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Unconstrained Optimization and Derivatives

Considering unconstrained optimization problem:
minimize f(x),
xeRn?
where f : R” — R twice continuously differentiable.

Goal

Derive 15t and 2"? order optimality conditions.

Recall gradients and Hessian of f : R” — R:
e Gradient of f(x):

of afr\"
Vf(X) = (aXl,,8X> y

exists Vx € R".
o Hessian (279 derivative) matrix of f(x):

o0*f
2 —
Vf(x) = |:8X,'8Xj

:|i_1,...,n,j_1,...7n

= ]Rnxn
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Derivatives: Simple Examples

Consider linear, /(x), and quadratic function, g(x):

1
I(x)=a'x+b, and q(x)= EXTGX +bTx+c

Gradients and Hessians are given by:
e Gradient: V/(x) = a and Hessian V2/(x) = 0, zero matrix.

o Gradient: Vq(x) = Gx + b and Hessian V2q(x) = G,
constant matrix.

Remark

Linear unconstrained optimization, minimize I(x), is unbounded.

|
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EEEE——————
Lines and Restrictions along Lines
Consider restriction of nonlinear function along line, defined by:
{x eR": x = x(a) = X'+ as, Va € R}

where « steplength for line through x’ € R" in direction s.
Define restriction of f(x) along line:

fla) = f(x(a)) = f(X' + as).

£00y) = 0ey)® - 20690 + (xy)2 + xy + 237 + 2y . f(x,y) along line x = -y

a1
08

Fx,y) = (x—y)* =2(x = y)? + (x = y)/2 + xy + 2 + 2y,
Contours and restriction along x = —y.
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Deriving First-Order Conditions from Calculus
minimize f(x),
Use restriction of the objective f(x) along a line ...

Recall sufficient conditions for local minimum of 1D function f():

df d2f
% :0, and ﬁ > 0

. first-order necessary condition is df =0
Use chain rule (line x = x’ + as) to derlve operator

d dG 0 0
&_2567;_25’67,-_5 V.

Thus, slope of f(«a) = f(x’ + as) along direction s:
=sTVF(x') =:s"g(x)
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.
Deriving First-Order Conditions from Calculus

f
ml)?é%,!ze (x),

Thus, curvature of f(a) = f(x’' + as) along s:

d*f _ d sT T NTe—. Ty
2= gab g(x)=s"Vg(x)'s=:s"H(x)s
Notation

e Gradient of f(x) denoted as g(x) := Vf(x)

o Hessian of f(x) denoted as H(x) := V2f(x)

S A +as) = F(X) + asTg(x) + 5o’ H(x)s +

ignoring higher-order terms O(|a/3).



Example: Powell's Function

Consider
f(x) = xf +x1x0 + (1 + x2)2

Gradient and Hessian are

4x13 + X and
X1 + 2(1 + X2)
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Local and Global Minimizers

e
minimize (x),

Possible outcomes of optimization problem:
© Unbounded if 3x(K) € R" such that f(K) = f(x(K)) = —oo,
@ Minimizers may not exist, or

© Local or Global Minimizer defined below.

Definition

Let x* € R", and B(x*,¢) := {x : ||x — x*|| < €} ball around x*.
Q@ x* global minimizer, iff f(x*) < f(x) ¥x € R".
@ x* local minimizer, iff f(x*) < f(x) Vx € B(x*,€).

@ x* strict local minimizer, iff f(x*) < f(x) Vx* # x € B(x*,€)
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Local and Global Minimizers

minimize f(x) 50
x€R”?
0
Global minimizer is local minimizer.

Examples: minimizer does not exist

e f(x) = x3 unbounded below
= minimizer does not exist.

e f(x) = exp(x) bounded below,
but minimizer does not exist.

... detected in practice monitoring x(¥).
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Global Optimization is Hard
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Contours of Schefel function: f(x) = 418.9829n + ZX,' sin(v/|xi|)
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a 11/41



Global Optimization is Hard

Global Optimization is Much Harder

Finding (and verifying) a global minimizer is much harder:
... global optimization can be NP-hard or even undecidable!

Initially only consider local minimizers ...
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.
Necessary Condition for Local Minimizers

minimize f(x)
x€R"

At x*, local minimizer
@ Slope of f(x) along s is zero

= s'g(x*)=0 VsecR"
e Curvature of f(x) along s is nonnegative

= sTH(x)s >0 VscR"

Theorem (Necessary Conditions for Local Minimizer)

x* local minimizer, then

g(x*) ;= VF(x*) =0, and H(x*):= V?*f(x*) =0,

where A > 0 means A positive semi-definite
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Example: Powell's Function

Consider
f(x) = xf +x1x0 + (1 + x2)2

Gradient and Hessian are
_ 4xf + X
g(X) B <X1 + 2(1 + X2)>
At x = (0.6959, —1.3479) get g = 0 and

8.3508 1
H= pos. def.
1 2

.. eigenvalue = 1.8463,8.5045 ... using Matlab’s eig(H) function
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Sufficient Condition for Local Minimizers

e £
minimize (x)
Obtain sufficient condition by strengthening positive definiteness

Theorem (Sufficient Conditions for Local Min)

Assume that
g(x*) == VFf(x*) =0, and H(x*) := V?f(x*) = 0,

then x* is isolated local minimizer of f(x).

Recall A > 0 positive definite, iff
@ All eigenvalues of A are positive,

e A= LTDL factors exist with L lower triangular, L; = 1 and
D > 0 diagonal,

@ Cholesky factors, A = LTL, exist with L; > 0, or
@ sTAs >0 forall s € R", s #0.
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N
Sufficient Condition for Local Minimizers

minimize f(x)
x€eR"

Gap between necessary and the sufficient conditions:
H(x*) := V2f(x*) = 0 versus H(x*) = 0

Definition (Stationary Point)
x* stationary point of f(x), iff g(x*) = 0 (aka 1%*-order condition).J
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Sufficient Condition for Local Minimizers

minimize f(x)
xERN

Definition (Stationary Point)
x* stationary point of f(x), iff g(x*) = 0 (aka 1%*-order condition).}

Classification of Stationary Points:
e Local Minimizer: H(x*) > 0 then x* is local minimizer.
e Local Maximizer: H(x*) < 0 then x* is local maximizer.
e Unknown: H(x*) = 0 cannot be classified.
e Saddle Point: H(x*) indefinite then x* is a saddle point.

H(x*) indefinite, iff both positive and negative eigenvalues
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Discussion of Optimality Conditions

Limitations of Optimality Conditions
Almost impossible to say anything about global optimality.

Why are optimality conditions important?
@ Provide guarantees that candidate x* is local min.
@ Indicate when point is not optimal: necessary conditions.

@ Provide termination condition for algorithms, e.g.

le(x )| < e for tolerance € >0

Guide development of methods, e.g.
minimize f(x) "< " g(x)=Vf(x)=0

. nonlinear system of equations ... use Newton's method
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.
Iterative Methods for Unconstrained Optimization

In general, cannot solve

minimize f(x)
x€RM

analytically ... need iterative methods.

Iterative Methods for Optimization
e Start from initial guess of solution, x(©)
o Given x(¥), construct new (better) iterate x(k+1)

@ Construct sequence x(K), for k = 1,2,... converging to x*

Key Question
Does ||x(K) — x*|| = 0 hold? Speed of convergence? J
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Pattern-Search Techniques

Class of methods that does not require gradients
. suitable for simulation-based optimization

Search for lower function value along coordinate directions: +e;

Reduce “step-length’ if no progress is made

Weak convergence properties ... but can be effective for
derivative-free optimization
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Pattern-Search Techniques

Starting from x(©) with A =2

a 23/41



Pattern-Search Techniques

First search step reduces f(x) ... new x(!)

Y 24/41



Pattern-Search Techniques

First search step reduces f(x) ... new x(?)
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Pattern-Search Techniques

-4 2 0 2 4

No polling step reduced f(x) = shrink A = A/2
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Pattern-Search Techniques
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Pattern-Search Techniques

No polling step reduced f(x) = shrink A = A/2
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Coordinate Descend Algorithms [Wotao Yin, UCLA]

e Make progress by updating one (or a few) variables at a time.

@ Regarded as inefficient and outdated since the 1960's
@ Recently, found to work well for huge optimization problems
. arising in statistics, machine-learning, compressed sensing

minimize f(x)
x€eRn"

Basic Coordinate Descend Method
Given x(9), set k = 0.

repeat
Choose i € {1,...,n} coordinate; set x(k+1) := x(k).
xl.(kﬂ) < argminf <x§k), ey Xiy e ,x,(,k)>
x;i€R
Set k=k+1

until x(%) is (local) optimum;
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Coordinate Descend Algorithms [Wotao Yin, UCLA]

=\

a 31/41



Outline

© Iterative Methods for Unconstrained Optimization
@ Pattern Search Algorithms
@ Coordinate Descend with Exact Line Search
@ Line-Search Methods
@ Steepest Descend and Armijo Line Search

a 32/41



Line-Search Method

Line-Search Methods
e Find descend direction, s(¥), such that s(k)Tg(x(k)) <0

@ Search for reduction if f(x) along line s(¥)

General Line-Search Method
Given X(O), set k = 0.
repeat
Find search direction s(9) with 50 g(x(K)) < 0

Find steplength ay with f(x(K) + o, s(k)) < £(x(K)

Set x(kt1) .= x(K) 4 o, s(K) and k = k+ 1

until x(¥) is (local) optimum;
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Line-Search Methods

)= b 2 e 2 200 5 f(x,y) along line x = -y

Fx,y) = (x = y)' = 2(x = y)* + (x —y) /2 + xy + 2x* + 22,
Contours and restriction along x = —y.
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Line-Search Method

Remarks regarding general descend method:
° s(k)Tg(x(k)) < 0 not enough for convergence.
e Many possible choices for (k)

@ Exact line search:

minimize f(x() + as(k))

. impractical = consider approximate techniques.

@ Simple descend,
F(x) + sty < £(xK)

. not enough for convergence = strengthen!
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Armijo Line-Search

Armijo Line-Search Method at x in Direction s
a = function Armijo(f(x), x, s)

Lett >0, 0<8<1,and 0< o <1 constants
Set ag :=t, and j := 0.
while f(x) — f(x + as) < —aog(x)"s do

| Set ajy1:=pBajand j:=j+ 1.
end

@ Simple back-tracking line-search.
o Typically start at t = 1.

e Tightens simple descend condition f(x) — f(x 4+ as) < 0:

o g(x)Ts predicted reduction from linear model
o f(x)— f(x+ as) actual reduction
e Step must achieve factor o < 1 of predicted reduction.

= allows convergence proofs!
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Steepest Descend Method

Search direction that maximizes the descend,

st .= —g(x(K))  steepest descend direction

Steepest descend satisfies descend property:
T T
S0 g(x9) = g0 g0 = —gW < 0

st) .= —g(K) /||g(¥)|| normalized direction of most negative slope
Let 0 be angle between direction, s, gradient g, then:

sTg = s - ligll - cos(d),

and get min when cos(§) = —1, or =, i.e. s=—g.
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Steepest Descend with Armijo Line-Search

Steeped Descend Armijo Line-Search Method
Given x(9, set k = 0.
repeat

Find steepest descend direction s(K) := —g(x(K))

Armijo Line search: ay := Armijo(f(x), x(¥), s(K)

Set x(k*1) .= x(K) 4 o, s(K) and k = k + 1.

until x(%) is (local) optimum;

If f(x) bounded below, then converge to stationary point.

Theorem J
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Main Take-Aways from Lecture

Optimality conditions
General structure of methods

Line Search

Steepest Descend
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