# ARGONNE NATIONAL LABORATORY <br> 9700 South Cass Avenue <br> Argonne, Illinois 60439 

# Solving Mixed-Integer Nonlinear Programs by QP-Diving 

Ashutosh Mahajan, Sven Leyffer, and Christian Kirches<br>Mathematics and Computer Science Division<br>Preprint ANL/MCS-P2071-0312

March 26, 2012

## Contents

1 Introduction ..... 1
2 QP-Diving for Mixed-Integer Nonlinear Programs ..... 3
3 Extensions of QP-Diving ..... 7
4 Numerical Experiments ..... 9
4.1 Extended Performance-Profiles ..... 9
4.2 Computational Performance of QP-Diving ..... 11
5 Conclusions and Future Work ..... 13
A Numerical Results ..... 20

# Solving Mixed-Integer Nonlinear Programs by QP-Diving* 

Ashutosh Mahajan, ${ }^{\dagger}$ Sven Leyffer, ${ }^{\ddagger}$ and Christian Kirches ${ }^{\S}$

March 26, 2012


#### Abstract

We present a new tree-search algorithm for solving mixed-integer nonlinear programs (MINLPs). Rather than relying on computationally expensive nonlinear solves at every node of the branch-and-bound tree, our algorithm solves a quadratic approximation at every node. We show that the resulting algorithm retains global convergence properties for convex MINLPs, and we present numerical results on a range of test problems. Our numerical experience shows that the new algorithm allows us to exploit warm-starting techniques from quadratic programming, resulting in a reduction in solve times for convex MINLPs by orders of magnitude on some classes of problems.


Keywords: Mixed-Integer Nonlinear Programming, Sequential Quadratic Programming.
AMS-MSC2010: 90C11, 90C30, 90C55.

## 1 Introduction

We solve mixed-integer nonlinear programming (MINLP) problems of the form

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & f(x)  \tag{1.1}\\ \text { subject to } & c(x) \leq 0 \\ & x \in X, \\ & x_{i} \in \mathbb{Z}, \forall i \in I\end{cases}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are twice continuously differentiable convex functions, $X \subset \mathbb{R}^{n}$ is a bounded polyhedral set, and $I \subseteq\{1, \ldots, n\}$ is the index set of integer variables. We also denote by $x_{I}$ the subvector of integer variables, and we refer to problem (1.1) as a convex MINLP.

[^0]MINLPs arise in a wide variety of applications, such as the efficient management of electricity transmission (Bacher, 1997; Momoh et al., 1997), including transmission expansion (Romero et al., 2002; Garver, 1997), transmission switching (Bartholomew et al., 2008; Hedman et al., 2008), and contingency analysis and blackout prevention of electric power systems (Bienstock and Mattia, 2007; Donde et al., 2005). MINLPs also arise in the design of water distribution networks (Bragalli et al., 2006; Karuppiah and Grossmann, 2006), operational reloading of nuclear reactors (Quist et al., 1998), minimization of the environmental impact of utility plants (Eliceche et al., 2007), wireless bandwidth allocation (Bhatia et al., 2006; Sheikh and Ghafoor, 2010; Costa-Montenegro et al., 2007), selective filtering (Sinha et al., 2002; Soleimanipour et al., 2002), network topology design (Bertsekas and Gallager, 1987; Boorstyn and Frank, 1977; Chi et al., 2008), optical network performance optimization (Elwalid et al., 2006), portfolio optimization (Bienstock, 1996; Jobst et al., 2001), block layout design in the manufacturing and service sectors (Castillo et al., 2005), and integrated design and control of chemical processes (Flores-Tlacuahuac and Biegler, 2007). Recent novel applications include the optimal response to catastrophic oil spills such as the Deepwater oil spill in the Gulf of Mexico (You and Leyffer, 2010, 2011), minimum-cost designs for reinforced concrete structures that satisfy building code requirements (Guerra et al., 2009), and optimal response to a cyber attack (Goldberg et al., 2012; Altunay et al., 2011). More applications and background material can be found in monographs and survey papers (Floudas, 1995; Grossmann and Kravanja, 1997; Grossmann, 2002; Lee and Leyffer, 2011).

Methods for MINLP include nonlinear branch-and-bound (Dakin, 1965; Gupta and Ravindran, 1985), outer approximation (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994), extended cutting-plane method (Westerlund and Pettersson, 1995), Benders decomposition (Geoffrion, 1972), and branch-and-cut methods (Stubbs and Mehrohtra, 2002; Quesada and Grossmann, 1992). These algorithmic developments have resulted in a number of robust implementations of branch-and-bound MINLP-BB (Leyffer, 1998) and SBB (Bussieck and Drud, 2001); the hybrid solver BONMIN (Bonami et al., 2008); the branch-and-cut solver FilMINT (Abhishek et al., 2010); and the new toolkit MINOTAUR (Mahajan et al., 2011).

In this paper, we present a new variant of nonlinear branch-and-bound. Our main motivation is the lack of hot-start capabilities in nonlinear solvers. We loosely define a hot-start as a solve that does not require any factorizations but takes advantage of factorizations at the parent node and rank-one updates. In fact, it is almost impossible to effectively hot-start any NLP solver. This is in stark contrast to the situation in linear programming (LP), where factors of the LP basis are readily available and can be used to re-solve LPs. The main reason why there are no hot-starts for NLP solvers is that the factors are outdated as soon as a step is taken because the Hessian and Jacobian matrices are nonlinear and not constant. This lack of hot-starts affects both active-set and interior-point methods and has a negative effect on the efficiency of nonlinear branch-and-bound solvers compared with LP-based solvers (Quesada and Grossmann, 1992). We illustrate this point in Table 1. The table shows the CPU times for a full sweep of strong-branching (Dribeek, 1966) re-solves for a small number of representative MINLP problems. In the table, No. Ints gives the number of integer variables, and NLP, QP-Cold, and QP-Hot give the CPU time for the cumulative
strong-branching solves, where NLP refers to re-solving NLPs, QP-Warm refers to taking one QPstep of a sequential quadratic programming (QP) method, and QP-Hot refers to QP solves that reuse the previous basis factors. These experiments were carried out with a version of MINLPBB (Fletcher and Leyffer, 2005) using filterSQP (Leyffer, 1998; Fletcher and Leyffer, 1998) as the nonlinear solver and BQPD (Fletcher, 1995) as the QP solver. Re-using the factors clearly provides a significant advantage, an observation consistent with recent results on inexact strong branching (Bonami et al., 2011).

Table 1: Comparison of NLP and QP strong branching times.

| Problem | No. Ints | NLP | QP-Cold | QP-Hot |
| :--- | ---: | ---: | ---: | ---: |
| stockcycle | 480 | 4.08 | 3.32 | 0.532 |
| RSyn0805H | 296 | 78.7 | 69.8 | 1.94 |
| SLay10H | 180 | 18.0 | 17.8 | 1.25 |
| Syn30M03H | 180 | 40.9 | 14.7 | 2.12 |

The results in Table 1 motivate us to consider a nonlinear branch-and-bound algorithm that exploits the QP solver's hot-start capabilities as much as possible. Our approach is related to early branching ideas (Borchers and Mitchell, 1994; Leyffer, 2001) but provides a more radical break with traditional branch-and-bound techniques. In particular, our new approach exploits hot-starting techniques of QP solvers such as BQPD (Fletcher, 1995), whereas the early branching approach just uses cold starts to solve updated QPs, corresponding to QP-Cold in Table 1.

The remainder of this paper is organized as follows. In Section 2, we describe the proposed new branch-and-bound algorithm, and in Section 3 discuss extensions. In Section 4 we present an implementation of our idea in MINOTAUR (Mahajan et al., 2011), a toolkit for solving MINLPs. We compare our approach to a standard implementation of branch-and-bound on a range of test problems from the literature.

## 2 QP-Diving for Mixed-Integer Nonlinear Programs

We propose a new algorithm for MINLPs that is based on the traditional branch-and-bound approach but no longer requires the solution of NLP subproblems at every node. Instead, we observe that it is sufficient to solve QP approximations at most nodes. We expect our new algorithm to benefit from the savings shown in Table 1 by searching the tree using QP solves that can be hotstarted. We show below how to adjust the branch-and-bound rules to ensure convergence for convex MINLPs. In particular, we indicate how we need to handle infeasible QPs and those with integer solutions, and we show how bounds can be exploited during the tree search.

Our algorithm starts by solving the NLP relaxation of (1.1). If the relaxation is infeasible, so is the MINLP. If the solution is integer, then we have also solved the MINLP. Otherwise, we let
the solution of the root node be $\hat{x}$, and we construct a QP approximation around $\hat{x}$, denoted by ( $\mathrm{QP}(\hat{x}, l, u)$ ). A short graphical description of our algorithm compared with standard branch-andbound is given in Figure 1.


Figure 1: Illustration of QP-diving for MINLPs. The left image shows a traditional nonlinear branch-and-bound solver that traverses the tree by solving NLPs. The right image shows a mixed tree with nonlinear solves (black) and QP solves (purple).

A node in the branch-and-bound tree is uniquely defined by a set of bounds, $(l, u)$, on the integer variables. At every node $(l, u)$ of the branch-and-bound tree, we define the following QP approximation,

$$
\left\{\begin{array}{ll}
\underset{x, \eta}{\operatorname{minimize}} & \eta+\frac{1}{2}(x-\hat{x})^{T} \hat{H}(x-\hat{x}) \\
\text { subject to } & \hat{c}+\nabla \hat{c}^{T}(x-\hat{x}) \leq 0 \\
& \hat{f}+\nabla \hat{f}^{T}(x-\hat{x}) \leq \eta  \tag{x}\\
& \eta \leq U-\epsilon \\
& x \in X, \quad l \leq x_{I} \leq u
\end{array} \quad(\mathrm{QP}(\hat{x}, l, u))\right.
$$

where $\hat{H}$ approximates the Hessian of the Lagrangian at $\hat{x}$. At the root node we have $l=-\infty$ and $u=\infty$. The motivation for adding the variable $\eta$ and equivalently rewriting the linear objective as a constraint will be explained below. We also define the NLP relaxation at a node $(l, u)$ as

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & f(x)  \tag{l,u}\\ \text { subject to } & c(x) \leq 0 \\ & x \in X, \quad l \leq x_{I} \leq u\end{cases}
$$

We can now describe the rules of the new tree-search algorithm.

Infeasible Nodes. The convexity of the constraints $c(x) \leq 0$ implies that their linearizations are outer approximations of the feasible set. Thus, if these linearizations are infeasible in ( $\mathrm{QP}(\hat{x}, l, u)$ ), it follows that $(\operatorname{NLP}(l, u))$ is also infeasible, and the node can be pruned.

Upper Bounds on QP Nodes. We note that, in general, a QP approximation can both underestimate and overestimate a nonlinear objective, for example, the quadratic approximation of $f: \mathbb{R} \rightarrow \mathbb{R}=-\sqrt{x}$, at $x=1$ underestimates $f(0)$ but overestimates $f(2)$. Hence, we cannot prune nodes based on the objective function value of QP. However, we can borrow a trick from outer approximation (Duran and Grossmann, 1986) and replace the linear part of the QP objective by a new variable, $\eta$. We linearize the objective around $\hat{x}$ and then add the following two inequalities to the QP:

$$
\begin{equation*}
\eta \leq U-\epsilon \text { and } \eta \geq \hat{f}+\nabla \hat{f}^{T}(x-\hat{x}) \tag{2.2}
\end{equation*}
$$

where $U$ is the upper bound that is updated during the tree search (see next paragraph) and $\epsilon>0$ is the optimality tolerance. Adding (2.2) to the QP ensures that we can possibly detect whether a node is dominated by an upper bound. Whenever a QP is infeasible and (2.2) is either active or violated at the solution of the corresponding phase-1 problem, the node can be pruned because it would exceed the upper bound. In practice, we do not distinguish infeasible problems due to upper bounds or constraint inconsistency.

Integer Feasible Nodes. If the solution of $(\mathrm{QP}(\hat{x}, l, u))$ is integral, then we must solve $(\operatorname{NLP}(l, u))$, because the solution of the QP is, in general, not a solution of the NLP. If the solution of (NLP $(l, u)$ ) is integral, then we either obtain a new upper bound or prune the node because its solution is dominated by the incumbent.

Branching. If the solution $x^{\prime}$ of $(\mathrm{QP}(\hat{x}, l, u))$ or $(\operatorname{NLP}(l, u))$ is feasible but not integral, then we branch on any nonintegral variable, say $x_{i}^{\prime}$. The branching can be done in ways similar to those used in mixed-integer linear programming (Achterberg et al., 2004). Next, we define the branching subroutine that adds two new child problems to the stack of unsolved ones.

```
Subroutine: \(\mathcal{S} \leftarrow\) BranchOnVariable \(\left(x_{i}^{\prime}, l, u, \mathcal{S}\right) \quad / /\) Branch on a non-integral \(x_{i}^{\prime}\) for \(i \in I\)
Set \(u_{i}^{-}=\left\lfloor x_{i}^{\prime}\right\rfloor, l^{-}=l\) and \(l_{i}^{+}=\left\lceil x_{i}^{\prime}\right\rceil, u^{+}=u\).
Add \(\mathrm{QP}\left(\hat{x}, l^{-}, u^{-}\right)\)and \(\mathrm{QP}\left(\hat{x}, l^{+}, u^{+}\right)\)to \(\mathcal{S}=\mathcal{S} \cup\left\{\mathrm{QP}\left(\hat{x}, l^{-}, u^{-}\right), \mathrm{QP}\left(\hat{x}, l^{+}, u^{+}\right)\right\}\).
```

Only when we find an integer point do we need to solve an NLP problem. The remainder of the tree is searched by using QPs. In particular, it follows that the Hessian and Jacobian matrices remain unchanged during the tree search, thus allowing us to take advantage of the factorization of the augmented system matrix during the QP solves. This observation motivates the term QPdiving, because most savings are realized during dives down the tree when we add bounds to the QP. On the other hand, when we backtrack, it is typically more efficient to refactor the augmented system because the dense reduced Hessian matrix changes significantly. The complete QP-diving branch-and-bound algorithm is described in Algorithm 1. Proposition 2.1 formally establishes convergence of this algorithm for convex MINLPs.

```
QP-Diving for MINLP
Choose a tolerance \(\epsilon>0\), and set \(U=\infty\).
Initialize the stack of open problems \(\mathcal{S}=\emptyset\).
Solve the NLP relaxation of (1.1), and let the solution be \(\hat{x}\).
Add \((\mathrm{QP}(\hat{x},-\infty, \infty))\) to the stack: \(\mathcal{S}=\mathcal{S} \cup\{\mathrm{QP}(\hat{x},-\infty, \infty)\}\).
while \(\mathcal{S} \neq \emptyset\) do
    Remove a problem \((\mathrm{QP}(\hat{x}, l, u))\) from the stack: \(\mathcal{S}=\mathcal{S}-\{\mathrm{QP}(\hat{x}, l, u)\}\).
    Solve \((\mathrm{QP}(\hat{x}, l, u))\) and let its solution be \(x^{\prime}\).
    if \((Q P(\hat{x}, l, u))\) is infeasible then
        Node can be pruned: infeasible or dominated by upper bound.
    else if \(x_{I}^{\prime}\) integral then
        Solve \((\operatorname{NLP}(l, u))\) and let its solution be \(\tilde{x}\).
        if \((\operatorname{NLP}(l, u)\) ) infeasible or \(\tilde{f}>U\) then
            Node can be pruned: infeasible or dominated by upper bound.
        else if \(\tilde{x}_{I}\) integral then
                Update incumbent solution: \(U=\tilde{f}, x^{*}=\tilde{x}\)
        else
            BranchOnVariable \(\left(\tilde{x}_{i}, l, u, \mathcal{S}\right)\)
    else
        BranchOnVariable \(\left(x_{i}^{\prime}, l, u, \mathcal{S}\right)\)
```

Algorithm 1: QP-diving for MINLP

Proposition 2.1. Consider solving (1.1) by using Algorithm 1. Assume that the problem functions $f$ and $c$ are convex and twice continuously differentiable, and that $X$ is a bounded polyhedral set. Then, it follows that Algorithm 1 terminates at an optimal solution after searching a finite number of nodes or with an indication that (1.1) has no solution.

Proof. The proof is similar to that of convergence of nonlinear branch-and-bound for convex MINLPs. We first observe that every branching step splits the parent problem into two child nodes and that the union of the feasible sets of the two child nodes contains all integer feasible points of the parent node. Our assumption that $X$ is a bounded and polyhedral set ensures that the branching process is finite. As long as we branch, we create more subproblems, but we do not eliminate any node that might contain the solution. Hence, we need to consider only what happens when nodes are pruned and show that we cannot remove a node that contains the optimal solution. To this end, we consider the following two cases.

Case (i): QP at a node, $(\mathrm{QP}(\hat{x}, l, u))$, is infeasible. The convexity of $f(x)$ and $c(x)$ implies that the linearizations are outer approximations, and it therefore follows that either ( $\operatorname{NLP}(l, u)$ ) is infeasible or its solution is dominated by the upper bound, $U$. In both cases, the node was pruned correctly.

Case (ii): $x_{I}^{\prime}$ is an integral solution of $(\mathrm{QP}(\hat{x}, l, u))$, and we solve $(\operatorname{NLP}(l, u))$ letting the solution be denoted by $\tilde{x}$. If $(\operatorname{NLP}(l, u))$ is infeasible or if $f(\tilde{x})>U$, then we prune the node because no
better solution can be found in this subtree. Otherwise, if $\tilde{x}_{I}$ is integral, then we obtain a new incumbent and also prune this node. If $\tilde{x}_{I}$ is not integral, then we choose an integer variable and branch on it.

The proof shows that in effect it does not matter what problem we solve at intermediate nodes as long as infeasibility of linear constraints is detected correctly (which is similar in spirit to the algorithm of Quesada and Grossmann (1992)). Because our original problem is nonlinear, we cannot rely on the solution of the QP to provide an upper bound or to even be feasible in (1.1). Hence, we must solve $(\operatorname{NLP}(l, u))$ at a node where $(\mathrm{QP}(\hat{x}, l, u))$ is integer feasible.

It may happen, however, that even though the solution to $(\mathrm{QP}(\hat{x}, l, u))$ is integer, the solution of $(\operatorname{NLP}(l, u))$ is fractional; that is why we must branch after solving this NLP. This mechanism, however, has the side effect that the solution of $(\mathrm{QP}(\hat{x}, l, u))$ will be feasible in one of the child nodes on (NLP $(l, u)$ ). This observation does not contradict the finite termination of QP-diving (we would simply branch again after another NLP).

## 3 Extensions of QP-Diving

Even though Algorithm 1 is finite in theory, several concerns exist about its performance. We discuss these concerns in this section, together with possible remedies to mitigate their effect.

1. Larger Search Trees. In our numerical results we observe that the search tree generated by QP-diving can be orders of magnitude larger than the search tree required by nonlinear branch-and-bound. There are three reasons for this effect. First, at some nodes, where ( $\operatorname{NLP}(l, u)$ ) is infeasible or its lower bound is higher than the incumbent value, the QP approximation ( $\mathrm{QP}(\hat{x}, l, u)$ ) may be feasible. Second, in cases where the solution of $(\mathrm{QP}(\hat{x}, l, u))$ is integral, $(\operatorname{NLP}(l, u))$ may not be integral, and we branch on its solution. This implies that the solution of $(\mathrm{QP}(\hat{x}, l, u))$ may be feasible in one of the child nodes on ( $\mathrm{NLP}(l, u))$. Third, whenever we obtain a new upper bound by solving an NLP, the only way we can exploit this bound is by updating $U$ for all QPs on the search tree. In particular, we cannot prune any nodes on the tree by comparing the QP objective value with the new upper bound.
2. Accuracy of the QP Approximation. The QP approximation is likely to change significantly as we search the tree. In particular, the active nonlinear constraints will change as binary variables switch units on and off. We have observed that many multipliers of the nonlinear constraints are zero at the root node, resulting in a Hessian approximation that takes only partial nonlinear information into account. In addition, the linearizations clearly change as we move down tree.

We can reduce the tree size by tightening the QP approximations. If the solution to $(\mathrm{QP}(\hat{x}, l, u))$, say $x^{\prime}$, violates the nonlinear constraints

$$
\begin{equation*}
c(x) \leq 0 \quad \text { or } \quad f(x) \leq \eta \tag{3.3}
\end{equation*}
$$

by more than a certain (predetermined) value, then we add an outer approximation cut to separate $x^{\prime}$ and ensure that it will not be feasible in any QP in the corresponding subtree. This approach is similar to that of Quesada and Grossmann (1992) and Abhishek et al. (2010). Thus, we add cuts of the form

$$
\begin{align*}
& \eta \geq f^{(k)}+\nabla f^{(k)^{T}}\left(x-x^{(k)}\right)  \tag{3.4}\\
& 0 \geq c^{(k)}+\nabla c^{(k)^{T}}\left(x-x^{(k)}\right) \tag{3.5}
\end{align*}
$$

for some $k=1, \ldots, K$. We add these inequalities in our algorithm for points obtained after solving NLPs and QPs. However, one concern is that this approach increases the size and solution cost of the QP. We therefore add only those constraints that are either binding or are violated. When new constraints are added, we can still hot-start BQPD. In our implementation, however, we prefer to reload the problem and provide the previous solution as the starting point.

Another concern is that when we add linearizations to tighten, the Hessian matrix is no longer consistent. In particular, $\eta$ now becomes a piecewise linear function involving several supporting hyperplanes to $f(x)$ from previous approximation points. This piecewise nature should also be reflected in the Hessian. We can achieve this goal by updating the Hessian matrix to construct a convex combination of previous Hessians

$$
H=\sum_{k=1}^{K} \lambda_{k} H^{(k)}, \quad \text { where } \sum_{k=1}^{K} \lambda_{k}=1,
$$

where $H^{(k)}$ is the Hessian of the Lagrangian at $x^{(k)}$ and where $\lambda_{k} \geq 0$ are the QP multipliers. We regard practical rules for creating a new QP or updating the Hessian as an important aspect of future work.

Two approaches can be used to address the accuracy of the QP approximation. To tackle the difficulty arising when dual multipliers of all nonlinear constraints are zero, we change all the multipliers at zero to a small, fixed, specific positive value. The correctness of the algorithm is not affected by changing the multipliers as long as they are nonnegative. We capture second-order information about the constraints by this process, which would be lost otherwise. To address the difficulty accuracy of the linear and quadratic approximation, we can update the QP approximations during the tree search. For example, after backtracking we can update the NLP and create a new QP approximation about the solution of that QP. However, updating the QP in this way would mean that we can no longer use hot-starts, and we have therefore not implemented this approach.

We note that all extensions retain the convergence properties of the basic algorithm that rely only on finiteness of the tree search and convexity of the problem functions. Next, we present numerical comparisons of our algorithm with regular branch-and-bound methods.

## 4 Numerical Experiments

We have implemented QP-diving in MINOTAUR (Mahajan et al., 2011), a flexible toolkit written in C++ for solving MINLP problems. We compare compare QP-diving with two branch-and-bound versions of BONMIN (Bonami et al., 2008), namely, using IPOPT (Wächter and Biegler, 2006) and filterSQP (Fletcher and Leyffer, 1998) as NLP solvers. One benefit of using QP approximations is that some MILP-based cut-generation techniques, such as flow-cover inequalities (Gu et al., 1999) and knapsack inequalities (Marchand and Wolsey, 1999), can be used directly in QP-diving. We have not experimented with this option because MINOTAUR currently does not have routines to generate these cuts.

All experiments were performed on a Linux workstation with a 2.6 GHz Intel Xeon processor, 8 MB cache, and 32 GB RAM. All software was compiled by using GNU compiler version 4.1.2. BONMIN version 1.5.1 was built with IPOPT version 3.10.1 and HSL libraries. MINOTAUR was compiled by using the same version of IPOPT. The test problems were taken from the IBM/CMU collection of test problems (CMU, 2012), and all solvers were run with a time limit of two hours. When using filterSQP for QP-diving, we had to reload BQPD after every call to solve NLP, because filterSQP also calls BQPD internally and changes some statically defined variables in it. All zero dual variables of the initial NLP relaxation were assigned a value of 0.5.

Important metrics from our computational tests are tabulated in Appendix A. Table A. 1 reports the time taken to solve each instance and the number of nodes explored. We also report in Table A. 2 the number of NLPs or QPs solved and the time used to solve them by three variants of MINOTAUR (two branch-and-bound methods and QP-diving). We graphically represent the data using what we call extended performance-profiles, described next.

### 4.1 Extended Performance-Profiles

A performance profile (Dolan and Moré, 2002) is a graph representing the relative performance of different solvers according to a specific metric measured for a given set of problem instances. We extend the notion of performance profiles to provide a more informative picture of the results. Since running time is usually the metric of choice, we will use it in the remaining discussion. Other metrics, such as the number of iterations, can also be used with the same method.

Suppose we are given a set $\mathcal{I}$ of problem instances, a set $S$ of solvers, and measured value of solution times, say $t_{p, s}$, for each $p \in \mathcal{I}$ and $s \in S$. The performance ratio is defined as

$$
\begin{equation*}
r_{p, s}=\frac{t_{p, s}}{\min \left\{t_{p, i} \mid i \in S\right\}}, \tag{4.6}
\end{equation*}
$$

and a related distribution function $\rho_{s}(\tau)$ is defined for each solver $s \in S$ as

$$
\begin{equation*}
\rho_{s}(\tau)=\frac{\operatorname{size}\left\{p \in \mathcal{I} \mid r_{p, s} \leq \tau\right\}}{|S|} . \tag{4.7}
\end{equation*}
$$

Obviously, $\rho_{s}(\tau) \in[0,1]$ is an increasing function of $\tau$; in fact, it is cumulative distribution function for the performance ratio. Dolan and Moré (2002) noted that if the set $S$ is suitably large and
representative of the class of problems it contains, $\rho_{s}(\tau)$ is the probability that solver $s$ is at most $\tau$ times slower than the best-performing solver on a randomly selected instance of that class. In particular, $\rho_{s}(1)$ is the probability that solver $s$ is the fastest for a problem instance, and $\rho_{s}(4)$ is the probability that solver $s$ can solve an instance at most four times slower than any other solver.

One limitation of the performance profile is that it does not tell us the probability that a given solver $s$ is faster than any other solver by a given factor $\tau$. It gives us only the probability that it is slower by at most a factor $\tau$. We overcome this limitation by changing the definition of performance ratio (4.6) to

$$
\begin{equation*}
\hat{r}_{p, s}=\frac{t_{p, s}}{\min \left\{t_{p, i} \mid i \in S, i \neq s\right\}} \tag{4.8}
\end{equation*}
$$

and that of the distribution function $\rho_{s}(\tau)$ to

$$
\begin{equation*}
\hat{\rho}_{s}(\tau)=\frac{\operatorname{size}\left\{p \in \mathcal{I} \mid \hat{r}_{p, s} \leq \tau\right\}}{|S|} . \tag{4.9}
\end{equation*}
$$

We note that by definition (4.6), $r_{p, s} \geq 1$ for all $p \in \mathcal{I}, s \in S$. Consequently, $\rho_{s}(\tau)=0$ when $\tau<1$. However, $\hat{r}_{p, s}$ can assume values less than one if solver $s$ is the fastest solver for the instance $p$. It also implies $\hat{\rho}_{s}(\tau)$ is not necessarily zero when $\tau<1$. In fact, it follows for our definitions that when $\tau<1$, then $\hat{\rho}_{s}(\tau)$ is precisely the probability that solver $s$ is faster than any other solver in $S$ by at least factor $1 / \tau$. For example, $\hat{\rho}_{s}(0.25)$ is the probability that solver $s$ is four times faster than any other solver in $S$ on a given instance.

Thus, our definition extends the existing definition of performance profile. This fact follows from observing that size $\left\{p \in \mathcal{I} \mid \hat{r}_{p, s} \leq \tau\right\}=\operatorname{size}\left\{p \in \mathcal{I} \mid r_{p, s} \leq \tau\right\}$ for $\tau \geq 1$, and thus $\rho_{s}(\tau)=$ $\hat{\rho}_{s}(\tau)$ when $\tau \geq 1$, and motivates the term "extended performance-profiles."

We now consider examples of the two profiles constructed from our experiments; see Figure 2. Observe that the extended performance-profile looks exactly the same as the performance profile for $\tau \geq 1$. In addition, the extended performance-profile indicates that solver "QP-diving-IPOPT" is faster than the other two solvers by a factor of 2 or more on almost $30 \%$ of the instances (or equivalently, that the probability of its being at least twice as fast as the other two solvers is 0.3 ).

Before we discuss the results of our computational experiments, we comment on the characteristics of extended performance-profiles.

- The extended performance-profile is, like the performance profile, a nondecreasing, piecewise constant function, continuous from the right at each breakpoint.
- The value $\hat{\rho}_{s}(1)$ is the probability that solver $s$ is faster than all other solvers in $S$.
- $\lim _{\tau \searrow 0} \hat{\rho}_{s}(\tau)$ is the probability that out of all solvers in $S, s$ alone solves an instance.
- If $\hat{r}_{p, s} \in\left(0, r_{M}\right]$ and if $\hat{r}_{p, s}$ is $r_{M}$ only when instance $p$ is not solved by solver $s$, then $\hat{\rho}_{s}\left(r_{M}\right)$ is the probability that solver $s$ solves an instance.


Figure 2: Performance profile (left) and extended performance-profile (right) generated by using the same data.


Figure 3: Extended performance-profile comparing time in nonlinear branch-and-bound with QPdiving using IPOPT (left) and filterSQP (right) as the NLP solver.

### 4.2 Computational Performance of QP-Diving

Our results are summarized in Figures 3-6. The two profiles in Figure 3 compare the CPU time of QP-diving with the CPU time for the two branch-and-bound implementations. The left figure shows the results for IPOPT and the right for filterSQP. We observe that when IPOPT is used as the NLP solver, QP-diving is the fastest solver on nearly $60 \%$ of all the instances and on $80 \%$ of all instances that are solved in two hours. It is at least two times faster than any other solver on $30 \%$ of all instances. The filterSQP solver speeds the performance of the branch-and-bound algorithms of BONMIN and MINOTAUR, but QP-diving still performs significantly better than the two. It is fastest among the three on $45 \%$ of all instances, and at least two times faster on $25 \%$. A comparison of all six tests, shown in Figure 4, confirms the superior performance of QP-diving.

Figure 5 shows the comparison based on the number of nodes generated during the tree search. We observe that the trees generated by QP-diving are often an order of magnitude larger than the


Figure 4: Extended performance-profile comparing time in nonlinear branch-and-bound with time in QP-diving.


Figure 5: Extended performance-profile comparing number of nodes in nonlinear branch-andbound with QP-diving using IPOPT (left) and filterSQP (right) as the NLP solver.
trees for the two branch-and-bound solvers. The reasons for this inefficiency are discussed in Section 3. In spite of processing a larger number of nodes, QP-diving outperforms branch-andbound in terms of CPU time. The reason for this success is that QP-diving solves every node significantly faster. For example, the results for RSyn0805M02M (see Table A.2) show that even though the QP-diving tree is about five times larger than the regular tree, the QP warm-starting makes it faster overall. This improved per node performance can be seen in Figure 6, where we compare time spent per NLP node by the three solvers IPOPT, filterSQP, and BQPD. For the first two, we used the time reported by MINOTAUR branch-and-bound. For BQPD, we used the time reported by QP-diving with filterSQP. The time for BQPD also includes that spent in reloading QPs every time cuts are added or filterSQP was called, which we think can be improved significantly. We observe that BQPD is at least 16 times faster than both NLP solvers on $12 \%$ of all instances, 8 times faster on $30 \%$, and 4 times faster on $68 \%$. We expect to see a reduction in tree size and further improvement in solution time once we experiment with updated QP approximations during the tree search.

The number of cuts generated is tabulated in Table A.3. When we solved with filterSQP, 18 problems did not see any cuts, 72 saw fewer than 20 cuts, and only 17 saw more than 100 cuts. We generated more than a thousand cuts for trimloss instances, which suggests that removing unnecessary cuts and better cut management may be useful for some difficult instances.

## 5 Conclusions and Future Work

We have presented a new branch-and-bound algorithm that searches the tree by using QP approximations that can be warm-started at every node. We observe favorable numerical performance compared with a standard nonlinear branch-and-bound algorithm. Our algorithm and its implementation can be improved in several ways, however. We have already mentioned the problem of updating the objective function of the QP. Valid inequalities for the integer-constrained QP are


Figure 6: Extended performance-profile comparing time spent per call to NLP solvers.
valid for the MINLP as well. These inequalities can be added along with the linearizations we mentioned to get even tighter relaxations. On the implementation side large improvements are also possible. By redesigning the interfaces for QP solvers, we can avoid loading the whole problem when we add new inequalities. Methods for warm-starting QPs not just after bound changes but also when the objective is changed or when constraints are removed or added will also benefit.

An extension of our work is to consider the algorithm in the context of heuristics. One example would be a local branching heuristic (Fischetti and Lodi, 2003), which can be interpreted as a trustregion approach. If all integer variables are binary, then we can interpret local branching as adding a trust region around a current binary point $x^{*}$ to $(\mathrm{QP}(\hat{x}, l, u))$ :

$$
\left\|x_{I}^{*}-x_{I}\right\|_{1} \leq \Delta_{I}, \quad \Leftrightarrow \quad \sum_{i \in I: x_{i}^{*}=0} x_{i}+\sum_{i \in I: x_{i}^{*}=1}\left(1-x_{i}\right) \leq \Delta_{I},
$$

where $\Delta \geq 1$ is an integer that corresponds to the number of bit changes from $x^{*}$ to $x$. Similarly, we can add a trust region around the continuous variables of the form

$$
\left\|x_{C}^{*}-x_{C}\right\|_{\infty} \leq \Delta_{C}
$$

where $C$ is the index set of continuous variables and $\Delta_{C}>0$ is the continuous trust region radius. In this case, our approach resembles the SMIQP approach of Exler and Schittkowski (2007). Other heuristics, such as diving and a feasibility pump, can be extended to solve only QPs in a similar way.

## Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. This work was also
supported by the U.S. Department of Energy through grant DE-FG02-05ER25694.

## References

Abhishek, K., Leyffer, S., and Linderoth, J. T. (2010). FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs. INFORMS Journal on Computing, 22:555-567. DOI:10.1287/ijoc.1090.0373.

Achterberg, T., Koch, T., and Martin, A. (2004). Branching rules revisited. Operations Research Letters, 33:42-54.

Altunay, M., Leyffer, S., Linderoth, J. T., and Xie, Z. (2011). Optimal security response to attacks on open science grids. Computer Networks, 55:61-73.

Bacher, R. (10-12 December 1997). The Optimal Power Flow (OPF) and its solution by the interior point approach. EES-UETP Madrid, Short Course.

Bartholomew, E. F., O'Neill, R. P., and Ferris, M. C. (2008). Optimal transmission switching. IEEE Transactions on Power Systems, 23:1346-1355.

Bertsekas, D. and Gallager, R. (1987). Data Networks. Prentice-Hall, Endlewood Cliffs, NJ.
Bhatia, R., Segall, A., and Zussman, G. (2006). Analysis of bandwidth allocation algorithms for wireless personal area networks. Wireless Networks, 12:589-603.

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, 74:121-140.

Bienstock, D. and Mattia, S. (2007). Using mixed-integer programming to solve power grid blackout problems. Discrete Optimization, 4:115-141.

Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird, C. D., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A. (2008). An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization. To appear.

Bonami, P., Lee, J., Leyffer, S., and Waechter, A. (2011). More branch-and-bound experiments in convex nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics and Computer Science Division.

Boorstyn, R. and Frank, H. (1977). Large-scale network topological optimization. IEEE Transactions on Communications, 25:29-47.

Borchers, B. and Mitchell, J. E. (1994). An improved branch and bound algorithm for mixed integer nonlinear programs. Computers $\mathcal{E}$ Operations Research, 21:359-368.

Bragalli, C., D'Ambrosio, C., Lee, J., Lodi, A., and Toth, P. (2006). An MINLP solution method for a water network problem. In Algorithms - ESA 2006 (14th Annual European Symposium. Zurich, Switzerland, September 2006, Proceedings), pages 696-707. Springer.

Bussieck, M. R. and Drud, A. (2001). SBB: A new solver for mixed integer nonlinear programming. Talk, OR 2001, Section Continuous Optimization.

Castillo, I., Westerlund, J., Emet, S., and Westerlund, T. (2005). Optimization of block layout deisgn problems with unequal areas: A comparison of MILP and MINLP optimization methods. Computers and Chemical Engineering, 30:54-69.

Chi, K., Jiang, X., Horiguchi, S., and Guo, M. (2008). Topology design of network-coding-based multicast networks. IEEE Transactions on Mobile Computing, 7(4):1-14.

CMU (2012). CMU-IBM open source MINLP project. http://egon.cheme.cmu.edu/ibm/page.htm.
Costa-Montenegro, E., González-Castaño, F. J., Rodriguez-Hernández, P. S., and Burguillo-Rial, J. C. (2007). Nonlinear optimization of IEEE 802.11 mesh networks. In ICCS 2007, Part IV, pages 466-473, Springer Verlag, Berlin.

Dakin, R. J. (1965). A tree search algorithm for mixed programming problems. Computer Journal, 8:250-255.

Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91:201-213.

Donde, V., Lopez, V., Lesieutre, B., Pinar, A., Yang, C., and Meza, J. (2005). Identification of severe multiple contingencies in electric power networks. In Proceedings 37th North American Power Symposium. LBNL-57994.

Dribeek, N. J. (1966). An algorithm for the solution of mixed integer programming problems. Management Science, 12:576-587.

Duran, M. A. and Grossmann, I. (1986). An outer-approximation algorithm for a class of mixedinteger nonlinear programs. Mathematical Programming, 36:307-339.

Eliceche, A. M., Corvalán, S. M., and Martínez, P. (2007). Environmental life cycle impact as a tool for process optimisation of a utility plant. Computers and Chemical Engineering, 31:648-656.

Elwalid, A., Mitra, D., and Wang, Q. (2006). Distributed nonlinear integer optimization for dataoptical internetworking. IEEE Journal on Selected Areas in Communications, 24(8):1502-1513.

Exler, O. and Schittkowski, K. (2007). A trust region SQP algorithm for mixed-integer nonlinear programming. Optimization Letters, 1:269-280.

Fischetti, M. and Lodi, A. (2003). Local branching. Mathematical Programming, 98:23-47.

Fletcher, R. (1995). User manual for BQPD. University of Dundee.
Fletcher, R. and Leyffer, S. (1994). Solving mixed integer nonlinear programs by outer approximation. Mathematical Programming, 66:327-349.

Fletcher, R. and Leyffer, S. (1998). User manual for filterSQP. University of Dundee Numerical Analysis Report NA-181.

Fletcher, R. and Leyffer, S. (2005). MINLP (AMPL input). http: / /www-neos.mcs.anl.gov/ neos/solvers/MINCO:MINLP - AMPL.

Flores-Tlacuahuac, A. and Biegler, L. T. (2007). Simultaneous mixed-integer dynamic optimization for integrated design and control. Computers and Chemical Engineering, 31:648-656.

Floudas, C. (1995). Nonlinear and Mixed-Integer Optimization. Topics in Chemical Engineering. Oxford University Press, New York.

Garver, L. L. (1997). Transmission network estimation using linear programming. IEEE Transactions on Power Apparatus Systems, 89:1688-1697.

Geoffrion, A. (1972). Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4):237-260.

Goldberg, N., Leyffer, S., and Safro, I. (2012). Optimal response to epidemics and cyber attacks in networks. Preprint ANL/MCS-1992-0112, Argonne National Laboratory, Mathematics and Computer Science Division.

Grossmann, I. E. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and Engineering, 3:227-252.

Grossmann, I. E. and Kravanja, Z. (1997). Mixed-integer nonlinear programming: A survey of algorithms and applications. In L.T. Biegler, T.F. Coleman, A. C. and Santosa, F., editors, LargeScale Optimization with Applications, Part II: Optimal Design and Control, Springer, New York.

Gu, Z., Nemhauser, G. L., and Savelsbergh, M. W. P. (1999). Lifted flow covers for mixed 0-1 integer programs. Mathematical Programming, 85:439-467.

Guerra, A., Newman, A. M., and Leyffer, S. (2009). Concrete structure design using mixed-integer nonlinear programming with complementarity constraints. Preprint ANL/MCS-P1869-1109, Argonne National Laboratory, Mathematics and Computer Science Division. To appear in SIAM Journal on Optimization.

Gupta, O. K. and Ravindran, A. (1985). Branch and bound experiments in convex nonlinear integer programming. Management Science, 31:1533-1546.

Hedman, K. W., O'Neill, R. P., Fisher, E. B., and Oren, S. S. (2008). Optimal transmission switching - sensitivity analysis and extensions. IEEE Transactions on Power Systems, 23:1469-1479.

Jobst, N. J., Horniman, M. D., Lucas, C. A., and Mitra, G. (2001). Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quantitative Finance, 1:489-501.

Karuppiah, R. and Grossmann, I. E. (2006). Global optimization for the synthesis of integrated water systems in chemical processes. Computers and Chemical Engineering, 30:650-673.

Lee, J. and Leyffer, S., editors (2011). Mixed Integer Nonlinear Programming, IMA Volume in Mathematics and its Applications. Springer, New York.

Leyffer, S. (1998). User manual for MINLP-BB. University of Dundee.
Leyffer, S. (2001). Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Computational Optimization $\mathcal{E}$ Applications, 18:295-309.

Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., and Munson, T. (2011). MINOTAUR: a toolkit for solving mixed-integer nonlinear optimization. wiki-page. http:/ / wiki.mcs.anl.gov/minotaur.

Marchand, H. and Wolsey, L. (1999). The 0-1 knapsack problem with a single continuous variable. Mathematical Programming, 85:15-33.

Momoh, J., Koessler, R., Bond, M., Stott, B., Sun, D., Papalexopoulos, A., and Ristanovic, P. (1997). Challenges to optimal power flow. IEEE Transaction on Power Systems, 12:444-455.

Quesada, I. and Grossmann, I. E. (1992). An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Computers and Chemical Engineering, 16:937-947.

Quist, A. J., van Gemeert, R., Hoogenboom, J. E., Ílles, T., Roos, C., and Terlaky, T. (1998). Application of nonlinear optimization to reactor core fuel reloading. Annals of Nuclear Energy, 26:423-448.

Romero, R., Monticelli, A., Garcia, A., and Haffner, S. (2002). Test systems and mathematical models for transmission network expansion planning. IEE Proceedings - Generation, Transmission and Distrbution., 149(1):27-36.

Sheikh, W. and Ghafoor, A. (2010). An optimal bandwidth allocation and data droppage scheme for differentiated services in a wireless network. Wireless Communications and Mobile Computing, 10(6):733-747.

Sinha, R., Yener, A., and Yates, R. D. (2002). Noncoherent multiuser communications: Multistage detection and selective filtering. EURASIP Journal on Applied Signal Processing, 12:1415-1426.

Soleimanipour, M., Zhuang, W., and Freeman, G. H. (2002). Optimal resource management in wireless multimedia wideband CDMA systems. IEEE Transactions on Mobile Computing, 1(2):143-160.

Stubbs, R. and Mehrohtra, S. (2002). Generating convex polynomial inequalities for mixed 0-1 programs. Journal of Global Optimization, 24:311-332.

Wächter, A. and Biegler, L. T. (2006). On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25-57.

Westerlund, T. and Pettersson, F. (1995). A cutting plane method for solving convex MINLP problems. Computers and Chemical Engineering, 19:s131-s136.

You, F. and Leyffer, S. (2010). Oil spill response planning with MINLP. SIAG/OPT Views-and-News, 21(2):1-8.

You, F. and Leyffer, S. (2011). Mixed-integer dynamic optimization for oil-spill response planning with integration of a dynamic oil weathering model. AIChe Journal. Published online: DOI: 10.1002/aic. 12536.

[^1]
## A Numerical Results

Table A.1: Time used (seconds) and nodes processed in branch-and-bound. "- 1 " denotes a failure.

| Instance | BONMIN-IPOPT |  | MINOTAUR-IPOPT |  | QP-diving-IPOPT |  | BONMIN-fSQP |  | MINOTAUR-fSQP |  | QP-diving-fSQP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU | Nodes |
| BatchS101006M | 25.86 | 442 | 30.93 | 389 | 21.25 | 2383 | 12.16 | 446 | 7.18 | 397 | 47.68 | 5221 |
| BatchS121208M | 54.09 | 600 | 72.94 | 601 | 39.39 | 4355 | 31.71 | 596 | 90.48 | 3003 | 115.64 | 9585 |
| BatchS151208M | 162.81 | 1792 | 207.49 | 1687 | 145.42 | 9117 | 133.83 | 2229 | 176.62 | 4373 | 409.66 | 27389 |
| BatchS201210M | 222.72 | 1594 | 271.37 | 1366 | 149.90 | 8199 | 194.60 | 1862 | 578.76 | 9627 | 1173.91 | 64279 |
| CLay0203H | 7.90 | 212 | 15.00 | 192 | 0.61 | 107 | 2.39 | 219 | 1.72 | 289 | 0.25 | 85 |
| CLay0203M | 3.40 | 225 | 10.57 | 467 | 4.37 | 279 | 0.27 | 232 | 0.31 | 373 | 0.24 | 234 |
| CLay0204H | 75.17 | 1477 | 46.37 | 1409 | 5.17 | 1688 | 29.85 | 1516 | 30.01 | 1914 | 2.70 | 1185 |
| CLay0204M | 15.76 | 1802 | 35.51 | 1937 | 8.26 | 3073 | 3.27 | 1467 | 0.90 | 1442 | 5.90 | 6254 |
| CLay0205H | -1 | -1 | 714.61 | 12062 | 92.37 | 17409 | 568.35 | 11697 | 570.44 | 12519 | 86.75 | 21646 |
| CLay0205M | 262.02 | 18832 | 391.68 | 20010 | 109.93 | 59550 | 66.61 | 16422 | 22.54 | 13188 | 105.14 | 116801 |
| CLay0303H | 28.26 | 385 | 51.26 | 444 | 0.72 | 186 | 5.10 | 360 | 6.38 | 941 | 0.53 | 191 |
| CLay0303M | 7.04 | 388 | 33.92 | 799 | 13.12 | 950 | 0.70 | 394 | 1.25 | 1123 | 0.76 | 734 |
| CLay0304H | 202.71 | 1837 | 347.30 | 1906 | 3.42 | 645 | 76.01 | 2669 | 159.19 | 8503 | 2.18 | 629 |
| CLay0304M | 147.23 | 2966 | 925.04 | 19829 | 689.51 | 25178 | 14.42 | 4618 | 89.63 | 28440 | 41.39 | 28074 |
| CLay0305H | 2405.67 | 15549 | 1952.17 | 16072 | 95.76 | 18574 | 806.10 | 15011 | 850.92 | 16318 | 101.71 | 23094 |
| CLay0305M | 554.33 | 19186 | 794.91 | 31440 | 7200.04 | 620687 | 87.78 | 19371 | 110.16 | 25761 | 1275.79 | 820646 |
| FLay02H | 0.07 | 0 | 0.14 | 7 | 0.07 | 7 | 0.05 | 0 | 0.03 | 7 | 0.04 | 7 |
| FLay02M | 0.03 | 0 | 0.07 | 7 | 0.05 | 7 | 0.01 | 0 | 0.01 | 7 | 0.03 | 7 |
| FLay03H | 1.54 | 100 | 1.76 | 106 | 0.96 | 127 | 0.88 | 110 | 0.54 | 104 | 0.39 | 127 |
| FLay03M | 0.41 | 98 | 0.73 | 103 | 0.34 | 117 | 0.07 | 102 | 0.06 | 103 | 0.10 | 125 |
| FLay04H | 54.55 | 2714 | 51.19 | 2331 | 20.93 | 2745 | 47.98 | 2664 | 35.87 | 2325 | 13.90 | 2775 |
| FLay04M | 13.16 | 2810 | 21.01 | 2517 | 4.78 | 2711 | 1.88 | 2728 | 1.54 | 2608 | 1.36 | 2721 |
| FLay05H | 2739.25 | 90780 | 2518.04 | 76380 | 1747.91 | 122253 | 5536.38 | 109186 | 3706.54 | 83741 | 1519.38 | 127595 |


| Instance | BONMIN-IPOPT |  | MINOTAUR-IPOPT |  | QP-diving-IPOPT |  | BONMIN-fSQP |  | MINOTAUR-fSQP |  | QP-diving-fSQP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU | Nodes |
| FLay05M | 556.31 | 96586 | 571.63 | 59691 | 270.13 | 113867 | 142.98 | 106922 | 100.71 | 84926 | 94.78 | 111250 |
| FLay06H | 7201.08 | 180728 | 7200.03 | 173959 | 7200.01 | 596312 | 7200.37 | 71586 | 7200.01 | 81871 | 7200.14 | 717942 |
| FLay06M | 7201.98 | 586634 | 7200.01 | 634593 | 7200.00 | 3093407 | 7206.75 | 3666524 | 7200.00 | 3962640 | 7200.00 | 4804475 |
| RSyn0805H | 3.11 | 44 | 3.21 | 57 | 0.55 | 109 | 7.77 | 44 | 10.44 | 124 | 1.95 | 219 |
| RSyn0805M | 53.11 | 2703 | 408.52 | 22561 | 8.78 | 4755 | 19.62 | 2481 | 23.91 | 3186 | 8.57 | 5955 |
| RSyn0805M02H | 13.30 | 14 | 36.84 | 194 | 2.76 | 85 | 69.02 | 14 | 139.70 | 199 | 5.03 | 89 |
| RSyn0805M02M | 2809.94 | 44330 | 4157.82 | 69540 | 2663.91 | 282407 | 2743.36 | 43878 | 4099.54 | 70603 | 2668.97 | 330549 |
| RSyn0805M03H | 21.22 | 10 | 120.68 | 312 | 6.28 | 93 | 63.97 | 12 | 172.55 | 97 | 16.84 | 73 |
| RSyn0805M03M | 7199.95 | 65907 | 6085.55 | 64611 | 7200.03 | 398622 | 7199.92 | 43561 | 7200.06 | 58109 | 7200.02 | 483792 |
| RSyn0805M04H | 20.18 | 2 | 120.45 | 192 | 6.32 | 55 | 64.28 | 0 | 179.41 | 77 | 8.99 | 49 |
| RSyn0805M04M | 7199.99 | 37865 | 7200.12 | 46303 | 7200.07 | 215853 | 7199.94 | 21449 | 7200.12 | 31897 | 7200.04 | 227642 |
| RSyn0810H | 3.66 | 34 | 4.26 | 70 | 0.70 | 99 | 3.03 | 34 | 5.51 | 121 | 0.56 | 89 |
| RSyn0810M | 298.52 | 14633 | 2049.95 | 100471 | 375.49 | 219901 | 82.88 | 11551 | 53.74 | 10341 | 396.65 | 237115 |
| RSyn0810M02H | 19.23 | 44 | 41.22 | 195 | 13.22 | 306 | 114.66 | 42 | 576.28 | 689 | 43.23 | 327 |
| RSyn0810M02M | 7200.64 | 105227 | 7200.05 | 108984 | 7200.02 | 975065 | 7200.52 | 95389 | 7200.08 | 102498 | 7200.01 | 948103 |
| RSyn0810M03H | 67.43 | 146 | 214.11 | 731 | 39.51 | 571 | 319.07 | 164 | 2010.71 | 1313 | 174.89 | 836 |
| RSyn0810M03M | 7200.46 | 56490 | 7200.11 | 65639 | 7200.07 | 884521 | 7200.19 | 34041 | 7200.17 | 48425 | 7200.01 | 808281 |
| RSyn0810M04H | 37.21 | 8 | 322.60 | 485 | 10.48 | 71 | 177.53 | 10 | 266.34 | 71 | 13.57 | 65 |
| RSyn0810M04M | 7200.29 | 31746 | 7200.05 | 38581 | 7200.02 | 631915 | 7199.78 | 16386 | 7200.27 | 24582 | 7200.02 | 615599 |
| RSyn0815H | 5.21 | 54 | 6.16 | 91 | 0.87 | 111 | 12.17 | 54 | 18.40 | 109 | 1.43 | 117 |
| RSyn 0815 M | 7200.15 | 244605 | 396.07 | 18470 | 1250.07 | 439858 | 85.97 | 8017 | 84.19 | 8832 | 375.44 | 190051 |
| RSyn0815M02H | 14.14 | 10 | 65.57 | 245 | 3.00 | 47 | 62.59 | 10 | 110.23 | 120 | 6.78 | 97 |
| RSyn0815M02M | 7200.44 | 53730 | 7200.07 | 107343 | 7200.03 | 1064957 | 7200.54 | 75213 | 7200.02 | 84632 | 7200.01 | 988018 |
| RSyn0815M03H | 61.27 | 72 | 285.04 | 840 | 21.26 | 264 | 381.09 | 92 | 1653.43 | 888 | 55.19 | 544 |
| RSyn0815M03M | 7200.38 | 32474 | 7200.04 | 60940 | 7200.06 | 676874 | 7200.22 | 28656 | 7200.16 | 35430 | 7200.02 | 745400 |
| RSyn0815M04H | 49.71 | 12 | 385.68 | 543 | 27.41 | 157 | 291.28 | 10 | 1182.66 | 257 | 54.97 | 186 |
| RSyn0815M04M | 7200.02 | 13731 | 7200.26 | 34888 | 7200.07 | 552280 | 7199.90 | 14598 | 7200.32 | 19509 | 7200.02 | 589701 |
| RSyn0820H | 6.08 | 73 | 5.31 | 82 | 1.10 | 117 | 21.16 | 71 | 12.59 | 82 | 8.87 | 475 |
| RSyn 0820 M | 7200.13 | 270531 | 7200.01 | 345926 | 1648.57 | 548869 | 989.05 | 73774 | 1085.10 | 83481 | 935.49 | 395093 |
| RSyn0820M02H | 23.38 | 42 | 85.29 | 285 | 9.25 | 175 | 184.18 | 28 | 552.07 | 382 | 24.70 | 183 |
| RSyn0820M02M | 7200.84 | 75454 | 7200.07 | 92194 | 7200.03 | 1506283 | 7200.72 | 67735 | 7200.11 | 69394 | 7200.05 | 1415701 |
| RSyn0820M03H | 98.72 | 194 | 509.82 | 1541 | 36.89 | 465 | 945.25 | 232 | 2970.74 | 1302 | 100.05 | 1022 |
| RSyn0820M03M | 7200.56 | 39705 | 7200.09 | 51504 | 7200.02 | 930856 | 7199.94 | 24395 | 7200.07 | 31997 | 7200.01 | 874957 |


| Instance | BONMIN-IPOPT |  | MINOTAUR-IPOPT |  | QP-diving-IPOPT |  | BONMIN-fSQP |  | MINOTAUR-fSQP |  | QP-diving-fSQP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU | Nodes |
| RSyn0820M04H | 122.01 | 91 | 978.26 | 1821 | 74.80 | 389 | 1115.70 | 96 | 4408.82 | 1050 | 203.62 | 425 |
| RSyn0820M04M | 7200.37 | 21127 | 7200.35 | 29535 | 7200.02 | 617815 | 7199.71 | 12986 | 7200.15 | 16999 | 7200.02 | 643890 |
| RSyn0830H | 5.33 | 32 | 5.45 | 60 | 5.10 | 175 | 26.29 | 38 | 24.26 | 90 | 8.68 | 175 |
| RSyn0830M | 7201.61 | 225135 | 7200.03 | 293387 | 3873.49 | 1391071 | 2612.48 | 151510 | 2485.99 | 144708 | 3299.63 | 1259559 |
| RSyn0830M02H | 31.37 | 75 | 139.55 | 567 | 23.66 | 313 | 380.70 | 71 | 307.04 | 193 | 77.94 | 315 |
| RSyn0830M02M | 7200.92 | 67073 | 7200.07 | 80827 | 7200.01 | 1562498 | 7200.48 | 44335 | 7200.07 | 43121 | 7200.03 | 1424931 |
| RSyn0830M03H | 75.57 | 106 | 369.02 | 760 | 68.89 | 473 | 997.47 | 104 | 569.31 | 166 | 221.39 | 503 |
| RSyn0830M03M | 7200.53 | 33898 | 7200.04 | 39718 | 7200.02 | 779706 | 7199.98 | 19537 | 7200.09 | 18439 | -1 | -1 |
| RSyn0830M04H | 317.03 | 446 | 888.47 | 1222 | 1011.40 | 4305 | 4172.53 | 450 | 2114.26 | 400 | 3093.12 | 3901 |
| RSyn0830M04M | 7200.47 | 19749 | 7200.19 | 22183 | -1 | -1 | 7199.54 | 9861 | 7200.63 | 9071 | 7200.19 | 611048 |
| RSyn0840H | 3.74 | 14 | 3.32 | 21 | 0.65 | 27 | 16.91 | 14 | 9.69 | 21 | 1.16 | 27 |
| RSyn0840M | 7201.45 | 207598 | 7200.04 | 228884 | 7200.01 | 4014276 | 7202.24 | 349553 | 7200.02 | 344393 | 7200.01 | 4223628 |
| RSyn0840M02H | 25.85 | 36 | 79.71 | 219 | 9.67 | 101 | 252.88 | 36 | 215.84 | 89 | 25.87 | 101 |
| RSyn0840M02M | 7200.84 | 56582 | 7200.07 | 67698 | 7200.10 | 1241062 | 7200.29 | 35471 | 7200.15 | 35989 | 7200.06 | 1385347 |
| RSyn0840M03H | 89.87 | 109 | 533.62 | 1053 | 149.08 | 655 | 1119.33 | 96 | 1445.13 | 320 | 725.18 | 757 |
| RSyn0840M03M | 7200.55 | 31476 | 7200.08 | 41184 | 7200.02 | 679923 | 7199.64 | 13447 | 7200.30 | 14924 | 7200.02 | 753282 |
| RSyn0840M04H | 325.73 | 423 | 4319.30 | 7312 | 765.52 | 2382 | 3955.58 | 465 | 3774.68 | 616 | 2272.66 | 2599 |
| RSyn0840M04M | 7200.35 | 19738 | 7200.32 | 20077 | -1 | -1 | 7199.90 | 7996 | 7200.72 | 6969 | -1 | -1 |
| SLay04H | 0.64 | 35 | 1.04 | 37 | 0.21 | 42 | 0.37 | 35 | 0.33 | 37 | 0.26 | 84 |
| SLay04M | 0.44 | 35 | 0.56 | 37 | 0.09 | 39 | 0.02 | 35 | 0.03 | 37 | 0.07 | 39 |
| SLay05H | 1.40 | 59 | 2.38 | 61 | 0.52 | 76 | 1.62 | 59 | 1.36 | 61 | 0.37 | 69 |
| SLay05M | 0.68 | 59 | 1.10 | 61 | 0.17 | 73 | 0.07 | 59 | 0.07 | 61 | 0.10 | 61 |
| SLay06H | 3.64 | 110 | 4.96 | 98 | 1.27 | 126 | 6.23 | 114 | 4.84 | 116 | 1.28 | 142 |
| SLay06M | 1.90 | 110 | 2.05 | 99 | 0.36 | 122 | 0.21 | 110 | 0.18 | 98 | 0.20 | 101 |
| SLay07H | 8.11 | 241 | 10.78 | 200 | 4.86 | 353 | 20.56 | 214 | 12.69 | 153 | 3.62 | 314 |
| SLay07M | 3.63 | 241 | 3.95 | 199 | 0.82 | 212 | 0.69 | 241 | 0.53 | 198 | 0.46 | 179 |
| SLay08H | 13.82 | 269 | 19.41 | 287 | 8.94 | 461 | 47.06 | 249 | 36.45 | 314 | 8.57 | 424 |
| SLay08M | 5.22 | 265 | 6.65 | 303 | 1.78 | 402 | 1.26 | 261 | 1.23 | 304 | 1.67 | 383 |
| SLay09H | 27.22 | 438 | 33.62 | 385 | 33.12 | 1103 | 134.18 | 456 | 94.30 | 573 | 36.36 | 1122 |
| SLay09M | 9.30 | 387 | 11.83 | 397 | 5.94 | 924 | 2.73 | 367 | 3.05 | 512 | 5.48 | 847 |
| SLay10H | 494.31 | 7902 | 332.40 | 5268 | 3646.12 | 41735 | 2063.80 | 6561 | 904.73 | 5308 | 6354.45 | 60083 |
| SLay10M | 107.63 | 6682 | 96.06 | 4703 | 293.45 | 15621 | 56.37 | 6700 | 43.10 | 4779 | 343.12 | 14333 |
| Syn05H | 0.04 | 0 | 0.05 | 3 | 0.05 | 5 | 0.01 | 0 | 0.01 | 1 | 0.02 | 1 |


| Instance | BONMIN-IPOPT |  | MINOTAUR-IPOPT |  | QP-diving-IPOPT |  | BONMIN-fSQP |  | MINOTAUR-fSQP |  | QP-diving-fSQP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU | Nodes |
| Syn05M | 0.08 | 6 | 0.12 | 11 | 0.04 | 11 | 0.01 | 6 | 0.02 | 11 | 0.02 | 11 |
| Syn05M02H | 0.04 | 0 | 0.15 | 3 | 0.05 | 3 | 0.02 | 0 | 0.06 | 3 | 0.05 | 3 |
| Syn05M02M | 0.35 | 12 | 0.48 | 19 | 0.14 | 19 | 0.05 | 12 | 0.07 | 19 | 0.06 | 19 |
| Syn05M03H | 0.07 | 0 | 0.27 | 5 | 0.07 | 5 | 0.03 | 0 | 0.13 | 5 | 0.06 | 5 |
| Syn05M03M | 0.54 | 18 | 1.01 | 27 | 0.17 | 31 | 0.22 | 18 | 0.24 | 29 | 0.11 | 31 |
| Syn05M04H | 0.08 | 0 | 0.47 | 7 | 0.11 | 7 | 0.05 | 0 | 0.21 | 5 | 0.08 | 5 |
| Syn05M04M | 1.23 | 32 | 1.93 | 41 | 0.32 | 45 | 0.39 | 32 | 0.47 | 43 | 0.18 | 45 |
| Syn10H | 0.07 | 0 | 0.08 | 3 | 0.04 | 3 | 0.01 | 0 | 0.03 | 3 | 0.02 | 3 |
| Syn10M | 0.33 | 30 | 0.43 | 35 | 0.07 | 35 | 0.02 | 30 | 0.03 | 35 | 0.04 | 35 |
| Syn10M02H | 0.09 | 0 | 0.40 | 5 | 0.09 | 5 | 0.10 | 0 | 0.55 | 3 | 0.09 | 3 |
| Syn10M02M | 3.76 | 246 | 5.44 | 230 | 1.79 | 321 | 1.56 | 246 | 1.56 | 237 | 0.88 | 321 |
| Syn10M03H | 0.32 | 0 | 0.85 | 9 | 0.16 | 9 | 0.15 | 0 | 0.75 | 9 | 0.18 | 9 |
| Syn10M03M | 19.82 | 874 | 21.50 | 683 | 8.84 | 1353 | 9.71 | 874 | 8.71 | 670 | 4.49 | 1355 |
| Syn10M04H | 0.47 | 0 | 1.56 | 13 | 0.29 | 13 | 0.74 | 0 | 1.55 | 11 | 0.32 | 13 |
| Syn10M04M | 59.10 | 1946 | 66.44 | 1686 | 26.40 | 2871 | 33.83 | 1932 | 31.04 | 1588 | 14.15 | 2957 |
| Syn15H | 0.09 | 0 | 0.09 | 3 | 0.06 | 3 | 0.03 | 0 | 0.06 | 3 | 0.04 | 3 |
| Syn15M | 0.67 | 70 | 1.07 | 74 | 0.28 | 79 | 0.11 | 70 | 0.12 | 72 | 0.10 | 79 |
| Syn15M02H | 0.17 | 0 | 0.30 | 3 | 0.15 | 3 | 0.10 | 0 | 0.31 | 3 | 0.12 | 3 |
| Syn15M02M | 11.39 | 466 | 17.23 | 635 | 5.51 | 839 | 5.49 | 466 | 4.46 | 410 | 2.71 | 837 |
| Syn15M03H | 0.46 | 0 | 0.65 | 5 | 0.27 | 5 | 0.21 | 0 | 0.93 | 5 | 0.28 | 5 |
| Syn15M03M | 67.71 | 1704 | 55.40 | 1392 | 41.98 | 3233 | 36.37 | 1696 | 36.36 | 1465 | 22.48 | 3341 |
| Syn15M04H | 0.63 | 0 | 1.27 | 7 | 0.52 | 7 | 0.47 | 0 | 1.81 | 7 | 0.49 | 7 |
| Syn15M04M | 299.98 | 4814 | 356.42 | 6571 | 840.46 | 15095 | 183.36 | 5064 | 191.09 | 4460 | 293.76 | 15387 |
| Syn20H | 0.12 | 0 | 0.21 | 5 | 0.09 | 5 | 3.61 | 0 | 0.50 | 6 | 0.10 | 5 |
| Syn20M | 5.94 | 596 | 7.81 | 651 | 2.07 | 815 | 1.26 | 596 | 1.24 | 651 | 0.71 | 815 |
| Syn20M02H | 0.56 | 2 | 1.20 | 7 | 0.33 | 7 | 1.35 | 0 | 2.17 | 7 | 0.45 | 7 |
| Syn 20 M 02 M | 498.89 | 16653 | 406.48 | 15913 | 199.99 | 38587 | 260.33 | 16782 | 237.87 | 15378 | 135.95 | 39563 |
| Syn20M03H | 1.99 | 2 | 2.61 | 13 | 0.58 | 13 | 97.33 | 0 | 12.31 | 16 | 3.01 | 15 |
| Syn20M03M | 7200.13 | 126172 | 5881.06 | 135042 | 7200.18 | 287472 | 3844.12 | 140565 | 4385.84 | 137783 | 4256.88 | 448763 |
| Syn20M04H | 3.58 | 2 | 4.51 | 15 | 1.10 | 19 | 20.09 | 0 | 22.94 | 21 | 3.79 | 19 |
| Syn 20M04M | 7200.61 | 69274 | 7200.04 | 99467 | 7200.01 | 552797 | 7200.95 | 149542 | 7200.04 | 124616 | 7200.04 | 762908 |
| Syn30H | 0.51 | 2 | 0.35 | 5 | 0.28 | 11 | 0.90 | 2 | 0.31 | 5 | 0.19 | 9 |
| Syn30M | 24.47 | 1914 | 60.76 | 3901 | 28.17 | 15591 | 23.38 | 5141 | 17.87 | 3920 | 16.68 | 16483 |


| Instance | BONMIN-IPOPT |  | MINOTAUR-IPOPT |  | QP-diving-IPOPT |  | BONMIN-fSQP |  | MINOTAUR-fSQP |  | QP-diving-fSQP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU | Nodes |
| Syn30M02H | 1.12 | 0 | 1.52 | 5 | 0.93 | 11 | 3.64 | 0 | 2.85 | 5 | 1.55 | 11 |
| Syn30M02M | 7201.10 | 202183 | 7200.03 | 203103 | 7200.08 | 1257156 | 7200.96 | 185612 | 7200.04 | 196983 | 7200.01 | 1489820 |
| Syn30M03H | 5.83 | 10 | 4.10 | 9 | 2.57 | 25 | 28.78 | 14 | 13.86 | 12 | 6.61 | 27 |
| Syn30M03M | 7201.28 | 123115 | 7200.03 | 130809 | 7200.02 | 1093625 | 7200.68 | 88018 | 7200.06 | 89027 | 7200.03 | 1263041 |
| Syn30M04H | 18.71 | 31 | 10.79 | 22 | 10.56 | 73 | 108.11 | 35 | 34.97 | 17 | 23.63 | 73 |
| Syn30M04M | 7201.08 | 80796 | 7200.09 | 67919 | 7200.01 | 836133 | 7200.57 | 50312 | 7200.16 | 49464 | 7200.14 | 961396 |
| Syn40H | 1.18 | 10 | 1.01 | 12 | 0.57 | 21 | 3.79 | 10 | 1.69 | 12 | 0.92 | 25 |
| Syn40M | 851.70 | 59580 | 833.07 | 45521 | 403.55 | 292019 | 413.97 | 59634 | 314.49 | 45411 | 396.31 | 296455 |
| Syn40M02H | 3.42 | 10 | 3.19 | 9 | 1.86 | 19 | 25.03 | 8 | 24.96 | 20 | 9.90 | 53 |
| Syn40M02M | 7201.46 | 171069 | 7200.01 | 176652 | 7200.03 | 1390625 | 7200.96 | 112484 | 7200.05 | 116418 | 7200.01 | 1756859 |
| Syn40M03H | 16.39 | 46 | 12.38 | 39 | 10.82 | 90 | 160.67 | 49 | 49.92 | 35 | 37.29 | 98 |
| Syn40M03M | 7201.09 | 85865 | 7200.03 | 87678 | 7200.05 | 992775 | 7200.59 | 52030 | 7200.10 | 52745 | 7200.03 | 1243779 |
| Syn40M04H | 62.97 | 104 | 43.38 | 83 | 145.01 | 711 | 459.25 | 62 | 172.28 | 41 | 302.58 | 396 |
| Syn40M04M | 7200.91 | 57541 | 7200.10 | 62975 | -1 | -1 | 7200.40 | 29991 | 7200.19 | 26165 | 7200.02 | 662289 |
| Water0202 | 299.77 | 24 | 223.68 | 35 | 7304.44 | 4 | -1 | -1 | 1.08 | 1 | 1.68 | 1 |
| Water0202R | 4.02 | 26 | 1.72 | 28 | 3.65 | 29 | 0.54 | 20 | 0.40 | 29 | 4.21 | 37 |
| Water0303 | 524.80 | 56 | 561.02 | 82 | 8562.32 | 4 | -1 | -1 | 1.10 | 1 | 1.75 | 1 |
| Water0303R | 457.27 | 292 | 31.38 | 112 | 109.29 | 201 | 16.05 | 122 | 4.49 | 95 | 110.58 | 227 |
| fo7 | 7200.72 | 271097 | 7200.00 | 283924 | -1 | -1 | 2615.16 | 294162 | 3596.99 | 497909 | -1 | -1 |
| fo7.2 | 5805.85 | 161263 | 7200.02 | 268795 | 7200.01 | 4062083 | 1565.95 | 162450 | 3027.16 | 326312 | 7200.01 | 4212973 |
| fo8 | 7200.76 | 172196 | 7200.07 | 247645 | -1 | -1 | -1 | -1 | 7200.01 | 409149 | 7200.01 | 3356737 |
| fo9 | 7201.99 | 273067 | 7200.03 | 194816 | 7200.01 | 2637864 | 7201.80 | 243346 | 7200.13 | 227236 | 7200.00 | 3043648 |
| o7 | 7200.86 | 189167 | 7200.01 | 289784 | 7200.01 | 4058444 | 7204.46 | 1055747 | -1 | -1 | -1 | -1 |
| o7.2 | 7200.78 | 216050 | 7200.01 | 282117 | 7200.01 | 6404740 | -1 | -1 | -1 | -1 | 7200.01 | 5483071 |
| trimloss12 | -1 | -1 | 7200.06 | 136388 | 7200.09 | 24091 | 7200.72 | 26839 | 7200.03 | 62618 | 7200.18 | 26855 |
| trimloss2 | -1 | -1 | 4.97 | 425 | 0.40 | 385 | 0.13 | 392 | 0.12 | 441 | 0.37 | 385 |
| trimloss4 | -1 | -1 | 7200.02 | 435726 | 7200.01 | 2370039 | -1 | -1 | 1907.07 | 1134951 | 7200.01 | 2180303 |
| trimloss5 | -1 | -1 | 7200.09 | 434847 | 7200.03 | 334711 | 7204.10 | 1250587 | 7200.01 | 1541004 | 7200.05 | 324996 |
| trimloss6 | -1 | -1 | 7200.04 | 348337 | 7200.01 | 107098 | 7202.42 | 250565 | 7200.02 | 321350 | 7200.28 | 107726 |
| trimloss7 | -1 | -1 | 7200.01 | 336927 | 7200.08 | 108284 | 7201.93 | 249881 | 7200.02 | 313041 | 7200.28 | 105972 |

Table A.2: NLPs or QPs processed in branch-and-bound and the time (seconds) spent in it. "-1" denotes a failure.

|  | MINOTAUR-IPOPT |  |  | MINOTAUR-filterSQP |  |  | QP-diving-filterSQP |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | CPU | NLPs | CPU/100NLPs | CPU | NLPs | CPU/100NLPs | CPU | QPs | CPU/100QPs |
| BatchS101006M | 30.88 | 527 | 5.8596 | 7.13 | 554 | 1.2870 | 40.14 | 5594 | 0.7176 |
| BatchS121208M | 72.84 | 815 | 8.9374 | 90.11 | 3734 | 2.4132 | 107.2 | 10304 | 1.0404 |
| BatchS151208M | 207.25 | 1901 | 10.9022 | 176.09 | 5100 | 3.4527 | 375.7 | 28183 | 1.3331 |
| BatchS201210M | 271.15 | 1628 | 16.6554 | 577.41 | 10654 | 5.4197 | 1120.7 | 65141 | 1.7204 |
| CLay0203H | 15 | 244 | 6.1475 | 1.7 | 344 | 0.4942 | 0.09 | 194 | 0.0464 |
| CLay0203M | 10.55 | 513 | 2.0565 | 0.29 | 423 | 0.0686 | 0.03 | 375 | 0.0080 |
| CLay0204H | 46.33 | 1571 | 2.9491 | 29.94 | 2081 | 1.4387 | 2.07 | 1509 | 0.1372 |
| CLay0204M | 35.45 | 2059 | 1.7217 | 0.84 | 1581 | 0.0531 | 1.58 | 8583 | 0.0184 |
| CLay0205H | 713.83 | 12412 | 5.7511 | 569.81 | 12883 | 4.4230 | 82.99 | 22470 | 0.3693 |
| CLay0205M | 390.72 | 20354 | 1.9196 | 21.94 | 13540 | 0.1620 | 45.06 | 140913 | 0.0320 |
| CLay0303H | 51.25 | 520 | 9.8558 | 6.34 | 1008 | 0.6290 | 0.25 | 383 | 0.0653 |
| CLay0303M | 33.9 | 851 | 3.9835 | 1.22 | 1187 | 0.1028 | 0.12 | 1053 | 0.0114 |
| CLay0304H | 347.2 | 2096 | 16.5649 | 158.86 | 8687 | 1.8287 | 1.44 | 1015 | 0.1419 |
| CLay0304M | 923.94 | 19993 | 4.6213 | 88.73 | 28597 | 0.3103 | 9.1 | 38449 | 0.0237 |
| CLay0305H | 1951.1 | 16486 | 11.8349 | 849.74 | 16717 | 5.0831 | 97.89 | 24029 | 0.4074 |
| CLay0305M | 79.88 | 31821 | 2.4917 | 109.03 | 26151 | 0.4169 | 373.1 | 1002552 | 0.0372 |
| FLay02H | 0.14 | 15 | 0.9333 | 0.01 | 15 | 0.0667 | 0 | 24 | 0.0000 |
| FLay02M | 0.07 | 15 | 0.4667 | 0 | 15 | 0.0000 | 0 | 25 | 0.0000 |
| FLay03H | 1.76 | 130 | 1.3538 | 0.52 | 128 | 0.4063 | 0.13 | 206 | 0.0631 |
| FLay03M | 0.72 | 127 | 0.5669 | 0.04 | 127 | 0.0315 | 0.02 | 204 | 0.0098 |
| FLay04H | 51.11 | 2411 | 2.1199 | 35.81 | 2399 | 1.4927 | 8.44 | 3224 | 0.2618 |
| FLay04M | 20.94 | 2583 | 0.8107 | 1.47 | 2688 | 0.0547 | 0.58 | 3189 | 0.0182 |
| FLay05H | 2513.1 | 76634 | 3.2794 | 3702.66 | 84023 | 4.4067 | 904.94 | 142240 | 0.6362 |
| FLay05M | 569.58 | 59954 | 0.9500 | 98.36 | 85202 | 0.1154 | 64.33 | 125540 | 0.0512 |
| FLay06H | 7185.93 | 174393 | 4.1205 | 7193.19 | 82323 | 8.7378 | 5956.76 | 734123 | 0.8114 |
| FLay06M | 7161.57 | 635047 | 1.1277 | 7074.95 | 3963082 | 0.1785 | 6158.91 | 5122187 | 0.1202 |
| RSyn0805H | 3.2 | 95 | 3.3684 | 10.42 | 164 | 6.3537 | 0.76 | 300 | 0.2533 |
| RSyn0805M | 406.97 | 23005 | 1.7691 | 23.79 | 3394 | 0.7009 | 6.03 | 6173 | 0.0977 |
| RSy080505M02H | 36.8 | 560 | 6.5714 | 139.65 | 501 | 27.8743 | 2.12 | 246 | 0.8618 |
| RSyn0805M02M | 4150.67 | 70446 | 5.8920 | 4093.27 | 71488 | 5.7258 | 2508.75 | 331699 | 0.7563 |
| RSy080505M03H | 120.63 | 1126 | 10.7131 | 172.49 | 365 | 47.2575 | 4.23 | 263 | 1.6084 |


| Instance | MINOTAUR-IPOPT |  |  | MINOTAUR-filterSQP |  |  | QP-diving-filterSQP |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU | NLPs | CPU/100NLPs | CPU | NLPs | CPU/100NLPs | CPU | QPs | CPU/100QPs |
| RSyn0805M03M | 6078.43 | 65989 | 9.2113 | 7192.53 | 59402 | 12.1082 | 6628.28 | 485316 | 1.3658 |
| RSyn0805M04H | 120.39 | 694 | 17.3473 | 179.35 | 243 | 73.8066 | 4.62 | 203 | 2.2759 |
| RSyn0805M04M | 7193.41 | 47909 | 15.0147 | 7195.06 | 33399 | 21.5427 | 6799.86 | 229228 | 2.9664 |
| RSyn0810H | 4.25 | 114 | 3.7281 | 5.48 | 177 | 3.0960 | 0.35 | 140 | 0.2500 |
| RSyn0810M | 2040.41 | 100911 | 2.0220 | 53.32 | 10515 | 0.5071 | 282.43 | 237331 | 0.1190 |
| RSyn0810M02H | 41.19 | 536 | 7.6847 | 576.15 | 1431 | 40.2621 | 9.07 | 548 | 1.6551 |
| RSyn0810M02M | 7186.22 | 110066 | 6.5290 | 7187.64 | 103536 | 6.9422 | 7018.74 | 949349 | 0.7393 |
| RSyn0810M03H | 213.98 | 1601 | 13.3654 | 2010.41 | 2149 | 93.5510 | 47.53 | 1356 | 3.5052 |
| RSyn0810M03M | 7189.96 | 67025 | 10.7273 | 7190.87 | 49661 | 14.4799 | 6329.3 | 810206 | 0.7812 |
| RSyn0810M04H | 322.45 | 1587 | 20.3182 | 266.28 | 269 | 98.9888 | 8.26 | 250 | 3.3040 |
| RSyn0810M04M | 7192.47 | 40083 | 17.9439 | 7194.63 | 26100 | 27.5656 | 6343.76 | 617732 | 1.0269 |
| RSyn0815H | 6.15 | 155 | 3.9677 | 18.37 | 181 | 10.1492 | 0.73 | 204 | 0.3578 |
| RSyn0815M | 394.48 | 18963 | 2.0803 | 83.83 | 9062 | 0.9251 | 282.57 | 190368 | 0.1484 |
| RSyn0815M02H | 65.52 | 719 | 9.1127 | 110.18 | 278 | 39.6331 | 3.12 | 256 | 1.2188 |
| RSyn0815M02M | 7187.53 | 108565 | 6.6205 | 7191.1 | 85846 | 8.3767 | 6378.43 | 990508 | 0.6440 |
| RSyn0815M03H | 284.91 | 1740 | 16.3741 | 1653.21 | 1669 | 99.0539 | 33.12 | 880 | 3.7636 |
| RSyn0815M03M | 7189.91 | 62566 | 11.4917 | 7193.52 | 37022 | 19.4304 | 6064.74 | 748126 | 0.8107 |
| RSyn0815M04H | 385.54 | 1645 | 23.4371 | 1182.54 | 725 | 163.1090 | 23.54 | 393 | 5.9898 |
| RSyn0815M04M | 7192.08 | 36862 | 19.5108 | 7195.89 | 21127 | 34.0602 | 6061.37 | 592420 | 1.0232 |
| RSyn0820H | 5.3 | 128 | 4.1406 | 12.57 | 128 | 9.8203 | 3.38 | 648 | 0.5216 |
| RSyn0820M | 7162.67 | 346452 | 2.0674 | 1081.21 | 83777 | 1.2906 | 696.71 | 405745 | 0.1717 |
| RSyn0820M02H | 85.24 | 855 | 9.9696 | 551.97 | 975 | 56.6123 | 6.74 | 366 | 1.8415 |
| RSyn0820M02M | 7186.05 | 93568 | 7.6800 | 7189.61 | 70692 | 10.1703 | 6180.68 | 1417434 | 0.4360 |
| RSyn0820M03H | 509.54 | 2615 | 19.4853 | 2970.4 | 2174 | 136.6329 | 74.21 | 1593 | 4.6585 |
| RSyn0820M03M | 7190.74 | 53334 | 13.4825 | 7193.56 | 33565 | 21.4317 | 5806.79 | 877908 | 0.6614 |
| RSyn0820M04H | 977.88 | 3185 | 30.7027 | 4408.46 | 1965 | 224.3491 | 58.4 | 698 | 8.3668 |
| RSyn0820M04M | 7193.04 | 31689 | 22.6989 | 7195.6 | 18949 | 37.9735 | 6016.09 | 646899 | 0.9300 |
| RSyn0830H | 5.44 | 110 | 4.9455 | 24.22 | 144 | 16.8194 | 2.05 | 306 | 0.6699 |
| RSyn0830M | 7171.37 | 294015 | 2.4391 | 2477.78 | 145092 | 1.7077 | 2920.96 | 1266561 | 0.2306 |
| RSyn0830M02H | 139.47 | 1121 | 12.4416 | 306.97 | 345 | 88.9768 | 15.63 | 520 | 3.0058 |
| RSyn0830M02M | 7184.2 | 82405 | 8.7182 | 7191.55 | 44667 | 16.1004 | 5436.52 | 1427348 | 0.3809 |
| RSyn0830M03H | 368.86 | 1754 | 21.0296 | 569.22 | 362 | 157.2431 | 55.26 | 771 | 7.1673 |
| RSyn0830M03M | 7189.91 | 41858 | 17.1769 | 7194.69 | 20483 | 35.1252 | -1 | -1 | -1.0000 |


|  | MINOTAUR-IPOPT |  |  | MINOTAUR-filterSQP |  |  | QP-diving-filterSQP |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | CPU | NLPs | CPU/100NLPs | CPU | NLPs | CPU/100NLPs | CPU | QPs | CPU/100QPs |
| RSyn0830M04H | 888.16 | 2318 | 38.3158 | 2114.08 | 644 | 328.2733 | 743.75 | 4704 | 15.8110 |
| RSyn0830M04M | 7193.09 | 25065 | 28.6977 | 7197.24 | 11517 | 62.4923 | 5952.88 | 614417 | 0.9689 |
| RSyn0840H | 3.3 | 63 | 5.2381 | 9.66 | 63 | 15.3333 | 0.4 | 74 | 0.5405 |
| RSyn0840M | 7171.87 | 229566 | 3.1241 | 7177.94 | 344857 | 2.0814 | 4696.04 | 4224267 | 0.1112 |
| RSyn0840M02H | 79.65 | 549 | 14.5082 | 215.78 | 239 | 90.2845 | 6.74 | 245 | 2.7510 |
| RSyn0840M02M | 7184.91 | 69530 | 10.3335 | 7192.54 | 37799 | 19.0284 | 5276.23 | 1387837 | 0.3802 |
| RSyn0840M03H | 533.36 | 1863 | 28.6291 | 1444.99 | 520 | 277.8827 | 134.64 | 1134 | 11.8730 |
| RSyn0840M03M | 7189.63 | 43598 | 16.4907 | 7195.67 | 17168 | 41.9133 | 5696.8 | 756594 | 0.7530 |
| RSyn0840M04H | 4317.67 | 8612 | 50.1355 | 3774.39 | 848 | 445.0932 | 669.91 | 3146 | 21.2940 |
| RSyn0840M04M | 7192.69 | 23261 | 30.9217 | 7197.47 | 10003 | 71.9531 | -1 | -1 | -1.0000 |
| SLay04H | 1.04 | 85 | 1.2235 | 0.32 | 85 | 0.3765 | 0.16 | 163 | 0.0982 |
| SLay04M | 0.56 | 85 | 0.6588 | 0.02 | 85 | 0.0235 | 0.01 | 98 | 0.0102 |
| SLay05H | 2.36 | 141 | 1.6738 | 1.35 | 141 | 0.9574 | 0.24 | 163 | 0.1472 |
| SLay05M | 1.09 | 141 | 0.7730 | 0.06 | 141 | 0.0426 | 0.02 | 150 | 0.0133 |
| SLay06H | 4.94 | 218 | 2.2661 | 4.81 | 236 | 2.0381 | 0.92 | 297 | 0.3098 |
| SLay06M | 2.04 | 219 | 0.9315 | 0.16 | 218 | 0.0734 | 0.08 | 240 | 0.0333 |
| SLay07H | 10.76 | 368 | 2.9239 | 12.64 | 321 | 3.9377 | 2.91 | 545 | 0.5339 |
| SLay07M | 3.93 | 367 | 1.0708 | 0.5 | 366 | 0.1366 | 0.22 | 379 | 0.0580 |
| SLay08H | 19.37 | 511 | 3.7906 | 36.34 | 538 | 6.7546 | 7.03 | 722 | 0.9737 |
| SLay08M | 6.61 | 527 | 1.2543 | 1.18 | 528 | 0.2235 | 1.02 | 677 | 0.1507 |
| SLay09H | 33.54 | 673 | 4.9837 | 94.11 | 861 | 10.9303 | 30.91 | 1601 | 1.9307 |
| SLay09M | 11.78 | 685 | 1.7197 | 2.97 | 800 | 0.3713 | 4.24 | 1277 | 0.3320 |
| SLay10H | 331.22 | 5628 | 5.8852 | 902.93 | 5668 | 15.9303 | 5920.53 | 66844 | 8.8572 |
| SLay10M | 95.23 | 5063 | 1.8809 | 42.29 | 6044 | 0.6997 | 321.5 | 16212 | 1.9831 |
| Syn05H | 0.05 | 5 | 1.0000 | 0 | 1 | 0.0000 | 0 | 0 | 0.0000 |
| Syn05M | 0.12 | 17 | 0.7059 | 0.01 | 17 | 0.0588 | 0 | 20 | 0.0000 |
| Syn05M02H | 0.14 | 9 | 1.5556 | 0.04 | 9 | 0.4444 | 0 | 10 | 0.0000 |
| Syn05M02M | 0.48 | 43 | 1.1163 | 0.05 | 43 | 0.1163 | 0.01 | 50 | 0.0200 |
| Syn05M03H | 0.27 | 13 | 2.0769 | 0.11 | 13 | 0.8462 | 0.01 | 14 | 0.0714 |
| Syn05M03M | 1.01 | 74 | 1.3649 | 0.22 | 76 | 0.2895 | 0.03 | 84 | 0.0357 |
| Syn05M04H | 0.46 | 17 | 2.7059 | 0.19 | 13 | 1.4615 | 0.01 | 14 | 0.0714 |
| Syn05M04M | 1.92 | 105 | 1.8286 | 0.45 | 101 | 0.4455 | 0.08 | 111 | 0.0721 |
| Syn10H | 0.07 | 5 | 1.4000 | 0.01 | 5 | 0.2000 | 0 | 6 | 0.0000 |


| Instance | MINOTAUR-IPOPT |  |  | MINOTAUR-filterSQP |  |  | QP-diving-filterSQP |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU | NLPs | CPU/100NLPs | CPU | NLPs | CPU/100NLPs | CPU | QPs | CPU/100QPs |
| Syn10M | 0.43 | 49 | 0.8776 | 0.02 | 49 | 0.0408 | 0.01 | 53 | 0.0189 |
| Syn10M02H | 0.4 | 17 | 2.3529 | 0.54 | 15 | 3.6000 | 0.02 | 15 | 0.1333 |
| Syn10M02M | 5.42 | 363 | 1.4931 | 1.54 | 349 | 0.4413 | 0.31 | 458 | 0.0677 |
| Syn10M03H | 0.84 | 25 | 3.3600 | 0.73 | 25 | 2.9200 | 0.05 | 26 | 0.1923 |
| Syn10M03M | 21.46 | 991 | 2.1655 | 8.67 | 907 | 0.9559 | 2.78 | 1679 | 0.1656 |
| Syn10M04H | 1.55 | 33 | 4.6970 | 1.53 | 31 | 4.9355 | 0.12 | 34 | 0.3529 |
| Syn10M04M | 66.34 | 2220 | 2.9883 | 30.94 | 1982 | 1.5610 | 10.42 | 3502 | 0.2975 |
| Syn15H | 0.09 | 5 | 1.8000 | 0.04 | 5 | 0.8000 | 0.01 | 6 | 0.1667 |
| Syn15M | 1.06 | 100 | 1.0600 | 0.1 | 100 | 0.1000 | 0.03 | 120 | 0.0250 |
| Syn15M02H | 0.3 | 9 | 3.3333 | 0.29 | 9 | 3.2222 | 0.04 | 10 | 0.4000 |
| Syn15M02M | 17.19 | 789 | 2.1787 | 4.43 | 540 | 0.8204 | 1.44 | 1074 | 0.1341 |
| Syn15M03H | 0.64 | 13 | 4.9231 | 0.91 | 13 | 7.0000 | 0.11 | 14 | 0.7857 |
| Syn15M03M | 55.33 | 1680 | 3.2935 | 36.27 | 1841 | 1.9701 | 13.53 | 4194 | 0.3226 |
| Syn15M04H | 1.26 | 17 | 7.4118 | 1.79 | 17 | 10.5294 | 0.23 | 18 | 1.2778 |
| Syn15M04M | 355.99 | 7260 | 4.9034 | 190.81 | 5110 | 3.7341 | 136.79 | 21796 | 0.6276 |
| Syn20H | 0.2 | 11 | 1.8182 | 0.48 | 20 | 2.4000 | 0.01 | 14 | 0.0714 |
| Syn20M | 7.77 | 685 | 1.1343 | 1.21 | 685 | 0.1766 | 0.31 | 961 | 0.0323 |
| Syn20M02H | 1.19 | 31 | 3.8387 | 2.15 | 31 | 6.9355 | 0.12 | 33 | 0.3636 |
| Syn20M02M | 405.57 | 16393 | 2.4740 | 237.14 | 15806 | 1.5003 | 102.94 | 41735 | 0.2467 |
| Syn20M03H | 2.59 | 43 | 6.0233 | 12.28 | 46 | 26.6957 | 0.33 | 47 | 0.7021 |
| Syn20M03M | 5868.72 | 135790 | 4.3219 | 4376.53 | 138450 | 3.1611 | 2807.26 | 504477 | 0.5565 |
| Syn20M04H | 4.5 | 51 | 8.8235 | 22.91 | 77 | 29.7532 | 0.68 | 57 | 1.1930 |
| Syn20M04M | 7190.6 | 100530 | 7.1527 | 7186.2 | 125636 | 5.7199 | 5167.99 | 795034 | 0.6500 |
| Syn30H | 0.34 | 13 | 2.6154 | 0.29 | 13 | 2.2308 | 0.06 | 28 | 0.2143 |
| Syn30M | 60.57 | 4049 | 1.4959 | 17.73 | 4068 | 0.4358 | 12.7 | 17256 | 0.0736 |
| Syn30M02H | 1.51 | 29 | 5.2069 | 2.82 | 29 | 9.7241 | 0.49 | 57 | 0.8596 |
| Syn30M02M | 7181.16 | 203929 | 3.5214 | 7185.45 | 197799 | 3.6327 | 5620.78 | 1516954 | 0.3705 |
| Syn30M03H | 4.08 | 49 | 8.3265 | 13.83 | 56 | 24.6964 | 1.71 | 88 | 1.9432 |
| Syn30M03M | 7183.31 | 132063 | 5.4393 | 7187.22 | 90149 | 7.9726 | 4983.96 | 1280041 | 0.3894 |
| Syn30M04H | 10.76 | 82 | 13.1220 | 34.93 | 75 | 46.5733 | 6.02 | 169 | 3.5621 |
| Syn30M04M | 7188.7 | 69533 | 10.3385 | 7190.64 | 50946 | 14.1142 | 5270.33 | 972788 | 0.5418 |
| Syn40H | 1 | 30 | 3.3333 | 1.68 | 30 | 5.6000 | 0.23 | 67 | 0.3433 |
| Syn40M | 830.75 | 45807 | 1.8136 | 312.89 | 45697 | 0.6847 | 379.56 | 297141 | 0.1277 |


|  | MINOTAUR-IPOPT |  |  | MINOTAUR-filterSQP |  |  | QP-diving-filterSQP |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | CPU | NLPs | CPU/100NLPs | CPU | NLPs | CPU/100NLPs | CPU | QPs | CPU/100QPs |
| Syn40M02H | 3.18 | 43 | 7.3953 | 24.93 | 80 | 31.1625 | 3.76 | 244 | 1.5410 |
| Syn40M02M | 7176.68 | 177780 | 4.0368 | 7184.83 | 117500 | 6.1147 | 5266.25 | 1788507 | 0.2944 |
| Syn40M03H | 12.35 | 99 | 12.4747 | 49.88 | 87 | 57.3333 | 7.75 | 205 | 3.7805 |
| Syn40M03M | 7186.28 | 89366 | 8.0414 | 7191.61 | 54197 | 13.2694 | 5126.67 | 1252050 | 0.4095 |
| Syn40M04H | 43.34 | 229 | 18.9258 | 172.22 | 181 | 95.1492 | 79.05 | 1190 | 6.6429 |
| Syn40M04M | 7187.6 | 64973 | 11.0624 | 7193.96 | 28049 | 25.6478 | 5190.23 | 672185 | 0.7721 |
| Water0202 | 222.04 | 49 | 453.1429 | 0.04 | 1 | 4.0000 | 0 | 0 | 0.0000 |
| Water0202R | 1.61 | 42 | 3.8333 | 0.28 | 43 | 0.6512 | 0.32 | 70 | 0.4571 |
| Water0303 | 559.17 | 110 | 508.3364 | 0.04 | 1 | 4.0000 | 0 | 0 | 0.0000 |
| Water0303R | 30.92 | 140 | 22.0857 | 4.04 | 123 | 3.2846 | 6.36 | 308 | 2.0649 |
| fo7 | 7179.72 | 284178 | 2.5265 | 3576.27 | 498163 | 0.7179 | -1 | -1 | -1.0000 |
| fo7_2 | 7181.68 | 269067 | 2.6691 | 3013.1 | 326560 | 0.9227 | 6985.57 | 4213347 | 0.1658 |
| fo8 | 7179.75 | 248009 | 2.8950 | 7164.85 | 409499 | 1.7497 | 6995.81 | 3357262 | 0.2084 |
| fo9 | 7177.68 | 195312 | 3.6750 | 7181.28 | 227694 | 3.1539 | 7036.66 | 3044255 | 0.2311 |
| o7 | 7180.44 | 290050 | 2.4756 | -1 | -1 | -1.0000 | -1 | -1 | -1.0000 |
| o7_2 | 7182.01 | 282389 | 2.5433 | -1 | -1 | -1.0000 | 6930.25 | 5483470 | 0.1264 |
| trimloss12 | 7161.7 | 138748 | 5.1617 | 7188.03 | 64071 | 11.2189 | 6074.63 | 30266 | 20.0708 |
| trimloss2 | 4.94 | 467 | 1.0578 | 0.09 | 472 | 0.0191 | 0.03 | 460 | 0.0065 |
| trimloss4 | 7169.9 | 436232 | 1.6436 | 1860.57 | 1135146 | 0.1639 | 4810.83 | 2181575 | 0.2205 |
| trimloss5 | 7153.55 | 435671 | 1.6420 | 7116.22 | 1541287 | 0.4617 | 5881.42 | 327623 | 1.7952 |
| trimloss6 | 7167.93 | 350113 | 2.0473 | 7162.59 | 321839 | 2.2255 | 6275.52 | 110754 | 5.6662 |
| trimloss7 | 7155.98 | 338703 | 2.1128 | 7164.74 | 313530 | 2.2852 | 6302.24 | 108985 | 5.7827 |

Table A.3: Number of cuts added in QP-diving with IPOPT and filterSQP solvers. "-1" denotes a failure.

| Instance | IPOPT | fSQP | Instance | IPOPT | fSQP |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BatchS101006M | 35 | 40 | RSyn0815M02H | 7 | 8 |
| BatchS121208M | 19 | 67 | RSyn0815M02M | 38 | 38 |
| BatchS151208M | 114 | 19 | RSyn0815M03H | 14 | 13 |
| BatchS201210M | 22 | 8 | RSyn0815M03M | 64 | 58 |
| CLay0203H | 145 | 141 | RSyn0815M04H | 9 | 11 |
| CLay0203M | 37 | 49 | RSyn0815M04M | 71 | 77 |
| CLay0204H | 308 | 286 | RSyn0820H | 6 | 7 |
| CLay0204M | 58 | 62 | RSyn0820M | 22 | 22 |
| CLay0205H | 504 | 597 | RSyn0820M02H | 11 | 11 |
| CLay0205M | 79 | 86 | RSyn0820M02M | 42 | 38 |
| CLay0303H | 234 | 238 | RSyn0820M03H | 17 | 23 |
| CLay0303M | 49 | 87 | RSyn0820M03M | 59 | 59 |
| CLay0304H | 387 | 371 | RSyn0820M04H | 20 | 22 |
| CLay0304M | 93 | 126 | RSyn0820M04M | 78 | 75 |
| CLay0305H | 591 | 753 | RSyn0830H | 2 | 2 |
| CLay0305M | 96 | 198 | RSyn0830M | 14 | 14 |
| FLay02H | 10 | 10 | RSyn0830M02H | 8 | 8 |
| FLay02M | 8 | 12 | RSyn0830M02M | 20 | 19 |
| FLay03H | 21 | 23 | RSyn0830M03H | 12 | 10 |
| FLay03M | 20 | 24 | RSyn0830M03M | 27 | -1 |
| FLay04H | 34 | 36 | RSyn0830M04H | 19 | 16 |
| FLay04M | 37 | 35 | RSyn0830M04M | -1 | 36 |
| FLay05H | 104 | 85 | RSyn0840H | 1 | 1 |
| FLay05M | 114 | 88 | RSyn0840M | 15 | 17 |
| FLay06H | 182 | 143 | RSyn0840M02H | 2 | 2 |
| FLay06M | 228 | 216 | RSyn0840M02M | 22 | 25 |
| RSyn0805H | 1 | 2 | RSyn0840M03H | 10 | 16 |
| RSyn0805M | 11 | 12 | RSyn0840M03M | 43 | 43 |
| RSyn0805M02H | 10 | 8 | RSyn0840M04H | 14 | 12 |
| RSyn0805M02M | 28 | 30 | RSyn0840M04M | -1 | -1 |
| RSyn0805M03H | 6 | 5 | SLay04H | 8 | 23 |
| RSyn0805M03M | 35 | 36 | SLay04M | 7 | 6 |
| RSyn0805M04H | 3 | 3 | SLay05H | 8 | 8 |
| RSyn0805M04M | 56 | 51 | SLay05M | 8 | 7 |
| RSyn0810H | 1 | 0 | SLay06H | 15 | 18 |
| RSyn0810M | 10 | 10 | SLay06M | 14 | 15 |
| RSyn0810M02H | 8 | 11 | SLay07H | 44 | 47 |
| RSyn0810M02M | 33 | 35 | SLay07M | 29 | 25 |
| RSyn0810M03H | 13 | 12 | SLay08H | 59 | 53 |
| RSyn0810M03M | 51 | 52 | SLay08M | 52 | 56 |
| RSyn0810M04H | 19 | 18 | SLay09H | 103 | 105 |
| RSyn0810M04M | 79 | 84 | SLay09M | 93 | 97 |
| RSyn0815H | 1 | 8 | SLay10H | 1405 | 1343 |
| RSyn0815M | 22 | 21 | SLay10M | 794 | 762 |


| Instance | IPOPT | fSQP |  | Instance | IPOPT | fSQP |
| :--- | ---: | ---: | ---: | :--- | ---: | ---: |
| Syn05H | 0 | 0 |  | Syn30H | 6 | 7 |
| Syn05M | 1 | 1 | Syn30M | 23 | 23 |  |
| Syn05M02H | 0 | 0 |  | Syn30M02H | 4 | 4 |
| Syn05M02M | 1 | 1 | Syn30M02M | 48 | 46 |  |
| Syn05M03H | 0 | 0 | Syn30M03H | 12 | 12 |  |
| Syn05M03M | 4 | 4 | Syn30M03M | 68 | 64 |  |
| Syn05M04H | 0 | 0 | Syn30M04H | 18 | 15 |  |
| Syn05M04M | 5 | 5 | Syn30M04M | 93 | 88 |  |
| Syn10H | 0 | 0 | Syn40H | 7 | 7 |  |
| Syn10M | 1 | 1 | Syn40M | 27 | 27 |  |
| Syn10M02H | 0 | 0 | Syn40M02H | 1 | 8 |  |
| Syn10M02M | 21 | 21 | Syn40M02M | 35 | 36 |  |
| Syn10M03H | 0 | 0 | Syn40M03H | 19 | 18 |  |
| Syn10M03M | 54 | 55 | Syn40M03M | 67 | 70 |  |
| Syn10M04H | 0 | 0 | Syn40M04H | 11 | 11 |  |
| Syn10M04M | 58 | 57 | Syn40M04M | -1 | 79 |  |
| Syn15H | 0 | 0 | Water0202 | 1 | 0 |  |
| Syn15M | 9 | 9 | Water0202R | 6 | 8 |  |
| Syn15M02H | 0 | 0 | Water0303 | 0 | 0 |  |
| Syn15M02M | 13 | 13 | Water0303R | 14 | 28 |  |
| Syn15M03H | 0 | 0 | fo7 | -1 | -1 |  |
| Syn15M03M | 18 | 18 | fo7_2 | 72 | 73 |  |
| Syn15M04H | 0 | 0 | fo8 | -1 | 98 |  |
| Syn15M04M | 51 | 37 | fo9 | 80 | 91 |  |
| Syn20H | 0 | 6 | o7 | 57 | -1 |  |
| Syn20M | 11 | 12 | o7_2 | 71 | 76 |  |
| Syn20M02H | 0 | 0 | trimloss12 | 2318 | 2998 |  |
| Syn20M02M | 42 | 42 | trimloss2 | 32 | 32 |  |
| Syn20M03H | 0 | 0 | trimloss4 | 1011 | 979 |  |
| Syn20M03M | 68 | 66 | trimloss5 | 2434 | 2421 |  |
| Syn20M04H | 0 | 0 | trimloss6 | 2926 | 3071 |  |
| Syn20M04M | 88 | 88 | trimloss7 | 2954 | 3048 |  |
|  |  |  |  |  |  |  |


[^0]:    *Preprint ANL/MCS-P2071-0312
    ${ }^{\dagger}$ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, mahajan@mcs.anl.gov.
    ${ }^{\ddagger}$ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, leyffer@mcs.anl.gov.
    ${ }^{8}$ Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany, christian.kirches@iwr.uni-heidelberg.de.

[^1]:    The submitted manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

