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Abstract

We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary

variables in the second stage. We develop a two-level approach by constructing a semi-coarse

model (coarsened with respect to variables) and a coarse model (coarsened with respect to

both variables and constraints). We coarsen binary variables by selecting a small number of

pre-specified daily on/off profiles. We aggregate constraints by partitioning them into groups

and summing over each group. With an appropriate choice of coarsened profiles, the semi-

coarse model is guaranteed to find a feasible solution of the original problem and hence provides

an upper bound on the optimal solution. We show that solving a sequence of coarse models

converges to the same upper bound with proven finite steps. This is achieved by adding violated

constraints to coarse models until all constraints in the semi-coarse model are satisfied. We

demonstrate the effectiveness of our approach in cogeneration for buildings. The coarsened

models allow us to obtain good approximate solutions at a fraction of the time required by solving

the original problem. Extensive numerical experiments show that the two-level approach scales

to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.

Keywords: Coarsened models, distributed generation, large-scale problems, two-level approach,

multi-period planning, resource and cost allocation, two-stage mixed-integer programs.
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1 Problem Definition and Motivation

We consider a hierarchical two-stage mixed-integer linear program (MILP) with integer variables

in both the first and second stages. We are particularly interested in applications where the first-

stage integer variables model design or purchasing decisions and the second-stage variables model

operational decisions over a long time horizon (e.g., hourly operations over a decadal horizon).

The goal is to take operational constraints into account when making a capital investment decision.

Thus, our model is complicated by the fact that second-stage variables include both binary (on/off)
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decisions and continuous variables that model operational settings. Examples include the design

of cogeneration units for commercial buildings subject to operational conditions (Siddiqui et al.,

2005; Stadler et al., 2009; Ren and Gao, 2010; Pruitt et al., 2013, 2014) and transmission network

expansion subject to unit commitment constraints (Alguacil et al., 2003; Hedman et al., 2010;

Munoz et al., 2013, 2014). Models of this class can involve hundreds of thousands or even millions

of binary variables and are beyond the scope of today’s state-of-the-art solvers.

We consider a two-stage MILP with m first-stage variables and three sets of N second-stage

variables. The first-stage variables are y ∈ {0, 1}m. We have three classes of second-stage variables:

(1) on/off decisions, x ∈ {0, 1}N ; (2) operational settings v ∈ RN that are switched on or off by x,

that is, Lx ≤ v ≤ Ux for finite bounds L ≤ U ; and (3) other second-stage variables 0 ≤ w ∈ RN .

The MILP model is described by

minimize
y,x,v,w

aT y + bTx+ cT v + dTw

subject to Ay +Bx+ Cv +Dw ≤ f
y ∈ {0, 1}m

x ∈ {0, 1}N

v ∈ RN , Lx ≤ v ≤ Ux
w ∈ RN , w ≥ 0,

(1.1)

where a ∈ Rm, b, c, d ∈ RN , A ∈ RM×m, and B,C,D ∈ RM×N . We assume that m � N and

m � M ; that is, the number of first-stage variables is much smaller than the number of second-

stage binary variables and coupling constraints.

In addition to a large number of binary and continuous variables in the second stage, the chal-

lenges of model (1.1) also arise from coupling constraints. We do not assume any sparsity structure

in matrices B, C, and D. This is in contrast to the arrow-type sparsity structure that arises, for ex-

ample, in stochastic programs (Birge and Louveaux, 2011). Therefore, fixing the first-stage variable

y does not decompose (1.1) into scenario-based subproblems. Moreover, the coupling constraints

in (1.1) are not amenable to decomposition methods such as Lagrangian relaxation (Geoffrion,

1974; Fisher, 1981). The reason is that the number of coupling constraints, M , is of the same

order as the number of variables, N . Dualizing all coupling constraints results in a large num-

ber of dual variables; hence, Lagrangian relaxation of (1.1) does not yield efficient decomposition

methods (Fisher, 1981).

Problem (1.1) arises in several applications. In particular, our work is motivated by the co-

generation problem with renewable energy for commercial buildings. In this case, the first-stage

design involves investment decisions for cogeneration units such as fuel cells, solar panels, and bat-

tery storage. The second-stage problem aims at optimal on/off hourly operation that takes into

account technology specifics such as minimum/maximum power generation. Our goal is to include

operational constraints in the design of cogeneration.

One of our objectives is to find the optimal first-stage solution of (1.1). However, the two-stage

MILP with a large number of binary variables at the second stage is beyond the scope of state-of-

the-art commercial MIP solvers. For example, a typical cogeneration model with a ten-year horizon
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results in 1.05 million binary variables (3650 days × 24 hours × 12 units). On the other hand,

a naive approach that solves (1.1) with a short horizon at the second stage provides first-stage

designs that are suboptimal for a long horizon problem. The reason is that short horizon problems

do not take into account coupling constraints over a long horizon. Moreover, the problem data

of short-horizon problems are not representative of long-horizon problems, resulting in suboptimal

solutions.

We develop a two-level approach that coarsens the hourly on/off variables to daily operation

profiles. Since the profile representation yields a model with many fewer variables, we refer to this

step as the primal (variable) coarsening . The resulting semi-coarse model still contains the same

order of constraints as in (1.1). We reduce the number of constraints by partitioning them into

groups that are of the same size as the profiles and summing over each group. This aggregation of

constraints results in a relaxed problem whose solutions may not be feasible for the original MILP

model. We include the violated constraints, re-solve the coarsened MILP model, and repeat this

process until all constraints are satisfied. We refer to the aggregation of constraints as the dual

(constraint) coarsening and the resulting MILP as the coarse model .

1.1 Literature Review

The idea of aggregating variables and constraints to build approximate optimization models is not

new. Zipkin studies the effect of variable aggregation and row aggregation for linear programs

in (Zipkin, 1980b,a). This framework is extended to stochastic linear programs by Birge (1985)

and by Clay and Grossmann (1997). For integer programs, a large amount of work focuses on

aggregating constraints into one or more surrogate constraints for which one can show that the

solution of the original problem and that of the surrogate problem are identical. Early work

includes that of Balas (1965), Glover (1968), Geoffrion (1969), and Glover (1977); see also the

survey paper by Rogers et al. (1991).

We note that the theory of surrogate constraints focuses mainly on integer programs with non-

negative integer coefficients. The seminal work by Mathews (1896) results in an exponential grow

of the coefficients in the surrogate constraints. Many refinements have been developed, including

simultaneous and sequential aggregation schemes, to reduce the magnitude of coefficients (Rogers

et al., 1991). For mixed-integer programs with real-valued coefficients, however, we are not aware

of aggregation schemes that guarantee equivalence between the original problem and the surrogate

problem. In our two-level approach, we employ constraint aggregation as a relaxation technique

to identify a smaller set of constraints that are active at the optimal solution. This is achieved by

solving a sequence of MILPs and adding the violated constraints until all constraints in the original

MILP are satisfied. Furthermore, we take advantage of the LP warm-start to reduce the number

of MILP re-solves and the computational time of each MILP.

A large body of literature appeared in the 1990s on bilevel or multilevel mixed integer programs;

see (Moore and Bard, 1990; Wen and Yang, 1990; Edmunds and Bard, 1992; Hansen et al., 1992;

Wen and Huang, 1996) and survey papers (Wen and Hsu, 1991; Vicente and Calamai, 1994). One of
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the main theoretical emphases is on decentralized decision-making from a game-theoretic point of

view (Wen and Hsu, 1991). Optimality conditions for convex bilevel programs have been established

in (Vicente and Calamai, 1994). A heuristic-based branch-and-bound method is developed by Wen

and Yang (1990) and Hansen et al. (1992), and tabu search method is introduced by Wen and Huang

(1996). Recent years have seen specific application-driven algorithms ranging from infrastructure

protection planning (Scaparra and Church, 2008) to vulnerability analysis of power grids (Pinar

et al., 2010).

In this context, the multilevel method is specifically referred to the problem formulation. In

contrast, our two-level method concentrates on algorithmic development for mixed-integer linear

programs. In particular, our two-level approach builds optimization models of different resolu-

tions from a fine-level problem to a coarse-level problem. We develop a systematic procedure

that coarsens binary and continuous variables in addition to the aggregation of constraints. Our

approach allows us to solve large MILPs with more than one million binary and continuous vari-

ables and coupling constraints. Extensive numerical experiments have been conducted to verify the

efficiency of the developed algorithm.

Our two-level approach is reminiscent of multi-grid methods in linear algebra and solution of

partial differential equations. Related work includes that of Gelman and Mandel (1990), who

discussed a multilevel iterative method for generic optimization problem; Gratton et al. (2008),

who developed a recursive trust-region method for nonlinear unconstrained problems; and Wen

and Goldfarb (2009), who proposed a line search multi-grid approach for nonlinear programs.

1.2 Our Contributions

Our contributions are fourfold. First, we develop a systematic two-level approach for two-stage

MILPs with a large number of binary and continuous variables in the second stage. The coarsening

of binary variables is done by introducing profiles (vectors) with binary elements. By selecting one

profile from a small number of candidate profiles, we reduce the number of binary variables by

orders of magnitude. In addition, we reduce the number of continuous variables by using a convex

combination of profiles with real elements. We show that the coarsening in variables results in a

tightening of the original MILP and therefore provides an upper bound on the optimal solution.

Second, we devise a simple scheme for constraint aggregation that does not require any sparsity

assumptions on the coefficient matrices. By partitioning constraints into groups and summing up

constraints in each group, we obtain a relaxation of the original MILP with many fewer constraints.

We solve a sequence of MILPs by adding any violated constraints until all constraints are satisfied.

We show that the LP-relaxation of MILPs can be used to warm-start the MILP re-solves and

significantly reduce the computational effort.

Third, we implement our two-level approach in the context of the design of cogeneration for

buildings. The resulting complex MILP model has a large number of coupling constraints over a

long time horizon. We employ a moving-horizon method to generate valid profiles. We show by

construction that the generated profiles satisfy coupling constraints in time, hence further reducing
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the number of constraints in the coarsened models.

Fourth, we verify the efficiency of our algorithm on a variety of examples generated from simu-

lation programs for commercial buildings. While our two-level approach requires solving a sequence

of coarse MILPs, numerical results indicate that the first iterate provides good approximate solu-

tions of the semi-coarse models. Through extensive numerical experiments, we demonstrate the

scalability of the two-level approach on a rich set of large problems that are beyond the capacity

of state-of-the-art commercial solvers.

Outline. The remainder of this paper is organized as follows. In Section 2, we describe the two-

level approach for the two-stage MILPs. We show that our approach results in a tightening of the

original problem and provides an upper bound on the optimal solution. In Section 3, we apply our

approach to a complex MILP model from the cogeneration problem in buildings. We discuss how

the profiles are generated and selected such that the coarsened models provide feasible solutions

to (1.1). In Section 4, we demonstrate the effectiveness of our approach on a diverse set of test

problems. We show that the two-level approach allows us to find good approximate solutions with

a fraction of computational time compared with solving the full model. In Section 5, we summarize

our contribution and discuss future extensions.

2 Two-Level Approach to MILP

In this section, we derive two models that are formulated in terms of the first-stage variables and

n � N second-stage variables. We start by presenting our ideas for variable coarsening, resulting

in a semi-coarse model that has O(n) second-stage variables and O(N) second-stage constraints.

Next we show how to further coarsen this model by aggregating constraints, resulting in a coarse

model with both O(n) second-stage variables and constraints.

2.1 Primal Coarsening

To coarsen the variables in the model, we introduce a coarsening factor δ ∈ Z+ and group N

second-stage variables into n = N/δ equal-sized groups of size δ (the assumption that the groups

are equal-sized is not critical):

xi =


xδ(i−1)+1

...

xδi

 for i = 1, . . . , n. (2.2)

We define groups for v and w analogously. These groups correspond to a partition of the second-

stage variables x, v, and w:

x =


x1

...

xn

 , v =


v1

...

vn

 , w =


w1

...

wn

 . (2.3)



6 Fu Lin, Sven Leyffer, and Todd Munson

0

1

O
n

/o
ff

0 24 48
0

1

Hours

P
ro

fi
le

s

Figure 1: The first row shows the hourly on/off variables xt ∈ {0, 1} for 48 hours. The second row

shows the profile representation with two daily profiles X̄k ∈ {0, 1}24.

Next, we introduce δ-profiles, which are fixed parameter values for a group of variables:

X̄k ∈ {0, 1}δ for k = 1, . . . ,K. (2.4)

We show in Section 3 how these profiles are generated and selected. Figure 1 illustrates that N = 48

hourly on/off variables can be represented by n = 2 daily profiles with length δ = 24. Now for

every X̄k, we collect a set of Ik operational δ-profiles for V̄ and W̄ :

V̄jk ∈ Rδ, with LX̄k ≤ V̄jk ≤ UX̄k for j = 1, . . . , Ik, k = 1, . . . ,K, (2.5)

and

0 ≤ W̄j ∈ Rδ for j = 1, . . . , J, (2.6)

respectively.

Given these sets of δ-profiles, we perform a change of variables that replaces the second-stage

variables (x, v, w) by a reduced set of variables (x̄, v̄, w̄) for the δ-profiles, resulting in a coarsening

of the second-stage variables. In particular, we set

xi =
K∑
k=1

x̄ikX̄k ,

K∑
k=1

x̄ik ≤ 1 , x̄ik ∈ {0, 1} for i = 1, . . . , n, k = 1, . . . ,K. (2.7)

Thus, we have that x̄ ∈ {0, 1}Kn, and our goal is to create models where Kn � N . Similarly, we

write v and w as

vi =
K∑
k=1

Ik∑
j=1

v̄ijkV̄jk ,
K∑
k=1

Ik∑
j=1

v̄ijk ≤ 1 ,

Ik∑
j=1

v̄ijk = x̄ik , 0 ≤ v̄ijk ≤ 1 , for i = 1, . . . , n, (2.8)

and

wi =
J∑
j=1

w̄ijW̄j ,
J∑
j=1

w̄ij ≤ 1 , for i = 1, . . . , n. (2.9)
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We note that we do not enforce w̄ij ∈ {0, 1} or v̄ijk ∈ {0, 1}. The reason is that we wish to allow

more freedom for choosing operational profiles in the second stage as long as they remain feasible.

This choice also simplifies the coarsened second-stage problem and provides a valid approach if we

assume that convex combinations of operational δ-profiles V̄jk and W̄j are feasible, which is often

the case in practice.

The partition of variables (x, v, w) implies a partition of the problem matrices B, C, and D of

(1.1) as

B = [B1 : · · · : Bn], C = [C1 : · · · : Cn], D = [D1 : · · · : Dn],

where Bi, Ci, and Di ∈ RM×δ for i = 1, . . . , n. Next, we define δ-profile matrices as

X̄ = [X̄1 : · · · : X̄K ], V̄ = [V̄11 : · · · : V̄1I1 : . . . : V̄K1 : · · · : V̄KIK ], W̄ = [W̄1 : · · · : W̄J ], (2.10)

where X̄k, V̄jk, and W̄j are vectors of length δ. We define aggregated (coarse) matrices B̄, C̄, and

D̄ ∈ RM×nδ as

B̄ = [B1X̄ : · · · : BnX̄], C̄ = [C1V̄ : · · · : CnV̄ ], D̄ = [D1W̄ : · · · : DnW̄ ], (2.11)

and aggregated cost vectors b̄, c̄, d̄ ∈ RKn as

b̄ = [bT1 X̄ : · · · : bTn X̄]T , c̄ = [cT1 V̄ : · · · : cTn V̄ ]T , d̄ = [dT1 W̄ : · · · : dTnW̄ ]T . (2.12)

We obtain the following aggregated MILP, which we refer to as the semi-coarse MILP, because

it has been coarsened in primal variables only:

minimize
y,x̄,v̄,w̄

aT y + b̄T x̄+ c̄T v̄ + d̄T w̄

subject to Ay + B̄x̄+ C̄v̄ + D̄w̄ ≤ f
K∑
k=1

x̄ik ≤ 1 , x̄ik ∈ {0, 1}

K∑
k=1

Ik∑
j=1

v̄ijk ≤ 1 ,

Ik∑
j=1

v̄ijk = x̄ik , 0 ≤ v̄ijk ≤ 1

J∑
j=1

w̄ij ≤ 1 , 0 ≤ w̄ij ≤ 1.

(2.13)

The MILP (2.13) has potentially many fewer variables than (1.1), but contains as many constraints

as the original problem. Before we show how to aggregate constraints in the next section, we finish

this section by summarizing some of the properties of (2.13).

Proposition 2.1. Let (x̄, v̄, w̄) be a feasible point of the semi-coarse model (2.13), then it follows

that the corresponding fine-scale variables

x =



K∑
k=1

x̄1kX̄k

...
K∑
k=1

x̄nkX̄k


, v =



K,Ik∑
k,j=1

v̄1jkV̄jk

...
K,Ik∑
k,j=1

v̄njkV̄jk


, w =



J∑
j=1

w̄1jW̄j

...
J∑
j=1

w̄njW̄j


(2.14)
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are feasible in the original MILP (1.1).

Proof. The binary constraint x ∈ {0, 1}N follows from the representation (2.7) and the definition

of binary vectors X̄k. Similarly, the non-negativity of w is a direct consequence of non-negative

profiles W̄j and non-negative coefficients w̄ij . To show that v is feasible, we start with the definition

of V̄jk in (2.5):

L · X̄k ≤ V̄jk ≤ U · X̄k.

Since v̄ijk ≥ 0, it follows that

L

K∑
k=1

Ik∑
j=1

v̄ijkX̄k ≤
K∑
k=1

Ik∑
j=1

v̄ijkV̄jk ≤ U
K∑
k=1

Ik∑
j=1

v̄ijkX̄k.

Using x̄ik =
∑Ik

j=1 v̄ijk, we have

L

K∑
k=1

x̄ikX̄k ≤ vi ≤ U
K∑
k=1

x̄ikX̄k, for i = 1, . . . , n.

Using the definition of xi in (2.14), it follows that Lxi ≤ vi ≤ Uxi, for i = 1, . . . , n, and thus

Lx ≤ v ≤ Ux. The proof is complete by noting that

f ≥ Ay + B̄x̄+ C̄v̄ + D̄w̄ = Ay +Bx+ Cv +Dw,

where the equality follows from the definition of aggregated matrices (2.11) and the representation

of the fine-scale variables (2.14).

Next, we show that the semi-coarse model provides an upper bound.

Proposition 2.2. The semi-coarse model (2.13) is a tightening of the original MILP (1.1), and its

solution provides an upper bound on (1.1). The two problems are equivalent if the optimal profiles

from the solution of (1.1) are included in (2.13).

Proof. Let z?MILP and z?semi be the optimal value of the original MILP (1.1) and the semi-coarse

model (2.13), respectively. Since any feasible point of the semi-coarse model (2.13) is a feasible

point of the original MILP (1.1), it follows that (2.13) is a tightening of (1.1) and thus

z?MILP ≤ z?semi .

Let (x?, v?, w?) be the optimal solution of MILP (1.1). We now extract optimal profiles (X̄?, V̄ ?, W̄ ?)

corresponding to (x?, v?, w?). Then it follows that there exists a solution of (2.13) such that

x?i =

K∑
k=1

x̄?ikX̄
?
k , v?i =

K∑
k=1

Ik∑
j=1

v̄?ijkV̄
?
jk, w?i =

J∑
j=1

w̄?ijW̄
?
j , for i = 1, . . . , n.

Moreover, solution (x̄?, v̄?, w̄?) is feasible in (2.13), and the objective value is the same as solu-

tion (x?, v?, w?). Because (2.13) is a tightening of (1.1), there cannot be a better solution than

(x̄?, v̄?, w̄?) that we constructed. Hence, (x̄?, v̄?, w̄?) is the optimal solution, and both problems

(1.1) and (2.13) are equivalent.
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2.2 Dual Coarsening

We next coarsen the constraints by partitioning them into n groups of size δ and summing over each

group. We define the rows of A as ATi , and we define a set of aggregated constraints by summing

over the rows of A within each group:

Â :=



δ∑
i=1

ATi

δ∑
i=1

ATδ+i

...
δ∑
i=1

ATδ(n−1)+i


.

We aggregate the constraint matrices B̄, C̄, and D̄ in a similar way

ˆ̄B :=



δ∑
i=1

B̄T
i

δ∑
i=1

B̄T
δ+i

...
δ∑
i=1

B̄T
δ(n−1)+i


, ˆ̄C :=



δ∑
i=1

C̄Ti

δ∑
i=1

C̄Tδ+i

...
δ∑
i=1

C̄Tδ(n−1)+i


, ˆ̄D :=



δ∑
i=1

D̄T
i

δ∑
i=1

D̄T
δ+i

...
δ∑
i=1

D̄T
δ(n−1)+i


.

Note that we use “bar” notation to denote coarsening in variables and “hat” notation to denote

coarsening in constraints. We coarsen the right-hand side f analogously and obtain the coarse

MILP:
minimize
v,w,x,y

aT y + b̄T x̄+ c̄T v̄ + d̄T w̄

subject to Ây + ˆ̄Bx̄+ ˆ̄Cv̄ + ˆ̄Dw̄ ≤ f̂
K∑
k=1

x̄ik ≤ 1 , x̄ik ∈ {0, 1}

K∑
k=1

Ik∑
j=1

v̄ijk ≤ 1 ,

Ik∑
j=1

v̄ijk = x̄ik , 0 ≤ v̄ijk ≤ 1

J∑
j=1

w̄ij ≤ 1 , 0 ≤ w̄ij ≤ 1.

(2.15)

It follows easily that (2.15) is a relaxation of (2.13), because we have simply aggregated the

constraints. We can use this fact to develop a simple algorithm that solves (2.13) by solving a

sequence of tighter relaxations. The main idea is that after solving a relaxation (2.15) we can

check whether all constraints in (2.13) are satisfied and add any violated constraints to (2.15). It

follows easily that this algorithm is finite, because after finitely many constraints have been added

to (2.15), it is equivalent to (2.13).
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In practice, however, solving a sequence of MILPs (2.15) may not be efficient, because MILPs

do not warm-start. Instead, we solve the LP-relaxation of the coarse model (2.15) and add vi-

olated constraints until all constraints in the LP-relaxation of the semi-coarse model (2.13) are

satisfied. We use the identified constraints as the initial set of constraints for the MILP coarse

model iterations. We summarize this procedure in Algorithm 1.

LP Warm-start Phase

Set l← 0;

Solve the LP-relaxation of the coarse MILP (2.15) to get solution (y0
LP, x̄

0
LP, v̄

0, w̄0);

while (ylLP, x̄
l
LP, v̄

l, w̄l) is not feasible for the LP-relaxation of the semi-coarse MILP (2.13)

do

Find constraints that are violated in the LP-relaxation of (2.13) and add them to (2.15);

Solve the LP-relaxation of (2.15) with the added constraints to get

(yl+1
LP , x̄

l+1
LP , v̄

l+1, w̄l+1);

Set l = l + 1 ;

MILP Phase

Set k ← 0;

Solve the coarse MILP (2.15) with additional constraints added in the LP Warm-start

Phase to get solution (y0, x̄0, v̄0, w̄0);

while (yk, x̄k, v̄k, w̄k) is not feasible for (2.13) do

Find constraints that are violated in (2.13) and add them to (2.15);

Solve the coarse MILP (2.15) with the added constraints to get (yk+1, x̄k+1, v̄k+1, w̄k+1);

Set k = k + 1 ;

Algorithm 1: Solve the semi-coarse MILP (2.13) via a sequence of coarse MILPs (2.15) using

the LP-relaxation as warm-start.

Proposition 2.3. When Algorithm 1 terminates, the solution (yk, x̄k, v̄k, w̄k) of the coarse model

(2.15) with added constraints is the solution of the semi-coarse model (2.13).

Proof. Since (yk, x̄k, v̄k, w̄k) minimizes the objective function of the semi-coarse model (2.13) and

satisfies all constraints (2.13), it is the optimal solution of (2.13).

We show in Section 4 that our approach in Algorithm 1 is advantageous; in particular, it

significantly reduces the number of MILP re-solves, as opposed to the case without LP-relaxation

as warm-start. We conclude this section by providing a matrix representation of the two-level

approach using Kronecker products. Recall that for two generic matrices E ∈ Rn×m and F ∈ Rp×q,
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their Kronecker product is defined as

E ⊗ F =


e11F · · · e1mF

...
. . .

...

en1F · · · enmF

 ∈ Rnp×mq.

Using (2.10), we can write

B̄ = B(I ⊗ X̄), C̄ = C(I ⊗ V̄ ), D̄ = D(I ⊗ W̄ )

where I is the identity matrix. Similarly, if we let 1 = (1, . . . , 1) ∈ Rδ be the row vector of all ones

of length δ, then we can express

ˆ̄B = (I⊗1)B̄ = (I⊗1)B(I⊗X̄), ˆ̄C = (I⊗1)C̄ = (I⊗1)C(I⊗V̄ ), ˆ̄D = (I⊗1)D̄ = (I⊗1)D(I⊗W̄ ),

and

Â = (I ⊗ 1)A, f̂ = (I ⊗ 1)f.

3 Application to Cogeneration for Buildings

In this section, we apply our two-level approach to the cogeneration problem for buildings. Our

MILP model (A.21) is adapted from models for cogeneration in commercial buildings (Ren and

Gao, 2010; Pruitt et al., 2013). In particular, we take linearized models for fuel cells and water

tank storage from the work of Pruitt et al. (2013), and we penalize on/off operations using switching

cost as done by Ren and Gao (2010). While the two-level framework described in Section 2 applies

to generic MILPs (1.1), the MILP model (A.21) for cogeneration entails several complex constraints

as discussed in Section 3.2. As a result, additional work is required to construct appropriate semi-

coarse and coarse models.

We note that our MILP model (A.21) for the cogeneration problem has the following features

that are not included in existing models. First, our model has a large number of binary variables,

on the order of O(106), in the second stage. This is orders of magnitude larger than the number of

binary variables of Siddiqui et al. (2005), Stadler et al. (2009), Ren and Gao (2010), and Pruitt et al.

(2013). This modeling feature allows considerably more degrees of freedom for on/off operation

during the life time of new technologies. Second, our model contains three sets of coupling con-

straints that (i) couple first- and second-stage binary variables, (ii) couple second-stage variables for

different technologies, and (iii) couple second-stage variables over a long time horizon (e.g., 10-20

years). The number of coupling constraints is on the same order of variables, namely, O(106). This

makes the problem significantly harder because it does not lend itself to decomposition techniques

such as Lagrangian relaxation.

In what follows, we describe the main characteristics of the MILP model (Section 3.1), derive the

semi-coarse and coarse models (Sections 3.2 and 3.3), and discuss profile generation and selection

(Section 3.4).
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3.1 MILP Model

The cogeneration problem consists of two components: the investment decision and the operation

planning. The investment decision concerns what new technologies to purchase, while the operation

planning concerns how to dispatch units over a long-term period (e.g., 10-20 years). We formulate

a two-stage MILP, where the first-stage variables model investment decisions and the second-stage

variables model equipment operations. Note that both the first and second stages contain integer

variables. In particular, on/off operations for new technologies in second-stage are made on an

hourly basis.

Following Siddiqui et al. (2005); Stadler et al. (2009); Ren and Gao (2010); Pruitt et al. (2013),

we consider five technologies: batteries, boilers, solid-oxide fuel cells (SOFCs), combined heat and

power (CHP) SOFCs, and water tank storage. The selection criterion is based on the installation,

operation, maintenance, fuel consumption, and carbon emission costs, while meeting electricity and

heating demands. The detailed MILP model is given in (A.21).

3.2 Semi-Coarse Model

We begin by introducing the profiles for variables. We denote profiles by upper-case letters with the

bar notation on top: X̄jk ∈ Po are the on/off profiles for technology j, P̄jkl ∈ Pp are the production

profiles associated with X̄jk, Ūk ∈ Pu are the profiles for power purchased from the utility, Q̄k ∈ Pq
are the heat generation profiles from boilers, B̄k, B̄

IO
k ∈ Pb are the power storage and input/output

profiles for batteries, and S̄k, S̄
out
k ∈ Ps are the heat storage and output profiles for water tanks,

where Po,Pp,Pu,Pq,Pb, and Ps are the corresponding set of profiles. We denote the hth element

of a profile by X̄jk(h) for h ∈ {1, . . . , δ}. Time-dependent parameters DP
t and DQ

t and discount

factors Yt are concatenated into profiles D̄P
d , D̄

Q
d , and Ȳd ∈ Rδ.

As described in Section 2, the variables in the original MILP model are represented by using

profiles in the coarsened models. In particular, binary variables xijt are coarsened to profiles X̄jk,

and continuous variables pijt, ut, bt, st, s
out
t , and qt are coarsened to profiles P̄jkl, Ūk, B̄k, S̄k, and

S̄out
k , Q̄k ≥ 0, respectively. The coefficients for profiles are denoted by lower-case letters with a

bar on top; for example, x̄ijdk ∈ {0, 1} indicates whether profile k is selected on day d for unit

i of technology j. As modeled in (C.22c), no more than one on/off profile can be selected for

fixed i, j, and d. This, in conjunction with binary elements of X̄jk, results in binary-valued xijt.

Similarly, non-negative profiles P̄jkl, Ūk, B̄k, S̄k, S̄
out
k , and Q̄k ≥ 0 and their non-negative coefficients

in (C.22f), (C.22p), and (C.22q) result in non-negative pijt, ut, bt, st, s
out
t , and qt.

We next turn to constraints that do not couple variables in time, namely, (A.21b), (A.21d),

(A.21e), (A.21g), (A.21j), (A.21k), (A.21n), and (A.21o). The profile representation for these

constraints is straightforward; one simply substitutes the summation of profiles as shown in (C.22b),

(C.22d), (C.22e), (C.22g), (C.22j), (C.22k), (C.22n), and (C.22o), respectively. Note that all

inequalities in (C.22) are elementwise inequalities. We do not include the production constraint

(A.21c) in the semi-coarse model. Instead, we require that the production profile P̄jkl associated
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with the on/off profile X̄jk satisfy

Rmin
j X̄jk ≤ P̄jkl ≤ Rmax

j X̄jk. (3.16)

This approach is justified because (A.21c) follows by construction due to the convex combination

of coefficients for production profiles in (C.22f). By an analogous argument, sout
t ≤ st in (A.21n) is

a direct consequence of the following condition imposed on profiles:

S̄out
k ≤ S̄k. (3.17)

We next discuss how to coarsen variables that are coupled over time periods. The boundary

conditions (A.21i) and (A.21n) can be expressed as (C.22i) and (C.22m). The maximum power

purchased constraint (A.21g) can be rewritten as (C.22g), where 1 denotes the vector of all ones

with length δ. We next turn to switching and storage constraints (A.21f), (A.21h), and (A.21l),

whose profile representation needs additional notation. Given an on/off profile X̄jk ∈ {0, 1}δ, we

can construct the associated switching profile

W̄jk(h) = |X̄jk(h+ 1)− X̄jk(h)|. (3.18)

Now, the switching cost can be included in the objective function in (C.22). To deal with the

battery storage constraint (A.21h) that couples bt and bIOt over the horizon T , we require that the

pair of profiles (B̄k, B̄
IO
k ) satisfy

B̄k(h+ 1) = (1− LP )B̄k(h) + B̄IO
k (h), h = 1, . . . , δ − 1. (3.19)

We assign the same coefficient b̄dk to both sets of profiles B̄k and B̄IO
k throughout (C.22). It follows

that (A.21h) is satisfied except for hours between profiles, namely, t = dδ for d < |D|. Therefore,

we introduce constraint (C.22h) to guarantee that (A.21h) holds for t = dδ for d < |D|. We will

show in Section 3.4 how to generate profiles that satisfy (3.16), (3.17), and (3.19). The heat storage

constraint (A.21l) for j = chp can be expressed as∑
k∈Ps

s̄dk
{[
Sδ − (1− LQ)Iδ

]
S̄k + S̄out

k

}
+
∑
k∈Ps

s̄(d+1)kEδS̄k ≤ (EQj /E
P
j )
∑
i,k,l

p̄ijdklP̄jkl, d < |D|,

where Iδ ∈ Rδ×δ is the identity matrix, Eδ1 ∈ Rδ×δ is a matrix with 1 in the (δ, 1) entry, and

Sδ ∈ Rδ×δ is a Toeplitz matrix with only nonzero elements being 1 at the first upper-subdiagonal.

3.3 Coarse Model

We next turn to the coarse model. Note that constraints in the semi-coarse model (C.22) are

elementwise equalities or inequalities involving daily profiles. We aggregate hourly constraints by

summing the elements of daily profiles. Using the hat notation on the top to denote the element-

wise summation of profiles, for example, ˆ̄Pjkl =
∑δ

h=1 P̄jkl(h), we coarsen δ hourly constraints into

a single constraint. For example, the hourly demand constraint (C.22b) is replaced by the daily

demand constraint (D.23b). Similarly, the maximum hourly power demand (C.22g) is aggregated
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into the maximum daily demand (D.23g). The symmetric breaking constraint (D.23e) has the

interpretation that the number of times unit i + 1 is turned on is no greater than the number

of times unit i is turned on in day d. The capacity constraints for technologies (D.23d), (D.23j),

(D.23n), and (D.23o) imply that the daily power/heat output is bounded by the daily capacity of

the technology units purchased at the first-stage. Since (C.22h), (C.22i), and (C.22m) are scalar

constraints themselves, no aggregation is applied to (D.23h), (D.23i), (D.23m) in the coarse model.

Also, since the coefficients of profiles are the same for both semi-coarse and coarse models, (D.23c),

(D.23f), and (D.23p) stay the same as (C.22c), (C.22f), and (C.22q) in the semi-coarse model.

3.4 Profile Generation and Selection

Recall that the on/off profiles X̄jk must have binary elements and the profiles P̄jkl, Q̄k, Ūk, B̄k,

S̄k, and S̄out
k must have non-negative elements. In addition, we impose constraints (3.16), (3.17),

and (3.19) in formulating the semi-coarse model in Section 3.2. In this section, we discuss how to

generate valid profiles, and we provide suggestions for profile selections.

One approach to generating profiles that satisfy the above constraints is as follows. We solve a

number of small instances of the original MILP (A.21), take snapshots of the second-stage solutions,

and extract profiles from these snapshots. For example, consider a four-day MILP (A.21); that is,

the time horizon in the second-stage problem has only four days. Solving such a four-day model,

we have four snapshots of daily operation and production; in particular, we have four sets of on/off

profiles for xijt ∈ {0, 1} and four sets of profiles pijt, ut, bt, st, s
out
t , and qjt ≥ 0. We will show in

Proposition 3.1 that these are valid profiles for the semi-coarse model (C.22).

The remaining question is how to choose the short-horizon MILPs. Our objective is to generate

a rich set of profiles that are representative of the optimal solutions for a long-horizon MILP (A.21).

To this end, we borrow the moving-horizon approach from model predictive control (Garcia et al.,

1989; Allgöwer and Zheng, 2000). Given a long-horizon MILP, the idea is to solve MILPs over

a short window, roll the window forward, and re-solve the new MILP until the window reaches

the end of the horizon; see Figure 2 for an illustration. We summarize this approach and provide

additional details in Algorithm 2.

Proposition 3.1. The moving-horizon method described in Algorithm 2 generates non-negative

profiles {P̄jkl, Q̄k, Ūk, B̄k, S̄k, S̄out
k } ∈ Rδ+ and binary profiles {X̄jk, W̄jk} ∈ {0, 1}δ. Moreover, the

profile pairs {X̄jk, P̄jkl}, {S̄out
k , S̄k}, and {B̄k, B̄IO

k } satisfy (3.16), (3.17), and (3.19), respectively.

Proof. Non-negativity of the profiles {P̄jkl, Q̄k, Ūk, B̄k, S̄k, S̄out
k } follows from the fact that the

second-stage solutions {pijt, qt, ut, bt, st, sout
t } of the original MILP model (A.21) are non-negative.

Similarly, X̄jk ∈ {0, 1}δ follows from xijt ∈ {0, 1}; and W̄jk, constructed from (3.18), is elementwise

binary. Since the production variable pijt and the on/off variable xijt satisfy (A.21c), it follows

that {X̄jk, P̄jkl} satisfies (3.16). Since the power storage bt and power input/output bIOt satisfy

(A.21h) and since the heat storage st and heat output sout
t satisfy (A.21l), we conclude that (3.17)

and (3.19) follow by construction.
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Data: The parameters for MILP (A.21) with a horizon of D days, and a window of w days

with w � D.

Result: Profiles {P̄jkl, Q̄k, Ūk, B̄k, S̄k, S̄out
k } ∈ Rδ+, B̄IO

k ∈ Rδ, and {X̄jk, W̄jk} ∈ {0, 1}δ.
Set k ← 0, W = {1, . . . , δw}, R = {1, . . . , δ};
while k + w ≤ D do

Solve MILP (A.21) in the current window t ∈ W;

Take snapshots of solutions {xijt, pijt, qt, ut, bt, bIOt , st, s
out
t } in t ∈ R;

Extract profiles {X̄jk, P̄jkl, Q̄k, Ūk, B̄k, B̄
IO
k , S̄k, S̄

out
k }, and W̄jk ∈ {0, 1}δ using (3.18);

Roll the window forward by setting k ← k + 1;

if k + w < D then Set W = {δk + 1, . . . , δ(k + w)}, R = {δk + 1, . . . , δ(k + 1)};
if k + w = D then Set W = R = {δk + 1, . . . , δH}.

Algorithm 2: Moving horizon method for profile generation.

Figure 2: Illustration of the moving horizon method in Algorithm 2.

Algorithm 2 potentially generates a huge number of profiles; hence, solving (C.22) and (D.23)

with all generated profiles may be prohibitive. Instead, we select on/off profiles X̄jk that appear

most frequently in the generated profile pool. Since the aim of the two-level approach is to reduce

the problem size, it is desired that the number of on/off profiles k is much smaller than the length

of profiles δ (e.g., k ≈ δ/10). For the production profiles P̄jkl associated with each X̄jk, we

choose production profiles that have the minimum or maximum total production
∑δ

h=1 P̄jkl(h).

These extreme profiles provide an envelope of other profiles; thus, their convex combination (C.22f)

provides a good range of profiles for selection. Similarly, profiles with the minimum and maximum

sum of absolute values are chosen for the battery storage B̄k, the heat storage S̄k, the battery

input/output B̄IO
k , and the heat output S̄out

k . Further, profiles for the power purchased from the

utility Ūk and the heat output from the boiler Q̄k are uniformly sampled over the period of the

entire horizon.

Alternatively, we also employ a k-means clustering algorithm in order to cluster profiles. Given

a prespecified k number of clusters, this algorithm assigns profiles to one of k clusters defined by

the centroids (Jain, 2010). Since demand and pricing data for buildings tend to differ significantly



16 Fu Lin, Sven Leyffer, and Todd Munson

in winters and summers, we set k = 2, and choose one profile that has the minimum least-squares

distance to the centroids. In our numerical experiments in Section 4, we apply a k-means algorithm

to the boiler output Q̄k, power purchased from the utility Ūk, heat storage output S̄out
k , and battery

power output B̄IO
k profiles. The clustering approach achieves better performance in the objective

function than does simple sampling heuristics for profile selection.

4 Numerical Results and Case Studies

In this section, we illustrate the effectiveness of our two-level approach using five different building

examples. We demonstrate that both the semi-coarse and the coarse models allow us to find

good approximate solutions in a fraction of the time compared with solving the full MILP model.

The two-level approach also scales to large problems that are beyond the scope of state-of-the-art

commercial MILP solvers.

4.1 Generation of Problem Instances

We use the simulation program EnergyPlus 8.2. (Crawley et al., 2001, 2000) to generate hourly

electricity and heating demands for typical summer and winter days for five types of buildings

located in Chicago, Illinois. We scale the daily demands, depending on building types, to generate

weekly summer and winter demands. The scaling factors for building types are shown in Table 1.

We generate yearly demand profiles by interpolating between winter and summer weeks. The

demand of the ith week is given by Di = wiDwt + (1−wi)Dsm, where Dwt and Dsm are the weekly

demand in winter and summer, respectively, and wi is a piecewise linear function shown in Figure 3.

The resulting yearly demand profiles are perturbed by a zero mean unit variance Gaussian noise

whose magnitude is 2% proportional to the magnitude of demands. We repeat this process to

generate demands for multiple years.

Figure 4 shows the electricity demand in summer and winter weeks for five different buildings:

an office building, a supermarket, a full-service restaurant, a hospital, and a stand-alone retail

store. In addition to different peak demand patterns, the number of kilowatt-hours varies by orders

of magnitude for different buildings, from tens of kilowatt-hours for the restaurant to more than

a thousand kilowatt-hours for the hospital. The diversity of peak demand patterns and the wide

range of magnitudes show the richness of the example set. As a result, the difficulty of the MILP

model (A.21) varies significantly for different buildings; see Section 4.3.

We follow the pricing structure of Stadler et al. (2009). The price for electricity and gas is $0.12

per kWh and $0.049 per kWh, respectively. The peak demand charge is $14.2 per kW for summer

months (from June to September) and $11.36 per kW for winter months (from October to May).

These prices are fixed for each year over the second-stage time horizons.



Two-Level MILP 17

Building Type Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Office 1 1 1 1 1 1/2 1/4

Supermarket 1/2 1/2 1/2 1/2 1/2 1 1

Restaurant 1/4 1/4 1/2 1/2 1 1 1/2

Hospital 1 1 1 1 1 1 1

Retail 1/4 1/2 1/2 1 1 1/4 1/4

Table 1: Scaling factors of daily demands in a week for five buildings. For example, the demand of

the office building on Saturdays is scaled by half of the demand on weekdays.

0 13 24 37 44 52
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w
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Figure 3: Piecewise linear interpolation between winter and summer weeks. The demand of the ith

week is given by Di = wiDwt + (1− wi)Dsm, where Dwt is the weekly demand in winter and Dsm

is the weekly demand in summer.

4.2 Numerical Experiment Setup

Numerical experiments are performed on a workstation with 32 GB memory and two Intel E5430

Xeon 4-core 2.66 GHz CPUs. We implement our algorithms in AMPL (Fourer et al., 2012) to take

advantage of AMPL’s compact modeling syntax in profile generation, storage, and management.

We use CPLEX version 12.6.1.0 as the MIP solver in AMPL. We set a 3-hour time limit and 1%

relative gap as the stopping criteria for CPLEX.

4.3 Solutions of the Full Model with Short Second-Stage Horizons

Table 2 shows the problem size of the full MILP model (A.21) as a function of the number of days

in the second stage. The number of binary variables, continuous variables, and constraints grows

linearly with the number of days in the second-stage problem. For the one-year model, there are

1.05× 105 binary variables, 2.71× 105 continuous variables, and 6.11× 105 constraints.

Table 3 shows the solutions of small problems for the restaurant example using CPLEX. We

see the exponential increase of the amount of time, the number of nodes in the branch-and-bound

trees, and the number of simplex iterations with the number of days. Solving the 84-day example

is beyond the capabilities of CPLEX on the designated workstation. After reaching the 3-hour

time limit, the relative MIP gap for the 84-day model is still greater than 18%.1 Our experience

1Removing the time limit does not help because then the branch-and-bound tree generated by CPLEX will consume

all allowable disk space of 100 GB on the workstation.
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(a) Electricity demand for an office building in winter and summer weeks.
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(b) Electricity demand for a supermarket in winter and summer weeks.
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(c) Electricity demand for a full service restaurant in winter and summer weeks.
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(d) Electricity demand for a hospital in winter and summer weeks
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(e) Electricity demand for a stand-alone retail in winter and summer weeks.

Figure 4: Electricity demand for five buildings in winter and summer weeks.
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Days Binary Continuous Constraint

4 1,152 2,994 6,698

7 2,016 5,226 11,738

14 4,032 10,434 23,498

28 8,064 20,850 47,018

84 24,192 62,514 1.41 · 105

364 1.05 · 105 2.71 · 105 6.11 · 105

Table 2: Problem size of the MILP model (A.21). The number of binary variables, continuous

variables, and constraints grows linearly with the number of days in the second stage.

Days Time(s) Nodes LP-iter Bat Boil Chp Pow Stor

4 2 0 4.00e+03 1 1 2 0 6

7 241 2807 4.49e+05 2 1 0 1 0

14 1.21e+03 10352 2.73e+06 2 1 0 1 0

28 5.69e+03 47770 6.02e+06 2 1 0 1 0

84† 1.06e+04 487 1.31e+06 6 1 0 1 0

Table 3: Solutions of the MILP model (A.21) for the restaurant example using CPLEX. The time

in seconds, the number of nodes, and the number of simplex iterations grow exponentially with

the horizon length in the second stage. The first-stage solutions for batteries (Bat), boilers (Boil),

CHP-SOFC (CHP), Power SOFC (Pow), and water tank storage (Stor) vary with the problem size.
†The 84-day model reaches the 3-hour limit, but the relative MIP gap is greater than 18%.
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Figure 5: Exponential increase of the amount of time and the number of simplex iterations with

the number of days in the second stage of the full MILP model (A.21). The number of simplex

iterations drops for the 84-day restaurant example because CPLEX reaches 3-hour time limit.

indicates that it is unlikely that we can solve our MILP over a ten-year time horizon.

Similar observations can be made for other building examples. In Figure 5, we see that for

all five buildings, both the number of simplex iterations and the amount of solution time increase

exponentially with the number of days in the second stage.

Additional numerical results are summarized in Table 6 in Appendix B. We point out that

different buildings show different levels of difficulty for the MILP model (A.21). As we see in

Figure 5, the five buildings differ by orders of magnitude in solution time and the number of simplex

iterations. Similarly, the number of nodes in the branch-and-bound trees varies significantly over

different buildings. For example, the 84-day model requires 10, 384 nodes for the retail example as

opposed to 200 nodes for the supermarket example; see Table 6 in Appendix B.

4.4 Solutions of Semi-Coarse Model with Long Second-Stage Horizons

In Figure 6, we compare the problem size for the full model (A.21), the semi-coarse model (C.22),

and the coarse model (D.23) over a 10-year second-stage horizon. We see a roughly 8 times reduction

in the number of binary variables and 12 times reduction in the number of continuous variables.

The reason is that for each day with 24 hours, we pick the three most frequent on/off profiles

for binary variables and two cluster centers from the k-means clustering algorithm for continuous

variables. While increasing the number of profiles improves the quality of coarsened models (C.22)

and (D.23), the resulting computational effort increases significantly. In practice, we find that

the two-level approach strikes a good balance between solution quality and computational time

with a small number of profiles (typically 2-3). Note that the large reduction in the number of

constraints from the full model to the semi-coarse model. This is mainly because we have embedded

the min/max production constraints (A.21c) and the switching constraints (A.21f) in the profile
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Figure 6: Problem size for the full MILP model (A.21), the semi-coarse model (C.22), and the coarse

model (D.23). The number of binary and continuous variables are the same for the semi-coarse

and coarse models.

Days Time(s) Nodes LP-iter Bat Boil Chp Pow Stor

364 36.4 434 21,700 0 1 1 1 1

728 157 673 57,700 0 1 1 1 1

1,456 856 1,540 1.64 · 105 0 1 1 1 1

2,184 1,320 1,737 2.48 · 105 0 1 1 1 1

2,912 1,520 1,529 2.37 · 105 0 1 1 1 1

3,640 3,350 2,512 3.01 · 105 0 1 1 1 1

Table 4: Solutions of the semi-coarse model (C.22) for the restaurant example using CPLEX. The

time in seconds, the number of nodes, and the number of simplex iterations grow much more slowly

than for the full model in Table 3. The first-stage solutions for batteries (Bat), boilers (Boil),

CHP-SOFC (CHP), power SOFC (Pow), and water tank storage (Stor) do not change with the

problem size.

generation; see Section 3.2. In particular, for a 10-year model with 12 fuel cell units, there is a

reduction of 12 × 87600 × 4 ≈ 4.2 × 106 constraints (that is, a 67% of reduction in the number of

constraints.)

Table 4 shows the solution information for the semi-coarse model over a 10-year horizon. As

opposed to the exponential increase for the full model, the solution time, the number of nodes, and

the number of simplex iterations for the semi-coarse model grow more slowly. Furthermore, the

first-stage solutions for the semi-coarse model are no longer sensitive to the horizon length. This

result is in contrast to the variability of first-stage solutions for the full model in Table 3.

Figure 7 shows that both the number of simplex iterations and the amount of solution time

scale more slowly for the semi-coarse models. For example, the number of simplex iterations for

10-year semi-coarse models is on the same order as that of the 84-day full model. The numerical

results for the semi-coarse model are summarized in Table 7 in Appendix B.
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Figure 7: Solution time and number of simplex iterations for the semi-coarse model over a 10-year

horizon. The growth of computational effort is considerably slower than that of the full model

shown in Figure 5.

4.5 Solutions of the Coarse Model with Long Second-Stage Horizons

As shown in Figure 6, the semi-coarse and coarse models have the same number of binary and

continuous variables, and the semi-coarse model has about twice as many constraints than does

the coarse model. Therefore, one expects that both models can be solved with a similar amount of

computational effort in terms of time and simplex iterations. Since we solve a sequence of coarse

models, the total computational effort often exceeds that of solving the semi-coarse model. Because

of the LP warm-start phase in Algorithm 1, however, we find that the first iterate of the coarse

MILPs provides remarkably good solutions of the semi-coarse model.

To illustrate this point, we show in Table 5 the solution history of the MILP phase in Algo-

rithm 1. The MILP phase converges in three coarse MILP iterates, and the first iterate requires

much more computational effort than do other iterates; in particular, it accounts for 76% of total

computational time. Compared with the solution from the semi-coarse model, the first iterate of

the coarse MILPs provides a very good solution. The relative gap of the objective value

µ = (ObjValsemi −ObjValcoar)/ObjValsemi (4.20)

between the semi-coarse model and the coarse model at the first iterate is less than 4.7× 10−4.

Figure 8 shows that the relative gap µ for all five building examples over the 10-year horizon is

no greater than 0.05. This implies that the first iterate of coarse MILPs is a good approximation

of the semi-coarse model. Numerical results for the first iterate of coarse MILPs are summarized

in Table 8 in Appendix B.
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Iter Binary Continuous Constraint Objective Value

1 131,040 254,935 589,321 3,797,389.08

2 131,040 254,935 589,617 3,797,565.30

3 131,040 254,935 589,629 3,797,568.94

Iter Time(s) Nodes LP-iter Bat Boil Chp Pow Stor

1 7,821.83 3,620 1.06 · 106 0 1 1 1 1

2 1,341.28 472 2.38 · 105 0 1 1 1 1

3 1,125.19 938 1.47 · 105 0 1 1 1 1

Table 5: Problem size of MILP iterates for a 10-year model of the restaurant example. The first

iterate accounts for 76% of computational time, and the relative gap between the objective value

defined in (4.20) is less than 4.7× 10−4.

1 2 4 6 8 10

10−4

10−3

10−2

10−1

Years

µ

Office SuperMarket Restaurant Retail Hospital

Figure 8: The relative gap µ defined in (4.20) between the first iterate of coarse MILPs and the

semi-coarse model is no greater than 0.05 for all five buildings over a 10-year horizon.
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Figure 9: LP warm-start phase for the one-year restaurant example. The number of constraints

(left panel) and the solution time (right panel) for LP-relaxations of (D.23).

4.6 Effect of the LP Warm-Start

To illustrate the effect of the LP warm-start, we consider the cogeneration problem for the restau-

rant example over a one-year second-stage horizon. The original MILP (A.21) has 1.05×105 binary

variables, 2.71 × 105 continuous variables, and 6.11 × 105 constraints. Figure 9 shows the num-

ber of constraints and the computation time during the LP warm-start phase. A large number

of constraints are added in the first few (3-5) iterates, resulting in more computation time at the

beginning of the algorithm. As the LP warm-start phase progresses, fewer constraints are violated,

and each LP-relaxation becomes easier to solve because of the warm-start. The amount of time in

the LP warm-start phase is a fraction of that with one MILP re-solve in the MILP phase.

We next compare the MILP phase of Algorithm 1 with and without the LP warm-start. Fig-

ure 10 shows the number of MILP re-solves and the computation time for both cases. Without the

LP warm-start, Algorithm 1 takes 6 MILP re-solves, as opposed to 2 MILP re-solves with the LP

warm-start. Moreover, the MILP re-solves with the LP warm-start is up to 20 times faster than

the MILPs without the LP warm-start. We note that the improvement of the LP warm-start phase

is observed in all building examples.

4.7 First-Stage Solutions

Since the first-stage solutions are of primary importance, we next compare them from the full

MILP, the semi-coarse, and the coarse models. In Table 6, we see that the investment decisions

at the first-stage vary significantly with respect to the horizon length of the second-stage problem.

For example, the number of water tanks for storage drops from six units in the 4-day model to zero

units in the 7-day model, and the number of batteries increases from two units in the 28-day model

to six units in the 84-day model. These numbers imply that the optimal first-stage solutions from

a short-horizon problem are suboptimal solutions for a long-horizon problem. Therefore, we must
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Figure 10: Effect of LP warm-start for the one-year restaurant example. Algorithm 1 with LP

warm-start phase (◦) converges with fewer MILP iterations than without LP warm-start (•). While

more constraints are added to MILPs with LP warm-start (left panel), each MILP iterate is 5 to

20 times faster than MILPs without LP warm-start (right panel).

solve long-horizon MILPs (A.21) as done for the semi-coarse and coarse models.

In Table 7, the first-stage solutions are much less sensitive to the horizon length at the second

stage. For example, the first-stage solutions do not change over the 10-year horizon for the super-

market and restaurant examples. For the other three buildings, the `1-norm between first-stage

solutions of the same building example is no greater than 2 (i.e., at most two-unit difference of

investment decisions). Similarly, the first-stage solutions at the first iterate of the coarse MILPs

are insensitive to the horizon length at the second stage. The `1-distance between the first-stage

solutions of the same building example is no greater than 3.

5 Conclusions

We study two-stage MILPs with more than 1 million binary variables in the second-stage problem.

We develop a two-level approach by constructing semi-coarse models (coarsened with respect to

variables) and coarse models (coarsened in both variables and constraints). We show that the semi-

coarse model is guaranteed to provide a feasible solution of the original MILP and hence results in

an upper bound on the optimal solution. We solve a sequence of coarse MILPs with aggregated

constraints that converges to the same upper bound with a finite number of steps. Furthermore,

we take advantage of the LP warm-start to reduce the number of MILP re-solves.

We apply our approach to the cogeneration problem for commercial buildings. We demonstrate

the effectiveness of the two-level approach using building examples with simulation data. In par-

ticular, the two-level approach allows us to obtain good approximate solutions at a fraction of the

time required for solving the original MILPs. Furthermore, we show that the two-level approach

scales to large problems that are beyond the capacity of state-of-the-art commercial solvers.
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A number of extensions are of interest in our future work. First, how should one add new

profiles in the coarsened models? Currently, we select a number of prespecified profiles and fix

them throughout the MILP re-solves. Since the solution quality of coarsened models is determined

by profiles, it is of interest to add new profiles dynamically that are most promising in reducing the

objective value. It seems that the reduced cost associated with profiles can be obtained by solving

appropriate pricing problems like those in the column generation approach (Barnhart et al., 1998).

Further, it is also of interest to consider dynamic aggregations of constraints as new profiles are

included. For set-partitioning constraints, a similar approach has been developed in the column

generation framework (Elhallaoui et al., 2005). We plan to explore this line of research in future

work.

Second, how can one obtain lower bounds on the optimal solution in the two-level framework?

Since the coarse model is a relaxation of the semi-coarse model, which itself is a tightening of

the full model, the coarse model is not a relaxation of the original MILP. While relaxing binary

variables in the original MILP results in a lower bound, our numerical results indicate a sizable gap

between this lower bound and the optimal solution. It is an open problem how to generate lower

bounds using appropriate coarse MILPs.

Furthermore, advanced multilevel approaches for PDEs typically require several sweeps of

fine/coarse levels in order to achieve accurate solutions (Falgout, 2006). It may be beneficial

to iterate between solving coarse models to optimality and solving “partially” the fine model until

a prespecified accuracy for the solution is achieved. We intend to extend our two-level framework

in this direction.
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A Full Model for the Cogeneration Problem

For the sake of completeness, we describe here our cogeneration model.

Index Sets. We use calligraphic upper-case letters for all sets. The set of technologies: batteries,

boilers, CHP-SOFC, power SOFC, and water tank storage is denoted by J . We use batt, boil,

pow, chp, and stor for shortcuts. The subset Jg = {power SOFC, CHP-SOFC} denotes SOFC

generation technologies that require on/off operations at the second stage. Each technology j ∈ Jg
has a number of identical units, and the index set is denoted by Uj . Finally, T is the index set of

time, M is the index set of months, and Tm ⊂ T is the index set of time for each month m ∈M.
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Variables. We use lower-case letters to denote variables. The first-stage variables in our model

are the number of units of technology j ∈ J , which we denote by yj ∈ Z+. All other variables model

operation of the installed units, and they are our second-stage variables. We use the subscript t

to indicate the time period: bt and bIOt are the power storage and input/output for batteries,

respectively; st, s
in
t , and sout

t are the heat storage, input, and output for water tanks, respectively;

pjt and qjt ≥ 0 are the power and heat output of technology j, respectively; ut ≥ 0 is the power

purchased from the utility and umax
m ≥ 0 is the maximum power purchased in month m; xijt ∈ {0, 1}

indicates whether unit i of technology j operates in time period t; and wijt ∈ [0, 1] is an auxiliary

variable to indicate whether unit i of technology j switches from t to t + 1. Note that we do not

impose binary constraint on wijt because it takes a binary value at the solution due to the switching

constraint (A.21f) and the binary constraint xijt ∈ {0, 1}. We use the convention t ∈ T , j ∈ J ,

i ∈ Uj , m ∈M unless explicitly mentioned.

Parameters. We use upper-case letters to denote parameters and constants: Cj is the capital

and installation cost of technology j; H is the number of hours in the lifetime of technology (e.g.,

H = 87600 for a ten-year model); T is the number of hours in the problem horizon; Y is the

hourly discount factor with 3% annual interest rate (i.e., Y = 1− 0.03/8760); Mj is the operation

and maintenance cost of technology j; Pt and Gt are the price for electricity and natural gas,

respectively; Pmax
m is the peak demand price for power from the utility in month m; Wj is the cost

of switching a unit of technology j on or off; Scj is the thermal capacity per unit for technology

j; Bc is the power capacity per unit for batteries; DP
t and DQ

t are the power and heat demand

in period t, respectively; Rmin
j and Rmax

j are the minimum and maximum power output when a

unit of technology j is turned on, respectively; EPj and EQj are the power and thermal efficiency of

technology j, respectively; LP and LQ are the average power loss in battery and heat loss in water

tank storage, respectively.

Cost Function. We now formulate the complete MILP model for cogeneration problem in (A.21).

The objective function consists of two parts: the capital and installation cost in the first-stage and

the operation cost in the second stage. The operation cost includes the peak power usage, operation

and maintenance, switching units, gas, and purchased power costs. We discount the second-stage

costs with an hourly discount factor based on a 3% annual interest rate; hence Y = 1− 0.03/8760.

Therefore, the cost incurred in hour t is multiplied by the discount factor Y t.2 The peak demand

charge at the end of month m is discounted with Y tm . To compare cost over different time horizons

T , we compute the average hourly cost and multiply the result with the lifetime of technologies,

H, resulting in the factor H/T in the second-stage cost in (A.21).

2For comparison, the annual discount factor is Y 8760 ≈ 97.044%, which is consistent with the 3% interest rate;

and a ten-year discount factor is Y 87600 ≈ 74.082%.
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minimize
∑
j∈J

Cjyj +
H

T

{ ∑
m∈M

Y tmPmax
m umax

m

+
∑
t∈T

Y t
[ ∑
j∈Jg

(Mjpjt +
∑
i∈Uj

Wjwijt) +Gtqt + Ptut
]}

subject to yj ∈ Z, 0 ≤ yj ≤ |Uj | (A.21a)∑
j∈Jg

pjt + ut − bIOt ≥ DP
t (A.21b)

Rmin
j xijt ≤ pijt ≤ Rmax

j xijt, pjt =
∑
i∈Uj

pijt j ∈ Jg (A.21c)

xijt ∈ {0, 1},
∑
i∈Uj

xijt ≤ yj j ∈ Jg (A.21d)

x(i+1)jt ≤ xijt j ∈ Jg, i < |Uj |
(A.21e)

xij(t+1) − xijt ≤ wijt, xijt − xij(t+1) ≤ wijt, 0 ≤ wijt ≤ 1, j ∈ Jg, t < |T |
(A.21f)

0 ≤ ut ≤ umax
m t ∈ Tm (A.21g)

bt+1 = (1− LP )bt + bIOt t < |T | (A.21h)

b1 = b|T | (A.21i)

0 ≤ bt ≤ Bcybatt (A.21j)

sout
t + qt ≥ DQ

t (A.21k)

st+1 − (1− LQ)st + sout
t ≤ (EQchp/E

P
chp)pchp,t t < |T | (A.21l)

s1 = s|T | (A.21m)

sout
t ≤ st ≤ Scstorystor (A.21n)

qt ≤ Scboilyboil (A.21o)

bt, pjt, qt, st, s
out
t , ut ≥ 0 (A.21p)

Constraints. The constraints in the MILP model (A.21) can be divided into three groups. The

first group of constraints couples first- and second-stage variables; in particular, the number of

on-units for fuel cells and the capacity of battery, storage, and boiler are bounded by the num-

ber of units purchased in the first-stage, as described in (A.21d), (A.21j), (A.21n), and (A.21o),

respectively. The second group of constraints couples variables across technologies; in particular,

technologies are coordinated to meet the power demand (A.21b) and the heat demand (A.21k).

We note that dualizing these constraints results in decoupled variables for each technology; see,

for example, Fisher (1981) and Bard (1988). However, MILP (A.21) does not lend itself to this

Lagrangian relaxation approach because of coupling constraints in the third group. This group of

constraints couples variables over time periods in the second stage. In particular, the battery and
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storage constraints (A.21h) and (A.21l) link variables over the entire horizon. In addition, con-

straint (A.21g), which models the maximum power purchased from the utility in each months, links

variables over time instances in each month. Moreover, constraint (A.21f), which models on/off

switches of the generation units, couples binary variables xijt over two immediate time instances.

Boundary conditions (A.21i) and (A.21m) for battery and storage couple variables at both ends of

the entire horizon.

We conclude this subsection by explaining the rest of the constraints in (A.21). The number of

purchased units is upper bounded in (A.21a). Since all units of the same technology are identical,

we introduce a symmetry breaking constraint (A.21e) that states that if unit i+1 is on, then unit i

must be on as well. When unit i of technology j is turned on, the power generated pijt is bounded

by the minimum and maximum capacity in (A.21c). The non-negativity constraint for variables is

given by (A.21p).

B Tables of Numerical Results
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Type RelGap Days Binary Continuous Constraint Nodes LP-iter Bat Boil Chp Pow Stor Time ObjVal MSG

1 2.62 · 10−4 4 1,152 2,994 6,698 0 3,870 0 2 5 7 8 0.9 1.91 · 107 0

1 2.84 · 10−3 7 2,016 5,226 11,738 0 2,470 0 3 5 0 2 0.25 3.01 · 107 0

1 2.79 · 10−3 14 4,032 10,434 23,498 0 4,500 0 3 5 0 2 0.54 3.01 · 107 0

1 4.55 · 10−3 28 8,064 20,850 47,018 0 9,130 0 3 5 0 2 1.35 3 · 107 0

1 4.4 · 10−4 84 24,192 62,514 1.41 · 105 0 29,300 0 3 5 0 2 6.47 2.98 · 107 0

1 6.51 · 10−3 364 1.05 · 105 2.71 · 105 6.11 · 105 0 3.88 · 105 0 2 5 7 3 3,950 2.39 · 107 0

2 4.27 · 10−3 4 1,152 2,994 6,698 0 4,650 0 1 5 1 8 1 1.97 · 107 0

2 4.34 · 10−6 7 2,016 5,226 11,738 0 8,960 0 1 0 4 0 5.38 9.38 · 106 0

2 2.89 · 10−3 14 4,032 10,434 23,498 0 18,300 0 1 0 4 0 16 9.4 · 106 0

2 5.35 · 10−3 28 8,064 20,850 47,018 0 44,300 0 1 0 4 0 69.1 9.41 · 106 0

2 4.49 · 10−3 84 24,192 62,514 1.41 · 105 200 5.55 · 105 0 1 1 4 1 1,480 9.48 · 106 0

2 7.27 · 10−2 364 1.05 · 105 2.71 · 105 6.11 · 105 20 1.75 · 106 0 1 5 5 5 10,800 1.51 · 107 1

3 9.93 · 10−3 4 1,152 2,994 6,698 0 4,000 1 1 2 0 6 1.89 5.01 · 106 0

3 9.61 · 10−3 7 2,016 5,226 11,738 2,807 4.49 · 105 2 1 0 1 0 241 1.72 · 106 0

3 9.54 · 10−3 14 4,032 10,434 23,498 10,352 2.73 · 106 2 1 0 1 0 1,210 1.71 · 106 0

3 9.95 · 10−3 28 8,064 20,850 47,018 47,770 6.02 · 106 2 1 0 1 0 5,690 1.72 · 106 0

3 0.18 84 24,192 62,514 1.41 · 105 487 1.31 · 106 6 1 0 1 0 10,600 2.05 · 106 1

3 0.29 364 1.05 · 105 2.71 · 105 6.11 · 105 0 7.16 · 105 0 1 0 0 0 10,000 4.53 · 106 1

4 7.19 · 10−3 4 1,152 2,994 6,698 30 13,800 1 1 2 0 8 4.49 5.7 · 106 0

4 9.77 · 10−3 7 2,016 5,226 11,738 461 42,400 1 1 3 1 8 14.4 5.98 · 106 0

4 9.44 · 10−3 14 4,032 10,434 23,498 10,080 1.09 · 106 2 1 1 1 7 757 4.14 · 106 0

4 8.6 · 10−3 28 8,064 20,850 47,018 3,490 9.59 · 105 2 1 2 1 8 1,630 4.83 · 106 0

4 9.79 · 10−3 84 24,192 62,514 1.41 · 105 10,384 1.4 · 106 2 1 1 1 1 4,780 4.71 · 106 0

4 0.12 364 1.05 · 105 2.71 · 105 6.11 · 105 0 8.24 · 105 1 1 2 1 1 9,430 5.44 · 106 1

5 3.47 · 10−7 4 1,152 2,994 6,698 0 3,060 6 5 5 7 8 0.65 7.25 · 107 0

5 5.27 · 10−3 7 2,016 5,226 11,738 0 5,110 6 4 5 7 8 0.47 6.83 · 107 0

5 6.77 · 10−3 14 4,032 10,434 23,498 0 11,800 6 4 5 7 8 4.18 6.42 · 107 0

5 9.35 · 10−3 28 8,064 20,850 47,018 0 25,100 6 4 5 7 8 9.1 6.74 · 107 0

5 9.74 · 10−3 84 24,192 62,514 1.41 · 105 0 70,400 6 5 5 7 8 60.5 6.52 · 107 0

5 7.32 · 10−3 364 1.05 · 105 2.71 · 105 6.11 · 105 0 3.14 · 105 6 5 5 7 8 638 6.51 · 107 0

Table 6: Problem size and AMPL/CPLEX solution information for the cogeneration problem (A.21) for five buildings: 1-Office, 2-Supermarket,

3-Restaurant, 4-Retail, 5-Hospital. Model instances that reach 3-hour time limit are indicated by MSG=1.
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Type RelGap Days Binary Continuous Constraint Nodes LP-iter Bat Boil Chp Pow Stor Time ObjVal MSG

1 9.45 · 10−3 364 13,104 25,498 1.85 · 105 590 33,300 0 3 5 7 2 57.2 2.8 · 107 0

1 8.53 · 10−3 728 26,208 50,991 3.71 · 105 660 66,400 0 3 5 7 2 245 2.76 · 107 0

1 6.71 · 10−3 1,456 52,416 1.02 · 105 7.41 · 105 4,515 2.93 · 105 0 3 4 7 2 2,630 2.67 · 107 0

1 9.66 · 10−3 2,184 78,624 1.53 · 105 1.11 · 106 6,514 4.5 · 105 0 3 4 7 2 6,110 2.61 · 107 0

1 1.31 · 10−2 2,912 1.05 · 105 2.04 · 105 1.48 · 106 514 6.43 · 105 0 3 5 7 2 10,800 2.54 · 107 1

1 6.97 · 10−2 3,640 1.31 · 105 2.55 · 105 1.85 · 106 488 5.57 · 105 0 3 5 7 2 9,310 2.62 · 107 1

2 9.43 · 10−3 364 13,104 25,498 1.85 · 105 1,234 45,000 0 3 5 4 2 102 1.84 · 107 0

2 9.98 · 10−3 728 26,208 50,991 3.71 · 105 4,130 1.16 · 105 0 3 5 4 2 642 1.8 · 107 0

2 9.58 · 10−3 1,456 52,416 1.02 · 105 7.41 · 105 7,213 2.38 · 105 0 3 5 4 2 2,750 1.75 · 107 0

2 6.87 · 10−3 2,184 78,624 1.53 · 105 1.11 · 106 10,267 3.52 · 105 0 3 5 4 2 6,410 1.7 · 107 0

2 1.15 · 10−2 2,912 1.05 · 105 2.04 · 105 1.48 · 106 9,966 4.17 · 105 0 3 5 4 2 10,800 1.66 · 107 1

2 1.83 · 10−2 3,640 1.31 · 105 2.55 · 105 1.85 · 106 5,479 4.6 · 105 0 3 5 4 2 10,800 1.62 · 107 1

3 9.58 · 10−3 364 13,104 25,498 1.85 · 105 434 21,700 0 1 1 1 1 36.4 4.32 · 106 0

3 8.29 · 10−3 728 26,208 50,991 3.71 · 105 673 57,700 0 1 1 1 1 157 4.27 · 106 0

3 6.97 · 10−3 1,456 52,416 1.02 · 105 7.41 · 105 1,540 1.64 · 105 0 1 1 1 1 856 4.14 · 106 0

3 5.08 · 10−3 2,184 78,624 1.53 · 105 1.11 · 106 1,737 2.48 · 105 0 1 1 1 1 1,320 4.02 · 106 0

3 4.63 · 10−3 2,912 1.05 · 105 2.04 · 105 1.48 · 106 1,529 2.37 · 105 0 1 1 1 1 1,520 3.91 · 106 0

3 4.33 · 10−3 3,640 1.31 · 105 2.55 · 105 1.85 · 106 2,512 3.01 · 105 0 1 1 1 1 3,350 3.8 · 106 0

4 9.58 · 10−3 364 13,104 22,950 1.85 · 105 3,500 1.02 · 105 0 1 2 1 1 192 6.12 · 106 0

4 7.56 · 10−3 728 26,208 45,895 3.71 · 105 4,085 1.31 · 105 0 1 2 1 1 478 6.03 · 106 0

4 9.88 · 10−3 1,456 52,416 91,785 7.41 · 105 9,555 2.83 · 105 0 1 3 1 1 2,260 5.87 · 106 0

4 1.08 · 10−2 2,184 78,624 1.38 · 105 1.11 · 106 27,269 5.04 · 105 0 1 1 1 1 9,620 5.71 · 106 1

4 9.75 · 10−3 2,912 1.05 · 105 1.84 · 105 1.48 · 106 11,259 4.55 · 105 0 1 2 1 1 6,760 5.54 · 106 0

4 1.08 · 10−2 3,640 1.31 · 105 2.29 · 105 1.85 · 106 10,494 5.73 · 105 0 1 1 1 1 10,800 5.4 · 106 1

5 9.94 · 10−3 364 13,104 27,318 1.85 · 105 506 44,600 4 7 5 7 2 52.8 7.26 · 107 0

5 7.2 · 10−3 728 26,208 54,631 3.71 · 105 4,250 1.87 · 105 4 6 5 7 2 888 7.13 · 107 0

5 9.6 · 10−3 1,456 52,416 1.09 · 105 7.41 · 105 7,180 3.68 · 105 3 6 5 7 2 3,100 6.95 · 107 0

5 9.37 · 10−3 2,184 78,624 1.64 · 105 1.11 · 106 10,324 5.3 · 105 4 6 5 7 2 8,000 6.74 · 107 0

5 1.55 · 10−2 2,912 1.05 · 105 2.19 · 105 1.48 · 106 5,686 6.29 · 105 4 6 5 7 2 10,500 6.59 · 107 1

5 3.64 · 10−2 3,640 1.31 · 105 2.73 · 105 1.85 · 106 2,966 7.87 · 105 3 6 5 7 2 10,800 6.55 · 107 1

Table 7: Problem size and AMPL/CPLEX solution information for the semi-coarse model (C.22) for five buildings: 1-Office, 2-Supermarket, 3-

Restaurant, 4-Retail, 5-Hospital. Model instances that reach 3-hour time limit are indicated by MSG=1.
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Building Year Binary Continuous Constraint Nodes LP-iter Time Bat Boil Chp Pow Stor ObjVal MSG

1 1 13,104 25,498 67,251 550 34,876 35.09 0 3 5 7 2 2.8 · 107 0

1 2 26,208 50,991 1.34 · 105 2,507 1.53 · 105 324.85 0 3 5 7 2 2.76 · 107 0

1 4 52,416 1.02 · 105 2.73 · 105 504 1.29 · 105 415.87 0 3 5 7 2 2.68 · 107 0

1 6 78,624 1.53 · 105 4.13 · 105 6,166 4.52 · 105 3,104.26 0 3 5 7 2 2.61 · 107 0

1 8 1.05 · 105 2.04 · 105 5.36 · 105 8,482 6.13 · 105 6,312.24 0 3 5 7 2 2.53 · 107 0

1 10 1.31 · 105 2.55 · 105 6.85 · 105 7,864 7.42 · 105 10,453.39 0 3 5 7 2 2.48 · 107 1

2 1 13,104 25,498 68,345 1,410 49,815 96.47 0 3 5 4 2 1.84 · 107 0

2 2 26,208 50,991 1.4 · 105 3,774 1.21 · 105 464.67 0 3 5 5 2 1.8 · 107 0

2 4 52,416 1.02 · 105 2.95 · 105 11,443 3.05 · 105 3,019.47 0 3 5 4 2 1.75 · 107 0

2 6 78,624 1.53 · 105 4.37 · 105 10,343 3.63 · 105 3,900.92 0 3 5 4 2 1.7 · 107 0

2 8 1.05 · 105 2.04 · 105 5.87 · 105 9,474 4.39 · 105 7,293.15 0 3 5 4 2 1.66 · 107 0

2 10 1.31 · 105 2.55 · 105 7.37 · 105 11,718 5.6 · 105 10,683.5 0 3 5 7 2 1.62 · 107 1

3 1 13,104 25,498 55,782 520 38,780 46.85 0 1 1 1 1 4.33 · 106 0

3 2 26,208 50,991 1.12 · 105 471 64,663 106.27 0 1 1 1 1 4.26 · 106 0

3 4 52,416 1.02 · 105 2.32 · 105 3,474 2.2 · 105 1,102.5 0 1 1 1 1 4.13 · 106 0

3 6 78,624 1.53 · 105 3.56 · 105 2,519 2.06 · 105 1,215.44 0 1 1 1 1 4.03 · 106 0

3 8 1.05 · 105 2.04 · 105 4.82 · 105 10,529 6.58 · 105 7,214.81 0 1 1 1 1 3.9 · 106 0

3 10 1.31 · 105 2.55 · 105 5.89 · 105 3,620 1.06 · 106 7,821.83 0 1 1 1 1 3.8 · 106 0

4 1 13,104 22,950 56,465 1,600 1.66 · 105 256.57 0 1 2 1 1 6.14 · 106 0

4 2 26,208 45,895 1.15 · 105 2,508 4.11 · 105 721.43 0 1 2 1 1 6.05 · 106 0

4 4 52,416 91,785 2.29 · 105 38,110 2.39 · 106 7,938.05 0 1 2 1 1 5.88 · 106 0

4 6 78,624 1.38 · 105 3.37 · 105 45,080 1.15 · 106 10,705.24 0 1 1 1 1 5.71 · 106 1

4 8 1.05 · 105 1.84 · 105 4.61 · 105 25,554 6.42 · 105 9,382.93 0 1 1 1 1 5.55 · 106 1

4 10 1.31 · 105 2.29 · 105 5.81 · 105 15,413 6.33 · 105 9,669.02 0 1 1 1 1 5.4 · 106 1

5 1 13,104 27,318 68,979 1,759 90,264 178.67 4 7 5 7 2 7.26 · 107 0

5 2 26,208 54,631 1.39 · 105 3,169 1.73 · 105 761.49 4 6 5 7 2 7.14 · 107 0

5 4 52,416 1.09 · 105 2.78 · 105 8,328 3.76 · 105 3,633.01 3 6 5 7 2 6.95 · 107 0

5 6 78,624 1.64 · 105 4.16 · 105 10,835 5.36 · 105 6,104.61 4 6 5 7 2 6.75 · 107 0

5 8 1.05 · 105 2.19 · 105 5.55 · 105 10,707 7.04 · 105 10,826.62 4 6 5 7 2 6.58 · 107 1

5 10 1.31 · 105 2.73 · 105 6.91 · 105 7,376 7.96 · 105 10,227.72 4 6 5 7 2 6.42 · 107 1

Table 8: Problem size and AMPL/CPLEX solution information for the first iteration of the coarse model (C.22) for five buildings: 1-Office, 2-

Supermarket, 3-Restaurant, 4-Retail, 5-Hospital. Model instances that reach 3-hour time limit are indicated by MSG=1.
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C Semi-Coarse Model for the Cogeneration Problem

minimize
∑
j∈J

Cjyj +
H

T

{ ∑
m∈M

Y tmPmax
m umax

m +
∑
d

Ȳ T
d

[ ∑
j,i,k,l

p̄ijdklMjP̄jkl

+
∑
d,j,i,k

x̄ijdkWjW̄jk +
∑

d,k∈Pq

q̄dkQ̄k +
∑

d,k∈Pu

ūdkŪk
]}

subject to yj ∈ Z, 0 ≤ yj ≤ |Uj | j ∈ J (C.22a)∑
j,i,k,l

p̄ijdklP̄jkl +
∑
k∈Pu

ūdkŪk −
∑
k∈Pb

b̄dkB̄
IO
k ≥ D̄P

d (C.22b)

x̄ijdk ∈ {0, 1},
∑
k∈Po

x̄ijdk ≤ 1 (C.22c)

∑
i,k

x̄ijdkX̄jk ≤ yj1 (C.22d)

∑
k∈Po

x̄(i+1)jdkX̄jk ≤
∑
k∈Po

x̄ijdkX̄jk i < |Uj | (C.22e)

p̄ijdk ∈ [0, 1],
∑
l∈Pp

p̄ijdkl = x̄ijdk,
∑
k∈Po

∑
l∈Pp

p̄ijdkl ≤ 1 (C.22f)

0 ≤
∑
k∈Pu

ūdkŪk ≤ umax
m 1 d ∈ Dm (C.22g)

∑
k∈Pb

b̄(d+1)kB̄k(1) =
∑
k∈Pb

b̄dk
[
(1− LP )B̄k(δ) + B̄IO

k (δ)
]

d < |D| (C.22h)

∑
k∈Pb

b̄1kB̄k(1) =
∑
k∈Pb

b̄|D|kB̄k(δ) (C.22i)

∑
k∈Pb

b̄dkB̄k ≤ Bcybatt1 (C.22j)

∑
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s̄dkS̄
out
k +

∑
k∈Pq

q̄dkQ̄k ≥ D̄Q
d (C.22k)

∑
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[
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]
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s̄(d+1)kEδS̄k d < |D|

+
∑
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s̄dkS̄
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k ≤ (EQj /E

P
j )
∑
i,k,l

p̄ijdklP̄jkl j = chp (C.22l)

∑
k∈Ps

s̄1kS̄k(1) =
∑
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s̄|D|kS̄k(δ) (C.22m)

∑
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s̄dkS̄
out
k ≤ Scstorystor1 (C.22n)

∑
k∈Pq

q̄dkQ̄k ≤ Scboilyboil1 (C.22o)

ūdk, b̄dk, s̄dk, q̄dk ∈ [0, 1] (C.22p)∑
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ūdk ≤ 1,
∑
k∈Pb

b̄dk ≤ 1,
∑
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s̄dk ≤ 1,
∑
k∈Pq

q̄dk ≤ 1. (C.22q)
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D Coarse Model for the Cogeneration Problem

minimize
∑
j∈J

Cjyj +
H

T

{ ∑
m∈M

Y tmPmax
m umax

m +
∑
d

Ȳ T
d

[ ∑
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p̄ijdklMjP̄jkl

+
∑
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subject to yj ∈ Z, 0 ≤ yj ≤ |Uj | j ∈ J (D.23a)∑
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p̄ijdkl
ˆ̄Pjkl +
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d (D.23b)

x̄ijdk ∈ {0, 1},
∑
k∈Po

x̄ijdk ≤ 1 (D.23c)

∑
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∑
k∈Po
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∑
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∑
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0 ≤
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k∈Pu
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m d ∈ Dm (D.23g)

∑
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Allgöwer, F. and Zheng, A. (2000). Nonlinear Model Predictive Control, volume 26. Birkhäuser
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