard,sarmetimes transformable to a bilevel linear
program. Several works exploit the connections in ordeetebbp new methods. Examples include cutting
plane (Hu et al., 2008; Ibaraki, 1971, 1973) and branchimdid methods (Audet et al., 1997, 2007;
Hansen et al., 1992). Both approaches are based on miegkmprogramming. In addition, a penalty
method was also proposed Bnal (1993) and analyzed by Campélo and Scheimberg (2000).
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Rather than transforming the LPCC into another type of mogrwe consider the LPCC itself. We
develop a pivoting algorithm that can handle linear comletarity constraints, based on the classical sim-
plex method for linear programming. Our algorithm inclu@esoptimization-based initialization method
and an anticycling scheme. In addition, certain well-d&hbd techniques for the simplex method, such
as steepest-edge search (Goldfarb and Reid, 1977; Stamafe 2007) and low-rank modification of LU
factorization for active-set updates (Bartels and Gol@69h,b; Fletcher and Matthews, 1984; Stange et al.,
2007), can be used in our algorithm to improve fiscéency.

This rest of the paper is organized as follows. Section Zvevithe stationarity conditions for LPCCs.
Section 3 gives a generalized pivoting algorithm for LPC@ama nondegeneracy assumption. Section 4
extends the capability of our algorithm to work under degacye Section 5 gives a scheme to break pivoting
cycles due to degeneracy and nonstrict complementaritgitons. This anticycling scheme can also prove
Bouligand stationarity. Our algorithm requires an inifiedsible vertex to start, and Section 6 presents an
optimization-based method to find such an initial vertexcti®a 7 reports some numerical results.

2 Stationarity Conditions for LPCC

In this section we briefly review optimality conditions foPICCs. We consider the LPCC
minimize g x
X
subjectto a'x > bj, i=1...,m (2.1)
0<(a'x-b) L (g, x—bpi) 20, i=m+l....mtp,

wherex € R". The notatiory 1 zmeans thay andz are orthogonal; that is;'z = 0 for vectors, or simply

yz = 0 for real values. Without loss of generality, we have remdéehe inequalities such that the lagt 2
inequalities are in th@ complementary conditions. We call inequalitigsx > b; standardconstraints for

i =1,...,mandcomplementaritonstraints fof = m+1,..., m+2p.

Our method is readily extended to more general forms of lineastraints, such as equality constraints,
range constraints, or mixed complementarity conditionse have chosen the format in (2.1) mainly to
simplify the presentation.

For an index of a complementarity constraint, we defic(@ to be the index of the constraint to which
it is complementary. That is,

NULL, if i<m;
c(i) =% i+p, if mrl<i<m+p; (2.2)
i—-p, if m+p+l<i<m+2p.

A point is calledlinear feasibleif it satisfies the linear inequalities
al x> by, i=1,...,m+2p. (2.3)
A point is calledcomplementaryf it satisfies the complementarity conditions
(& x—bi)(ag; x—be) = 0, i =m+l,...,m+p. (2.4)

A point is calledfeasibleif it is complementary and linear feasible, that is, satigfyall the constraints in
(2.2).
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Several stationarity concepts for optimization problenith equilibrium or complementarity constraints
have been proposed. We briefly review the strong- and Baoudigationarity conditions for LPCCs.
Other stationarity concepts such as A-, C-, L-, or M-statiity (Hoheisel and Kanzow, 2009; Pang and
Fukushima, 1999; Scheel and Scholtes, 2000; Ye, 2005, i88@de trivial descent directions and there-
fore are not of interest.

We call a complementarity conditiom(x — bj) L (al(i)x — bggj)) nonstrictat X if a' X = b andag(i)f( =
by (Scholtes, 2001). It is also sometimes called a degenerdtever-level degenerate complementarity
condition. We denote the index set of nonstrict complenréygteonditions by

D(R) ={i:al&=b ralyX=bep, i =m+1,...,m+p}. (2.5)
Definition 2.1 A feasible poin& of (2.1) is called strongly stationary if there exist mpliers v, . . ., Ymi2p,
such that
m+2p
g- > vi@x-b)=0,
i=1
O<(alX-b) Ly >0, Vie{l...,mj; (2.6)
a'x>b =y =0, Vie {m+1, ..., m+2p};
Yi = 0 A Yy =0, Vi € D(X).

If we relax the condition e(JTf( -bj) L (ag(j)f( - b)) for j € D(X) at a feasible poink,“then in a
neighborhood ofx,"the LPCC problem (2.1) is reduced to an LP problemx #lso solves this LP, then
KKT conditions of this LP are equivalent to the strong stadioty conditions defined in Definition 2.1.
Therefore, a strongly stationary point of LPCC (2.1) is aalominimizer, but not vice versa. Next, we
review a necessary andfBuaient condition for stationarity.

A Bouligand-stationary or B-stationargoint is a point at which no linearized feasible stationagy d
scend directions exist (Scheel and Scholtes, 2000). Arvalgmit, more convenient definition is given next.

Definition 2.2 Given a feasible poink of (2.1) and a subset of nonstrict complementarity coo# C
D(X), the LP piece LK, P) is defined by tightening the nonstrict complementarity dwrs:

minimize g x
X

subjectto a'x > bj,
a1.Tx = by and a'cr(i)x > bc(i),
a1TX > by and ag(i)x = bc(i),
a1TX = bj and qT:(i)X > bc(i),
a1.Tx > by and a'cr(i)x = bc(i),

Yie{l,...,m};

Vie{m+l,...,m+p}\ D(X) and g X = by;
Vie{m+1,...,m+p}\ DX and a'cr(i)f( = begiy;
Vi € P;

Vi e D)\ P.

(2.7)

Definition 2.3 We callX a B-stationary point if and only X is a minimizer of all LP pieces LR #) for

P C D(X).

Remark 2.1 An equivalent statement in terms of multipliers is that fibirac D(X) there exist multipliers
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Yi, .-, ym+2p, such that

m+2p
g- > i@ %-b)=0,
i=1
O<(@X-b)Ly >0 Vie{l...mj; 2.8)
a'x>b =y =0, Vie{m+1,...,m+2p}\ D(R);
Yei) = 0, Vi e P;
yi >0, Vi e D(X) \ P

holds.

In general, strong stationarity implies B-stationarityt hot vice versa. However, when all complemen-
tarity constraints are strict, then strong stationaritgt Brstationarity are equivalent.

Scheel and Scholtes (2000, page 8) give an example wherdex verB-stationary but not strongly
stationary:

minimize X + X — X3
X1,X2,X3

subjectto 4; — x3 >0, indexed by 1, (2.9)
4%, — X3 > 0, indexed by 2;
0< X1 L x>0, indexed by 3and4

The only feasible vertex of (2.9) is (0, 0). By Definition 2.1, strong stationarity requires thatréhexist
nonnegative multipliergs, y», y3, Y4 satisfying

1 4 o 1 0]l ™
1= 4 0 1] 72| (2.10)
-1 1 1 00|l

Y4

Adding 4y; +y3 = 1 and 4, +y, = 1 minus four timey; +y» = 1, we obtainy;+y4 = —2, which contradicts
y3 = 0 andy, > 0. Thus, (00, 0) is not strongly stationary.

To prove B-stationarity, we observe that the two LP piecef2d) correspond txz = 0 < x and
x1 > 0 = X. Using (2.10), we obtain the multiplierg (3, —2,0) and &, 2,0, -2) for the two LP pieces.
Thus, (Q0, 0) is B-stationary.

3 Pivoting under Nondegeneracy

Our algorithm generalizes the active-set method for LP t€CPThe algorithm starts at a feasible vertex
% and moves from one vertex to another along a feasible edgeltweg’ x. For ease of presentation, we
make the following two assumptions.

1. There are exactlg linearly independent active constraints at every vertex.
2. Aninitial feasible vertex is given and associated witinearly independent active constraints.

The first assumption is a general nondegeneracy assumptimhywe show in Sections 4 and 5 how to
remove it, by extending the working set and developing ablétanticycling scheme for LPCC. The second
assumption can be removed by a two-phase process, whichsggloein Section 6.
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A vertex X of LPCC (2.1) is determined by a working setrofictive linearly independent constraints,
whose indices form a set denoted Y. Under the nondegeneracy assumption, all active contgrane
in the working setW. To satisfy the complementarity condition in (2.1), we néwselfollowing additional
condition:

{i,c(i)} N W 0, Vie{m+l,...,m+p}, (3.1)

wherec(i), defined in (2.2), is the index of the other complementaragstraint of constraint Condition
(3.1) ensures that at least one constraint in each comptanitgrcondition is active. For ease of presenta-
tion, we partition into Wy and Wi

Wo=Wn{l...,m}, Wi=Wn{m+l,...,m+2p}, (3.2

where'Wy andW; contain the standard and complementarity constraints fignrespectively.

We note that we have assumed nondegeneracy but not stsiadhe®mplementarity conditions. In
other words, two constraints in a complementarity conditan be in the working set at the same time:
{j,c(j)} € ‘W for somej € {m+1,...,m+p).

Aggregating all constraints in the working s#t, we obtain a linear system' x = b, whereA = [a;] jew
andb = [bj]jew. The Lagrangian of (2.1) is

L(x,y) = c"x—y" (ATx - b).

The vertexx"determined by the working séi’ is A-Tb. SettingdL/dx = 0, we obtain the multipliers
Y =[Yjljew = A~1g. Moving from one vertex to another along a feasible edgeigspkplacing one entry
in the working setW by another, and = [aj] e andb = [bj];ew Will be updated accordingly. In practice,
we do not formA~1 but work with numerically stable LU factors. Since only orméumn of A is changed at
each pivoting step, we can apply a rank-one update to the tidriafor computationalficiency (Bartels
and Golub, 1969a,b; Fletcher and Matthews, 1984; Stande 20a7).

We denoteA™" = [sj]jcw. Moving from the vertexx”= A™"b along the directiors; increases xj,
so the constrainaJij > bj becomes inactive, while the other equation#\irk = b remain satisfied. The
directions; is associated with the edge formed Ayx = b after removingaij = b;. The rate of change of
the objective function when moving fromto X + s; is given by the multipliery; = szg. Therefores;j is a
descent direction if and only if; "< 0.

Now we discuss whether moving alorsg from a feasible vertex Will violate the complementarity
conditions (2.4). We have assumed that at least one camsinaeach complementarity condition is in
the working set. Therefore, if constraipte Wy (i.e., standard) the directiog; does not violate (2.4).
Otherwise,j € Wy is complementary. Under the nondegeneracy assumptiorgitbetion s; does not
violate (2.4) if and only if constraind(j) is in the working set. Thus, we may choose to drop any constra
from the following set of eligible constraints:

{i:9i<0n(ieWov(ieWrncl)ewy)].
In our implementation we choose to drop the constraint vighrhost negative multiplier. In other words,
Jq=min{ 0.9 :i € WoVv (i € W1 Aci) e W) |,

whereq is the constraint index of the minimizer. As Lemma 3.1 wilbghif §; = 0, then vertexis strongly
stationary. Otherwisey, is the descent search direction associated with the leadnstrainto.
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We also need to maintain linear feasibility (2.3). When mgvalong the directiors;, an inactive
constraintajx > bj can become active only a'aijsq less than 0. To be precise, lef > 0 be the step length
to satisfy the inequality not in working set. Thusaf (X + @;js) — bj > 0 impliese; < (bj — af X)/a] 5y if
astq < 0. We conclude that while moving alorsg, the maximal step lengti, to satisfy all inequalities is

_(bj-aj% .
min S raj <0, je Wy, (3.3)
i

wherer is the index minimizer indicating the entering constraifve call (3.3) theatio test
If astq > 0 for all inequalitiesj not in the working set, there exists no stopping constrang the
directionsy is unbounded. In this case we tgtlie o, and we conclude that the LPCC is unbounded.
When the leaving constraimf and entering constraimtare determined, we remove constraipfrom
the working set, add constraingi.e., W := ‘WU {r} \ {q}), and updatéA = [a;]jew andb = [bj]jcqy. This
discussion is summarized in Algorithm 1.

1: // Given vertexx'associated with a working sét’ satisfying (3.1).
2: FormA := [aj]jew andb := [bj]jey.
3: repeat
4:  Compute current vertex := A~ Th.
5. Compute multipliersy = [§i]icw = A™1g.
6. Computeyg :=min{ 0.9 :i e WoV (i € Wi Ac(i) e W) |.
7 // The indexq indicates the constraint to leave the working set.
8: if §4 = Othen
9 return: Xis a strongly stationary point.
10: else
11: Compute search directiog as the column oA~ T corresponding tgq-
_aTg
12; Perform the ratio testy,":= min {bj = % X, oo}.
o\ as
a %<0
13: // The indexr indicates the constraint to enter the working set.
14: if ar = oo then
15: return: the LPCC is unbounded.
16: else
17: UpdateW = W U {r} \ {g}, A = [aj]jew, andb := [bj]jew.
18: end if
19: end if
20: until Xis strongly stationary ot,"= co.

Algorithm 1: A generalized pivoting algorithm for LPCC (2.1).

Consider Algorithm 1. Under the assumption of nondegenenae can always move downhill with
ar > 0to another vertex, until no decrease is possible and daaolistfound, or until the LPCC is determined
unbounded. Since only a finite number of vertices exist, Algm 1 always terminates in a finite number
of steps.

Lemma 3.1 If Algorithm 1 terminates witlyy = O, then the final verteX is strongly stationary.
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Proof All constraints not in the working sei’ are associated with zero multipliers. Singe="0, we have
§© > 0, which implies that the first three conditions of (2.6) aaéisgied. For the last conditiory!> > 0
guarantees that the inequalities in the nonstrict compheaniéy conditions have nonnegative multipliers, so
all conditions for strong stationarity in Definition 2.1 areet. |

Lemma 3.2 A nondegenerate B-stationary point of an LPCC is also stystationary.
Proof See Scheel and Scholtes (2000, Theorem 2)jj

Now we illustrate the application of Algorithm 1 using theéléaving example:

minimize 4x; — 2% + X3 — Xg

X1,X2,X3,X4,X5

subjectto x; >0, X >0, indexed by 1,2;
X1+ 2Xq > 2, indexed by 3;
X3 — Xq — X5 > —2, indexed by 4; (3.4)
0<XzLlXg—X+x3+1>0, indexed by 5 and 8;
0<XgLXg—%X3+2>0, indexed by 6 and 9;
O0<Xs L X3—X4+1>0, indexed by 7 and 10

The first pivoting step: As will be seen in Section 6, our initialization scheme findeasible vertex
% = (2,0,0,0,0) associated with the working s8V = {2,3,5,6,7}). The objective isg'X = 8. The
multipliersy = [J;]jew = Alg are

-1

0 1 4 -2
s 1 -2 4
95 | = 1 1 (=] 1
6 2 1 0 -8
9 1 -1 -1

The most negative multiplier %"= —8, associated with constraint 6, which is, however, completary.
The other complement, indexed by 9, is inactive and not instbiking set. Thus, we cannot remove this
constraint from the working set. The second most negativiéiptier is > = —2, and constraing] = 2 will
leave the basis. The ratio test shows ﬁngaﬁq < 0, and constraint = 8 will enter the basis.

The second pivoting step: Now the vertex associated with the working dét = {3,5,6,7,8} is X =
(2,3,0,0,0). The objective ig)' X = 2, and the multipliers are/4¥s, Je. §7, §8) = (2, -1, =4, -1, 2). There
are three negative multiplierys = -1, Y6 = —4, andy; = —1. The complementarity constraints 6 and 7
cannot leave the working set, since their other complemamtsnactive and not in the working set. The
leaving constraint is| = 5. The ratio test (3.3) determines the entering constrain®.

The third pivoting step: We are now at vertex = (2,7,4,0,0), determined by the working séy =
{3,6,7,8,9}. The objective ing>‘< = —2. The multipliers areyg, ¥s, ¥7, Vs, ¥o) = (1, -2,-1,2,1). There are
two negative multipliersys = —2 andy7 = —1. As before, the complementarity constraint 7 cannot leave
the working setW. The leaving constraint ig = 6. The ratio test (3.3) determines the entering constraint
r=1.
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The result: Now the multipliers associated with working s& = {1,3,7,8,9} are {1, 3,97, Vs, ¥9) =
(1,0,-1,2,1) The only negative multipliey;"= —1 is associated with the complementarity constraint 7,
which cannot leave the working set since the other compléniedexed by 10, is inactive and not in
working set'W. Therefore, Algorithm 1 terminates at=" (0, 3,2, 1, 0), which is strongly stationary. The
final objective isg" X = —4.

4 Pivoting under Degeneracy

In this section we extend Algorithm 1 by allowing degenenatetices. The complementarity constraints
that can leave the working set are
C={i:ieWyAc(i) e Wi

In other words, under the nondegeneracy assumption, camepl@rity constraint can leave the working
set without violating (2.4) if constrairtd(i) remains in the working set. However, at a degenerate vértex
we must also take complementarity constrainto account, if constraird(i) is active but not in the working
set. Otherwise, Lemma 3.1 is no longer valid. Therefore, wterel the candidate sétby including all
active complementarity constraints to

C= {| RS (W]_ A a-cr(,))A(Z bC(I)}

Another issue arises if complementarity constrajn¢é C \ C leaves and constraim(q) is not in the
working setW, because in trﬂs caseag(x —bg) L (ag(q)x — bgq)) may be violated after the pivot. A naive
solution is that wheneveg € C \ C leaves the working set, we immediately at{d) into the working set,
that is, updatel = W U {g} \ {c(q)}. The pitfall is that the resulting working matri& = [a]ic may
become singular.

For example, consider the LPCC

minimize -Xxg

X1,X2,X3
subjectto x; — o+ X3 > 0, indexed by 1;
X1+ X2 + X3 > 0, indexed by 2; (4.1)
X1 > -1, indexed by 3;

0< Xy L X >0, indexedby4 and5

Say we are at vertexx{, s, X3) = (0,0, 0), associated with the initial working s8V = {1,2,4}. The
associated working matri& = [a;] jew, the objective normag, and the multipliery = Algare

1 11 -1 0
A=|-11 0|, g=|o0]| 9=| 0| (4.2)
1 10 0 -1

The only negative multiplier ig3"= —1, associated with the leaving constrakat> 0. The other comple-
mentarity constraink, > 0 is active but not in the working sé#’. To maintain 0< x; L X > 0, we add

1 10
constraint 5 into the working set, givingy/ = {1,2,5}. The updated working matriA =| -1 1 1 |is
1 10

singular.
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To deal with degeneracy in LPCC, we introduce the concepktefndedvorking set:
W=Wug  WnE=0,

where the seE is an extension. All constraints i are active at the current vertex While we still
maintain the working set}’ consisting oh linearly independent active constraints, the exten&icontains
the complementarity constraints that should be kept atbigatisfy (2.4). Thus, condition (3.1) is relaxed
to

i,c@NnW=0 for i=m+l....m+p. (4.3)

The high level description of the revised algorithm is asofes. If the leaving constraing is comple-
mentary anct(q) is not in the extended working s8¥ = W U &, then we ada(q) to &. To determine
the entering constraint, if a positive step length violaayg constraint € &, we mover from & to ‘W
right away. Otherwise, we proceed with the usual ratio t8s)(to determine the entering constrainand
removec(r) from Eif ¢(r) € E. More details are given in Algorithm 2.

Five remarks on Algorithm 2 must be made:

1. Lemma 3.1 remains valid. If the algorithm terminates With= 0, then the final vertex is strongly
stationary.

2. Atthe end of each pivoting step, we keep all constrai_nfﬁ/hactive and maintain (4.3) so that at least
one constraint in each complementarity condition ig4h Therefore, the vertices visited are always
feasible.

Note that, in line 17 of Algorithm 2a] s, # 0 for somer € & means that moving along, will make
constraintr inactive. So we move from & into ‘W immediately, in which case the resulting vertex ~
is unchanged, and therefore the other constraing ihany, remain active.

3. A = [aj]jew Is always guaranteed to be nonsingular. The reason is thatat@r which entering
constraintr is chosen in line 17 of Algorithm 2 or in the ratio test in lin@, 2ve havaarqu # 0.

4. Here and throughout this paper, our extension&sebntains only complementarity constraints of
(2.1), namelyYi € &, i > m. Under a nondegeneracy assumptiérs @ and Algorithm 2 coincides
with Algorithm 1.

5. We may impose the following condition,
Vies, cj)eWw, (4.4)

to exclude unnecessary complementarity constraints &@md therefore potentially reduce the num-
ber of pivoting steps. If the initial extended working sdisfees (4.4), then (4.4) remains satisfied in
lines 37-39.

Now we apply Algorithm 2 to the LPCC (4.1). Let the initial vikimg setW be {1, 2, 4} with zero
extensionS = () that determines the initial vertexy( Xz, X3) = (0,0, 0). Condition (4.3) is satisfied. From
(4.2) we conclude that the leaving constrainis 3, associated with the only negative multipligr= —1.
The descent directios, is (1, 0, —1), the last column oA~T. Because the other complementarity constraint
c(q) =4 ¢ WuUE, we add it to€ and haveS = {5}. At the test in lines 13-15, constraint 5 frafnhas
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1: // Given vertexxassociated with an extended working 3et=WUE satisfying (4.3).
2./ All constraints i are active ak,”andW consists oh linearly independent constraints.
3 A= 0; A = 0.
4: FormA := [aj]jew andb := [bj]jew.
5. repeat
6 Compute current vertex := A~ Th.
7 Compute multipliers/ = [§i]icw = A™1g.
8  Computeyg :=min{ 0.9 :i e WoV (i € Wi Ac() e W) |.
9: // The indexq indicates the constraint to quit the working set.
10:  if yq = Othen
11: return: Xis strongly stationary.
12: else
13: if qe Wy andc(q) ¢ W then
14: & =8 uU{c(g)}
15: end if
16: Compute search directiog as the column oA~ T corresponding tgq-
17: if 3r € & such tha] s; # 0then
18: E:=&E\1{r}
19: else// The indexr indicates the constraint to enter the working set.
. . . {bj —aj R }
20: Ratio test.a; = min = ,00 8.
Tje(W aj S0
8 %<0
21 if @ = oo then
22: return: the LPCC is unbounded.
23: end if
24: end if
25: (cycle, Ay, Ap) =DetEcTCyYCLE(Q, I, @1, A1, A2);
26: if cycle = true then
27: (status, W, &) = ANTiICycLe(‘W, &);
28: if status = B_stationary then
20: return: Xis B-stationary.
30: else if status = unbounded then
31 return: the LPCC is unbounded.
32: else// status = cycle_breaks
33: UpdateA := [aj] jew, andb := [bj]jew.
34: end if
35: else
36: UpdateW := W U {r}\ {a}, A := [aj]jew, andb := [bj]jew.
37 if c(r) e &then
38: E:=8&\{c(r)}
39 end if
40: end if
41 end if
42: until Xis strongly stationary or B-stationary, @y = .

Algorithm 2: A revised pivoting algorithm for LPCC (2.1).
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gradientay = (0,1,0). Sincea}sq = 0, it cannot be the entering constraint. The entering caimgtis
—X1 > —1, determined by ratio test in line 20. The updated workirngss8y = {1, 2, 3} and the vertex is
X = (1,0,-1). The multipliers ¥1, ¥, ¥3) = (0,0, 1) are all nonnegative. As aresult, the vertex (1,0, -1)
is strongly stationary.

Another problem caused by degeneracy is the fact that piyatiay cycle. We will address this issue in
the next section.

5 Anticycling for LPCC

At a degenerate vertex the step lengtl,"can be zero, and we call such a pivoting stiegeneratelf the
degenerate pivoting steps form a cycle, it loops indefinitel particular, Algorithm 2, without anticycling,
can terminate only at a strongly stationary point or by figdam unbounded search direction. Therefore, at a
B-stationary point that is not strongly stationary, it mlastp forever. For example, if we apply Algorithm 2
to the program (2.9) whose only vertex is B-stationary butstmngly stationary, then the step length is
always zero, resulting in an infinite loop.

At each pivoting step in our algorithm, we may have multigieices of leaving constraint and entering
constraint. In LP, we can use Bland’s rule (Chvatal, 1988drem 3.3); (Gill et al., 1990, Theorem 8.3.1)
to resolve degeneracy. Unfortunately, simply applying@la rule to Algorithm 2 for LPCCs can still result
in a cycle. Even worse, without anticycling, Algorithm 2 cat determine any B-stationary point that is not
strongly stationary. We illustrate the failure of Blandider with the following example.

m)inj(m)igze X1+ Xo + X3+ X4 — X5 — Xg
1,42,
subjectto 4; — x5 > 0, indexed by 1;
4%, — X5 > 0, indexed by 2;
4x3 — Xg > 0, indexed by 3; (5.1)
4x4 — Xg > 0, indexed by 4;
0<xXgLX>0, indexed by 5 and 6;
0<x3LXx4=>0, indexed by 7 and .8
The only feasible vertex is (0,0, 0, 0, 0). Let the initial working setW be{1, 2, 3,4, 5, 7}. The multipliers

(1. 92.95. 94, 95.97) are €, 3.3, 1, -2, -2). By Bland's rule, the leaving constraintxs > 0. The entering

constraint isx; > 0, resulting in working setd’ = {1, 2, 3,4, 6, 7}. The multipliers {1, ¥, V3, Y4, V6, ¥7) are
‘—11, ;31, %, %1, —-2,-2). Now the leaving and entering constraints gre- 0 andx; > 0. That forms cycling.

To resolve degeneracy for LPCCs, we require two routinegck @etection routine and an anticycling
routine. We adopt a cycle detection from Chvatal (1983). k&ep an array of leaving constrainf and
another array of entering constrainfls. When the lask entries ofA; and A, match each other for some
k, cycling is detected. Note that whenever a step length igip®éi.e., @, > 0), a cycle breaks, and we reset
A1 and A, to be empty. The description is stated in pseudo-code inritigo 3.

Definition 2.3 shows how to determine whether a given vextexB-stationary when nonstrict comple-
mentarity conditions are present. When a cycling stdetected, we consider the LP pieces, ) for all
possibleP ¢ D(X). We apply an anticycling rule, such as Bland’s least indé&,rto each LP{%”). Then
it follows that X is B-stationary if and only ik’is a minimizer to LPX;P) for all # € D(X). Otherwise, we
can find a descent direction from some LP piece to leave thexgr

The naive approach just described can be improved by trenfiolgy observation. Applying Bland’s rule
to LP(X, ) for someP C D(X), assume that we obtain a set of multipligrghat satisfies (2.8) and therefore



12 Haw-ren Fang, Sven Léer, and Todd S. Munson

1: function [cycle, Ay, Ar] = CycLeDetecT(q, I', &, A1, A))

2 /| A1 andAy are arrays containing the recent leaving and entering i@nt.

3 // qandr are the leaving and entering constrainigjs'the step length.

4: if @y > 0then

5: /| The objective of (2.1) is reduced, so previous steps caniggier a cycling.
6 cycle = false

7 else

8 Updatel := size(A1), Ai(l) := q, andAy(l) :=r.

o: if there existk such thatA,(I-k+1,...,l1) andAx(I-k+1,...,I) form the same se¢hen
10: J/ Cycling is detected.

11: cycle := true

12: else

13: cycle := false

14: end if

15: end if

16: end function

Algorithm 3: Cycle detection for Algorithm 2.

X is a solution to LPX,P). If for somei € # we havey > 0 in addition toyg; > 0, thenxis also a solution
to LP(X, P \ {i}). In general, given a set of multipliers satisfying (2.8katve let

Ri={i:9>0A1i€P} Ro=1{i:Yei) 20NT €DK\ P}, (5.2)
be the index sets corresponding to strongly stationary comipts. Thenx is a solution to all the LP pieces
LPRPUS,\S;) forall S;CRi, S»CRo. (5.3)

This observation indicates that a set of multipliers candmzluo detect the optimality of multiple LP pieces
in Definition 2.3.

A simplistic implementation of our anticycling scheme isfaiows. We set?/ equal to £® and
remove® from U wheneverxis verified as a minimizer of LR(%). The process repeats untid = 0, in
which casexis a B-stationary point, or until we find a descent searchctioa to leavex; in which case the
cycle of pivoting breaks. The pseudo-code is given in Aliponi 4.

The condition (4.3) must still be satisfied during antiayggliby Algorithm 4. This condition has impli-
cations for the two cases:

1. For each strict complementary condition, one constraistactive and has been in the extended
working set, that isj € W = W U &. This active constraint cannot move away froi, but it
may move from& to ‘W. The other complementarity constraift) is inactive and therefore is not
in the extended working set, that j) ¢ W. Hence, we can ignore these strict complements when
determining the leaving constraints.

2. For each nonstrict complementary condition, one comeigarity constraint is treated as an equality
and the other is treated as an inequality, with respect t&#)(in each inner loop. Those treated as
equalities must be ifi¥. In other words,

PUPCCW, P ={c(i):icDX\P). (5.4)
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1: function [status, ‘W, &] = AnticycLe(‘W, &)

[Eny
e

11:
12:
13:
14:
15:
16:
17:

18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

// The current vertex ig, associated with an extended working 3€t= WU E.

Set = 22®), whereD(R) = {i : aT & = bj A aI(i)f( = begiy}-
repeat
SelectP € U; let PC = {c(i) : i € D(X) \ P}.
/| We consider LPX,’P) and apply Bland’s least index rule.
E=EUli:iePUPS AT g W)
repeat
Computey’= [i]iew := A™1g, whereA = [aj]jew-
Computeq := min{i : i € Co U C1}, Where
Co:=minfi ;i € Wy AY; <0}
Cri=minfi ;i e Wi\ (PUP)AY; <0}

J HereWo=Wn{l,....mandWi;=Wn{m+1,..., m+2p}.

if g # NULL then
Yq < O'is the qualified multiplier with smallest index.

Compute search directiog as the column oA~T corresponding tgq.

if Ir € & such thag s; # Othen

E =8\ {r}
else
) ) bj - a}—f(
Ratio test:a; := min = ,00 b,
Tjeﬂ?V aj Sq
Y <0

If multiple choices ofr exist, choose the smallest one.

if & = oo then
/| LP(X, P) is unbounded, so is the LPCC.
return: status := unbounded.
end if
Update W := WU {r} \ {q}.
if @, > 0then, // cycle breaks.
return: status := cycle_breaks.
end if
end if
end if
until g = NULL (i.e., no qualified leaving constraint).
/| Xis a solution to LPX,P).
SetRy :={i: i >0AieP},Ro:={i :Yi) 2 0A T € D(X)\ P}
Updatell := U\ {PUS2\S1: S1 S R1AS2 C Ry}
until U = 0.
return: status .= B_stationary.

36: end function

Algorithm 4: Anticycling for Algorithm 2.
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We can ensure (5.4) by requiring two conditions:

e Atthe beginning of each inner loop, we add the required caimgs into& to makeW = WUE
satisfy (5.4).

e At each pivoting step, we prevent the constraint®ia #° from leavingW'.

In each inner loop of Algorithm 4, we consider L&) and apply Bland’s least index rule. Therefore,
the inner loop must terminate in a finite number of iteratigBbvatal, 1983, Theorem 3.3); (Gill et al.,
1990, Theorem 8.3.1). Note, however, that we do not needdBlanle when moving a constraint froé
into ‘W, because in each inner loop, constraint§ ican leave but no constraint can erieand therefore it
cannot cause a cycling.

For the outer loop, the size @f is reduced at each iteration. Therefore, the overall nurobigerations
is finite. We conclude that our anticycling scheme in Aldurit4 must terminate with one of the following
three cases:

1. A descent search direction is found, and there is no stgpginstraint, that isy,"= co. The current
LP(X, P) of concern is unbounded, and so is the LPCC (2.1).

2. A descent direction is found, and we move to another vevitixa positive step length, in which case
we go back to Algorithm 2 and continue with the next pivotineps

Remark: Note that (4.4) may no longer hold because we augrieniNevertheless, (4.4) is not
required by Algorithm 2 to work properly, but it potentialyoids unnecessary pivoting steps. Indeed,
we can impose

={itie&nci)¢g WA <m+pvci)¢e))

when returning to Algorithm 2, if (4.4) is desired.

3. If U = 0 at the termination of Algorithm 4, theri§ a minimizer to all LPX;®) for £ € D(X), and
therefore B-stationary.

The discussion leads to the following proposition.

Proposition 5.1 Algorithm 2 must terminate in a finite number of pivoting stegither finding a descent
direction to leave the current vertexor verifying thatX is B-stationary.

We are free to choose afy € U in Algorithm 4. If we carefully selec € U, the number of pivoting
steps may be reduced, as the following illustrative exarsiptavs. We apply Algorithm 2 to solve the LPCC
(2.9) which has only one vertex= (0, 0, 0).

The first pivoting step:  Suppose we have the initial working s8t = {1, 2, 3} with zero extensioi® = 0.
The corresponding multipliers 2 [Jj]jew = A g are §1,92.93) = (3,1, -2), whereys = -2 is the only
negative multiplier, associated with constraint 3, whigltdmplementary. The other complement, indexed
by 4, is active but not i = W U &. Therefore the leaving constraigis 3, and we add constraint 4 into
&, resulting inE = {4}. The search directiog is (1, 1, 4). We move constraint 4 frod to ‘W immediately,
sinceays; = 1 # 0, whereay = (0, 1, 0) is the gradient of constraint 4. In Algorithm 3 for cycletefetion,

the updated arrays aré; = (3) andA, = (4).
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The second pivoting step: The working setW is now {1, 2, 4}, associated with multipliersy{;¥», V1) =

‘—11, ;3;,—2). With a similar discussion, the leaving and entering coirgisaare those indexed by 4 and 3,
respectively. At this point we detect a cycle by Algorithmwere the updated arrays arg = (3,4) and
Az = (4,3), forming the same s¢8B,4}. Hence, we do not pivot but instead move on to Algorithm 4 for

anticycling.

The anticycling phase: When entering Algorithm 4, we have the working 9ét = {1, 2, 4}. The only
complementarity condition is degenerate, B(X) = {3}. We initialize U := {0, {3}} as the power set of
D(X). Now we selectP to be® € U; thenP® = {4}, andE remains empty. The only negative multiplier
associated with = {1,2,4} isy, = —2. Since 4e P U PC, constraint 4 is treated as equality in Py
and cannot leav@y. Therefore xlis a minimizer of LPK;0). The updated{ contains only one elemefi}
after removing).

We continue with the next outer iteration of Algorithm 4. Tiext® is {3}, whose corresponding®
is 0. Since 3e £ U PCis not in the working set¥ = {1,2, 4}, we add it into& and obtain& = {3}. The
only negative multiplier ig/s = —2. Since now the LP piece of concern is KB@}), constraint 4 is treated
as an inequality and can leave the working®ét Then the entering constraint is=35. After pivoting, we
haveW = {1,2,3} and& = 0. The only negative multiplier ig3"= —2. However, constraint 3 is treated as
an equality in LPX{3}), so it cannot leave the working s&’. Hencex'= (0, 0,0) is also a minimizer of
LP(X, {3}). We conclude thax = (0, 0, 0) is a B-stationary point.

Discussion: In the above illustration, we selegtto be® for the first inner loop of Algorithm 4. Alterna-
tively, if we chooseP to be{3}, then the seE will be augmented to bé3}. As a result, the first LP piece
requires one more pivoting step to move constraint 3 fébto ‘W. Careful selection of € U may save
more pivots for larger programs.

Now we discuss how to seleftC U in Algorithm 4. Adding constraints int8 will potentially increase
the number of pivoting steps to move constraints fi@no 1. Therefore, the key point is to constrain the
augmentation oE. Recall that the purpose of augmentifigs to satisfy (5.4). As discussed in Section 4,
our W in Algorithm 2 satisfies (4.3), so there exigtssatisfying (5.4). Hence augmentation &fis not
required for the first inner loop. A greedy method is to selbetP € U that is closest to the previous one,
denoted byP, for each consequent inner loop. In other words,

P = argmaxiP N P|: P € U).

6 Obtaining an Initial LPCC Feasible Vertex

Our pivoting algorithm to solve an LPCC (2.1) requires a itdasstarting vertex. Similar to the Phase |
process of the simplex method for linear programming, w@gse a two-phase process for LPCC (2.1).
Our Phase | is identical to the Phase | of LP, where we find atfifieasible vertex satisfying all the
inequalities (2.3). If such a vertex is found, we continughvihase Il to resolve complementary violations
in order to satisfy (2.4). If a feasible poirtis found, we move on to the optimality phase, where wexuse ~
as the starting vertex to solve LPCC (2.1) by our Algorithm 2.
In Phase Il we have a linearly feasible vertefxom Phase |, but some of the complementarity conditions

may not be satisfied. We note that Phase | ensuresalﬁat b >0 andag(i)ﬁ — beiy > 0, which implies
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(a].Tf( - bi)(ag(i)f( - b)) > 0. Therefore, we partition the complementarity conditioris two sets off and

g, of those satisfied and of those not yet satisfied, respéctive

I=\i: (aiT)“(— bi)(a.l—(i))?— bc(i)) =0,i=m+1,...,m+p},
C(aT g T g i (6.1)
J=1{i: (@ X~ bi)(ac(i)x— beiy) > 0,1 =m+1,...,m+p}.

We resolve the complementary violation one at a time, anditgp(b.1) at each iteration. The pseudo-
code is given in Algorithm 5.

1. // Given a linearly feasible vertexcf LPCC (2.1) from Phase I.

2: DetermineZ and.J by (6.1).

3 SetK =0

4: repeat

5: Selectj € J \ K. Starting fromx; solve the following reduced LPCC:

minimize  a] x
subjectto a'x>bj, i=1,...,m+2p, (6.2)

OS(a-iTX_bi)J—(a—(l;—(i)x—bc(i))ZO, | EI.

6: if the minimizerx* of (6.2) satisfieaij* = bj then
7: K = 0; X:= X*; updatel andJ by (6.1).
8: else
9: Starting fromx solve the LPCC:
. . . T
minimize  ag;) X
subjectto a'x>b;, i=1,...,m+2p, (6.3)
0< (aiTx— b) L (aI(i)x— be)) >0, i1el.

10: if the minimizerx" of (6.3) satisfieaz(j)x* = bg(j) then
11 XK = 0; X:= x*; updatel and g by (6.1).
12: else
13: K =K U{j}
14: end if
15: end if

16: until T =0orK =9.
17: J/ If 9 = 0, then the lask s feasible.

Algorithm 5: Phase Il to find a complementary feasible vertex of LPCC (2.1)
We note that we can solve LPCCs (6.2) and (6.3) using our LPiGipg scheme, because we have a
feasible starting vertex. We also note the following:

1. When updating = x*, we also update the extended working $Bt= W U &, inherited from (6.2)
or (6.3).

2. Since we have at least one more satisfied complementarigiton, 7 is augmented. After augmen-
tation of 7, the condition (4.3) may no longer hold. Let

F={izielnigWAc)¢W)
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be the set of complementarity conditions without completmém the extended working say =
W U &. In order to satisfy (4.3), we add some complements, tihose in

AE={itieF ngl x=Db}ulc():ieF AnajyX=bgAa XD

After augmentingS := EUAE, the resulting extended working sHt = WUE satisfies (4.3). Finally,
the augmentation & does not violate of (4.4).

In Algorithm 5, either the size off is reduced after every update, or the current compleméntari
condition is added t@<. Therefore, Algorithm 5 must terminate in a finite numbertefations with one of
two possible outcomes:

1. J = 0: We obtain a complementary feasible vertexThen we continue with the optimality phase,
solving the LPCC (2.1) by our pivoting algorithm with thersitag vertexx:

2. K =9 # 0: We are not able to resolve the complementarity violatidilisis 7, in which case we
call the LPCC (2.1)ocally infeasible

For everyj € 7, we can either solve (6.3) first or solve (6.2) first. In our lempentation, we project the
current vertexxto the two subspaces formed b}/x = b; andaI( pX= be(j), respectively. We solve (6.2) or
(6.3) first depending on which projected point results inlignabjective function value.

Note: We can stop Algorithm 5 early if we reach line 13 whéke+ 0, which corresponds to a local
minimum of LPCC constraint violation. On the other hand, toaring to solve LPCCs as presented in
Algorithm 5 sometimes helps. In our experiments on 168 LP{@CSection 7, there are three problems
where the infeasibility is resolved because of continuifigrak # 0 in line 13. These problems are
ex9.1.6-1pcc, tollmpecl-siouxfls-1pcc, andtollmpec-siouxfls-1lpcc.

We illustrate our approach with the LPCC (3.4). Startinghwthie feasible vertex = (0,0,0,1,0)
associated with the working s&¥ = {1, 2, 3,5, 7} determined in Phase I, we now resolve the complementary
violation by Algorithm 5. The only complementarity conditi not yet satisfied is @ x4 L X3 — X3+ 2 > 0,
for which the LPCC program (6.2) reads as

minimize X4

X1,X2,X3,X4,X5

subjectto X, X > 0, indexed by 1,2;
X1+ 2%Xq > 2, indexed by 3;
X3 — Xq — X5 > —2, indexed by 4; (6.4)
0<XzlXg—X+x3+1>0, indexed by 5 and 8;
0<X4, X1—Xz+22=0, indexed by 6 and 9;
O0<xsLX3—X4+1>0, indexed by 7 and 10

The multipliersy’= [yj]jew = A~1g, withg = (0,0, 0, 1, 0) the objective normal of (6.4), argi(y>, Y3, Vs, y7) =
(—%,O, %,0, 0). Therefore, the standard constraiat > 0 associated with the only negative multiplier
Y= —% is the leaving constraint. The entering constraint deteechiby the ratio test (3.3) i, > 0,
indexed by 6. So the updated working setfé = {2, 3,5, 6, 7}, and the vertex = (2,0, 0,0, 0) is feasible.
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7 Numerical Experiments

We have a MATLAB implementation of our pivoting algorithmhigh can handle more general forms of
linear constraints, including equality constraints, megnstraints, and mixed complementarity conditions.
We compare our solver with the filter MPEC solver via the NLfomaulation (Fletcher et al., 2006) that
solves MPEC by introducing slack variableand replacing complementarity conditions. sbyy's < 0.
Filter MPEC uses an SQP method to solve the resulting NLP. dvepare the two solvers on a set of
LPCCs obtained by linearizing the MPECs from MacMPEC (Eery 2000), a collection of 168 MPEC test
problems written in AMPL (Fourer et al., 2002). AMPL allowsore general constraints, including range
constraints and equations. AMPL also allows mixed comptearéy constraints. See Ferris et al. (1999)
for information of expressing complementarity conditiom&\MPL.

Each LPCC can be characterized by the following numbersntineber of variables, the number of
constraintam, the number of equalitiesk, and the number of complementarity conditignsAppendix A
shows the characteristics of the 168 programs in MacMPEC Rest set, where we have sorted the pro-
grams byn. We have removed 12 LPCCS from the test set, which are LRSAM®@L's presolve eliminated
all complementarity constraints. These problemsbansd3-1pcc, bard3m-1pcc, andgnashl j-1pcc for
j=0,1,...,9.

Five outcomes are possible for our pivoting algorithm: glbbinfeasible, locally infeasible, B-stationary,
strongly stationary, and unbounded objective. In practiceblems are expected during anticycling if we
have a large set of nonstrict complementarity conditiéig), defined in (2.5). Recall that Algorithm 4
for anticycling uses a s/ to track the determination of optimality of LP pieces kP®) for £ C D(X).
The setl/ is initialized as the power set @(X), which is of size X, It meansD(X)|, the size of set
D(X), cannot be large in practice. We cild(X)| the degree of nonstrictnesand allow|D(X)| < 16 in our
experiments.

Table 1: Result summary of the 168 programs in MacMPEC-LR&3Cdet.

Pivoting Algorithm Filter MPEC
Outcome # Programs Outcome # Programs
globally infeasible 21 linear infeasible 21
locally infeasible 2 locally infeasible 2
unbounded objective 30 unbounded objective 15
strongly stationary 111 optimal solution found 112
B-stationary 2 trust region too small 5
max degree nonstrictness reached 2 | max number iterations reached 13

We implemented a one-at-a-time Phase | method to get a linasible point. The results are summa-
rized in Table 1. We can see from Table 1 that the results argistent except for the following

1. In two cases the degree of nonstrictness exceeded 16ltbutMPEC found solutions. These prob-
lems aranonteiroB-1pcc andmonteiro-1pcc.

2. In 5 cases filter MPEC stopped because the trust regionmaltes than its tolerance, which we had
set as 10°: flp4-1-1pcc, flp4-3-1pcc, incid-set2-32-1pcc, incid-set2c-32-1pcc, and
pack-riglp-32-1pcc.
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3. In 13 cases filter MPEC was not able to solve within the marmmumber of iterations, which we had
set as 1000dempe-1pcc, design-cent-31-1pcc, design-cent-3-1pcc, liswet1-050-1pcc,
liswet1-100-1pcc, liswetl-200-1pcc, outrata34-1pcc, gpecgen-100-1-1pcc,
gpecgen-100-2-1pcc, gpecgen-100-3-1pcc, gpecgen-100-4-1pcc, gpecgen-200-1-1pcc,
andgpecgen-200-2-1pcc.

Figure 1 plots the numbers of pivoting steps in Phase |, Phaaed Phase Ill, for the 168 LPCCs. We
sorted the LPCCs by the number of variabfesAs expected, larger programs tend to take more pivoting
steps to solve. On the other hand, no phase dominated theutatiopal cost in all cases. Detailed results
are given in Tables 2-5.

LPCC pivoting count
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Figure 1: Pivoting counts of our pivoting algorithm using tlacMPEC-LPCC test set.

Figure 2 shows the performance profiles (Dolan and Moré220®lan et al., 2006) of our pivoting
algorithm and filter MPEC. In the left plot we use all 168 prams in the MacMPEC-LPCC test set. The
plot indicates that our pivoting algorithm outperformsefiltMPEC significantly. We note that filter MPEC
sometimes takes orders of magnitude more pivoting steps dbas our pivoting pivoting algorithm to
verify the unbounded objectives. The reason may be that MEREC solves nonlinear MPECs and cannot
take advantage of the possibility of unbounded linear rayserefore, in the right plot we remove the 30
unbounded problems. The results indicate that our pivatlggrithm still performs better.
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Figure 2: Performance profiles (Ipgcale) using the MacMPEC-LPCC test set.

8 Conclusion

We give a pivoting algorithm to solve linear programs witlelar complementarity constraints. Our algo-
rithm is based on the active set method for linear progrargniinvorks under degeneracy and includes an
anticycling scheme that can determine B-stationarity anitianfinite loops. We also use an optimization-

based technique that consists of two phases to find an iféielible vertex. Phase | is to find a linear

feasible vertex, whereas Phase Il is to resolve complemewi@ations. The experimental results indicate
that our method is an appealing alternative to existingrtiegles.
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A MacMPEC-LPCC Program Characteristics

Tables 2-5 list the following characteristic numbers of168 LPCCs in the MacMPEC-LPCC test set: the
number of variables, the number of constraints, the number of equalities,, and the number of comple-
mentarity conditiong. The numbers of pivots of our pivoting algorithm and filter I for each LPCC
are also listed. Three error codes are used in these tal§tbs:fdr the maximum degree of nonstrictness
reached, “(i)” for the maximum number of iterations reachett “(t)” for that trust region is too small.
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Table 2: Results of the 168 programs in the MacMPEC-LPCGsttstPart |.
Program n m m P . . # PIVOtS.
Pivoting Algor.  Filter MPEC
bardl-1pcc 5 1 3 6 8
bardlm-1pcc 6 10 1 3 5 8
bard2-1pcc 12 21 5 3 7 8
bard2m-1pcc 12 21 5 3 7 9
bar-truss-3-1lpcc 35 45 28 6 10 15
bilevell-1pcc 10 17 2 6 8 8
bilevellm-1pcc 8 13 2 4 6 12
bilevel2-1pcc 16 29 4 8 12 20
bilevel2m-1pcc 16 29 4 8 12 20
bilevel3-1pcc 10 14 6 2 5 3
bilin-1pcc 8 15 0 6 8 165
bem-milanc30-s-1pcc 3436 4901 1968 1464 8985 1517
dempe-1pcc 3 3 1 1 2 3(i)
design-cent-1-1pcc 12 15 6 3 8 97
design-cent-21-1pcc 13 19 6 3 10 9
design-cent-2-1pcc 13 19 6 3 10 10
design-cent-31-1pcc 15 15 6 3 13 65(i)
design-cent-3-1pcc 15 15 6 3 9 63(i)
design-cent-4-1pcc 22 33 10 8 7 7
desilva-1lpcc 6 8 2 2 2 0
dfl-1pcc 2 2 0 1 1 0
ex9.1.1-1pcc 13 18 7 5 6 5
ex9.1.2-1pcc 8 13 5 2 4 2
ex9.1.3-1pcc 23 35 15 6 10 8
ex9.1.4-1pcc 8 13 5 2 3 3
ex9.1.5-1pcc 13 20 7 5 6 6
ex9.1.6-1pcc 14 21 7 6 9 8
ex9.1.7-1pcc 17 26 9 6 9 7
ex9.1.8-1pcc 11 17 5 3 5 4
ex9.1.9-1pcc 12 18 6 5 6 7
ex9.1.10-1pcc 11 17 5 3 5 4
ex9.2.1-1pcc 10 15 5 4 6 7
ex9.2.2-1pcc 9 14 4 3 3 6
ex9.2.3-1pcc 14 23 8 4 6 6
ex9.2.4-1pcc 8 12 5 2 4 4
ex9.2.5-1pcc 8 11 4 3 5 7
ex9.2.6-1pcc 16 22 6 6 6 4
ex9.2.7-1pcc 10 15 5 4 6 7
ex9.2.8-1pcc 6 9 3 2 3 4
ex9.2.9-1pcc 9 14 5 3 4 2
flp2-1pcc 4 5 0 2 6 8
flp4-1-1pcc 80 90 0 30 90 2829(t)




22 Haw-ren Fang, Sven Léer, and Todd S. Munson
Table 3: Results of the 168 programs in the MacMPEC-LPCGCsttstPart Il.
Program n m m P . . # PIVOtS.
Pivoting Algor.  Filter MPEC
flp4-2-1pcc 110 170 0 60 322 211
flp4-3-1pcc 140 240 0 70 376 970(t)
flp4-4-1pcc 200 350 0 100 1081 548
gauvin-1lpcc 3 4 0 2 4 5
gnash10m-1pcc 10 15 5 4 5 9
gnashllm-1pcc 10 15 5 4 5 8
gnashl2m-1pcc 10 15 5 4 5 2
gnashl3m-1pcc 10 15 5 4 5 2
gnashl4m-1pcc 10 15 5 4 5 2
gnashl5m-1pcc 10 15 5 4 6 9
gnashlém-1lpcc 10 15 5 4 6 9
gnashl7m-1pcc 10 15 5 4 6 4
gnash18m-1pcc 10 15 5 4 6 4
gnash19m-1pcc 10 15 5 4 6 4
hakonsen-1pcc 9 17 3 4 0 0
hs®44-i-1pcc 20 30 4 10 21 23
incid-setl-8-1pcc 100 170 49 32 75 62
incid-setl-16-1pcc 371 637 225 111 292 205
incid-set1-32-1pcc 1517 2559 961 489 1492 935
incid-setlc-8-1pcc 100 177 49 32 88 78
incid-setlc-16-1pcc 371 652 225 111 435 237
incid-setlc-32-1pcc 1517 2590 961 489 1583 824
incid-set2-8-1pcc 112 177 49 44 108 975
incid-set2-16-1pcc 450 681 225 190 471 18038
incid-set2-32-1pcc 1857 2767 961 829 2532 101792(t)
incid-set2c-8-1pcc 112 184 49 44 115 742
incid-set2c-16-1pcc 450 696 225 190 493 13251
incid-set2c-32-1pcc 1857 2798 961 829 2349 28910(t)
jrl-lpcc 2 1 0 1 1 0
jr2-lpcc 2 1 0 1 1 0
kthl-1pcc 2 1 0 1 1 0
kth2-1pcc 2 1 0 1 1 1
kth3-1pcc 2 1 0 1 1 1
liswet1-050-1pcc 152 203 52 50 155 68(i)
liswet1-100-1pcc 302 403 102 100 309 140(i)
liswet1-200-1pcc 602 803 202 200 647 360(i)
monteiroB-1lpcc 131 226 57 57 218(d) 298
monteiro-1lpcc 131 226 57 57 165(d) 136
nashla-1lpcc 6 8 2 2 2 5
nashlb-1lpcc 6 8 2 2 4 10
nashlc-1lpcc 6 8 2 2 6 12
nashld-1lpcc 6 8 2 2 4 11
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Table 4: Results of the 168 programs in the MacMPEC-LPCGCstetstPart IIl.
Program n m m P . . # PIVOtS.
Pivoting Algor.  Filter MPEC

nashle-1lpcc 6 8 2 2 5 7
outrata3l-lpcc 5 8 0 4 4 7
outrata32-1lpcc 5 8 0 4 4 7
outrata33-1lpcc 5 8 0 4 4 7
outrata34-lpcc 5 8 0 4 4 795(i)
pack-compl-8-1pcc 107 179 49 49 1 27
pack-compl-16-1pcc 467 753 225 225 1 143
pack-compl-32-1pcc 1955 3101 961 961 1 624
pack-complc-8-1pcc 107 186 49 49 1 27
pack-complc-16-1pcc 467 768 225 225 1 141
pack-complc-32-1pcc 1955 3132 961 961 1 655
pack-complp-8-1pcc 107 164 49 49 84 83
pack-complp-16-1pcc 467 708 225 225 339 347
pack-complp-32-1pcc 1955 2948 961 961 1115 1049
pack-comp2-8-1pcc 107 179 49 49 1 25
pack-comp2-16-1pcc 467 753 225 225 1 161
pack-comp2-32-1pcc 1955 3101 961 961 1 262
pack-comp2c-8-1pcc 107 186 49 49 1 25
pack-comp2c-16-1pcc 467 768 225 225 1 161
pack-comp2c-32-1pcc 1955 3132 961 961 1 251
pack-comp2p-8-1pcc 107 164 49 49 86 93
pack-comp2p-16-1pcc 467 708 225 225 294 293
pack-comp2p-32-1pcc 1955 2948 961 961 1159 1003
pack-rigl-8-1pcc 70 109 46 9 47 32
pack-rigl-16-1pcc 333 511 204 82 250 185
pack-rigl-32-1pcc 1433 2171 856 505 781 186
pack-riglc-8-1pcc 70 116 46 9 39 26
pack-riglc-16-1pcc 333 526 204 82 253 174
pack-riglc-32-1pcc 1433 2202 856 505 781 186
pack-riglp-8-1pcc 92 138 49 34 83 72
pack-riglp-16-1pcc 389 580 225 147 386 240
pack-riglp-32-1pcc 1711 2571 961 717 2387 7443(t)
pack-rig2-8-1pcc 75 120 46 17 58 40
pack-rig2-16-1pcc 326 510 204 93 115 65
pack-rig2-32-1pcc 1580 2694 856 661 756 201
pack-rig2c-8-1pcc 75 127 46 17 61 40
pack-rig2c-16-1pcc 326 525 204 93 123 65
pack-rig2c-32-1pcc 1580 2725 856 661 765 200
pack-rig2p-8-1pcc 91 139 49 33 76 53
pack-rig2p-16-1pcc 369 565 225 127 294 166
pack-rig2p-32-1pcc 1605 2490 961 611 1536 577
pack-rig3-8-1pcc 85 139 46 28 65 42
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Table 5: Results of the 168 programs in the MacMPEC-LPCGCsttstPart IV.

Program n m m P . . # PIVOtS.
Pivoting Algor.  Filter MPEC

pack-rig3-16-1pcc 360 573 204 129 346 161
pack-rig3-32-1pcc 1490 2342 856 586 746 563
pack-rig3c-8-1pcc 85 146 46 28 64 35
pack-rig3c-16-1pcc 360 588 204 129 291 130
pack-rig3c-32-1pcc 1489 2371 856 585 755 317
portfl-i-1-1pcc 87 99 13 12 62 28
portfl-i-2-1pcc 87 99 13 12 59 26
portfl-i-3-1pcc 87 99 13 12 60 36
portfl-i-4-1pcc 87 99 13 12 61 28
portfl-i-6-1pcc 87 99 13 12 60 32
gpecl-lpcc 30 39 0 20 30 1
gpec2-1pcc 30 39 0 20 20 0
gpecgen-100-1-1pcc 105 202 0 100 167 7689(i)
gpecgen-100-2-1pcc 110 202 0 100 197 19385(i)
gpecgen-100-3-1pcc 110 204 0 100 604 16161(i)
gpecgen-100-4-1pcc 120 204 0 100 478 23855(i)
gpecgen-200-1-1pcc 210 404 0 200 1047 24243(i)
gpecgen-200-2-1pcc 220 404 0 200 1838 43704(i)
gpecgen-200-3-1pcc 220 408 0 200 2825 41805
gpecgen-200-4-1pcc 240 408 0 200 1022 27416
ralphl-lpcc 2 2 0 1 2 5
ralph2-1pcc 2 1 0 1 1 3
ralphmod-1pcc 104 203 0 100 136 1515
scalel-1lpcc 2 1 0 1 0 2
scale2-1pcc 2 1 0 1 0 2
scale3-1pcc 2 1 0 1 0 3
scale4-1pcc 2 1 0 1 0 3
scale5-1pcc 2 1 0 1 0 3
scholtesl-1lpcc 3 2 0 1 3 2
scholtes2-1pcc 3 2 0 1 4 2
scholtes3-1pcc 2 1 0 1 1 1
scholtes4-1pcc 3 4 0 1 4 6
scholtes5-1pcc 3 3 0 2 1 3
siouxfls-1lpcc 2403 4703 628 1748 10800 97578
siouxflsl-1pcc 2403 4703 628 1748 11781 12225
sll-1pcc 8 11 2 3 6 10
stackelbergl-1pcc 3 4 1 1 2 0
tap-09-1pcc 86 136 32 32 76 118
tap-15-1pcc 194 328 68 83 159 274
taxmcp-1lpcc 12 24 3 10 22 134
water-net-1lpcc 66 116 36 14 37 11
water-FL-1pcc 213 373 116 44 135 43
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