

## Optimality Conditions for Unconstrained Optimization

#### GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016



### Outline

# Optimality Conditions for Unconstrained Optimization Local and Global Minimizers

2 Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

#### Unconstrained Optimization and Derivatives

Considering unconstrained optimization problem:

 $\underset{x\in\mathbb{R}^{n}}{\text{minimize }} f(x),$ 

where  $f : \mathbb{R}^n \to \mathbb{R}$  twice continuously differentiable.

#### Goal

Derive 1<sup>st</sup> and 2<sup>nd</sup> order optimality conditions.

Recall gradients and Hessian of  $f : \mathbb{R}^n \to \mathbb{R}$ :

• Gradient of f(x):

$$abla f(x) := \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right)^T,$$

exists  $\forall x \in \mathbb{R}^n$ .

• Hessian  $(2^{nd} \text{ derivative}) \text{ matrix of } f(x)$ :

$$\nabla^2 f(x) := \left[ \frac{\partial^2 f}{\partial x_i \partial x_j} \right]_{i=1,\dots,n,j=1,\dots,n} \in \mathbb{R}^{n \times n}$$

## Derivatives: Simple Examples

Consider linear, I(x), and quadratic function, q(x):

$$l(x) = a^{T}x + b$$
, and  $q(x) = \frac{1}{2}x^{T}Gx + b^{T}x + c$ 

Gradients and Hessians are given by:

- Gradient:  $\nabla I(x) = a$  and Hessian  $\nabla^2 I(x) = 0$ , zero matrix.
- Gradient:  $\nabla q(x) = Gx + b$  and Hessian  $\nabla^2 q(x) = G$ , constant matrix.

#### Remark

Linear unconstrained optimization, minimize I(x), is unbounded.

#### Lines and Restrictions along Lines

Consider restriction of nonlinear function along line, defined by:

$$\left\{x \in \mathbb{R}^n : x = x(\alpha) = x' + \alpha s, \ \forall \alpha \in \mathbb{R}\right\}$$

where  $\alpha$  steplength for line through  $x' \in \mathbb{R}^n$  in direction *s*. Define restriction of f(x) along line:

$$f(\alpha) := f(x(\alpha)) = f(x' + \alpha s).$$



 $f(x, y) = (x - y)^4 - 2(x - y)^2 + (x - y)/2 + xy + 2x^2 + 2y^2,$ Contours and restriction along x = -y.

#### Deriving First-Order Conditions from Calculus

 $\min_{x\in\mathbb{R}^n} f(x),$ 

Use restriction of the objective f(x) along a line ...

Recall sufficient conditions for local minimum of 1D function  $f(\alpha)$ :

$$rac{df}{dlpha}=0,~~{
m and}~~rac{d^2f}{dlpha^2}>0$$

... first-order necessary condition is  $\frac{df}{d\alpha} = 0$ Use chain rule (line  $x = x' + \alpha s$ ) to derive operator

$$\frac{d}{dx} = \sum_{l=1}^{n} \frac{dx_i}{d\alpha} \frac{\partial}{\partial x_i} = \sum_{l=1}^{n} s_l \frac{\partial}{\partial x_l} = s^T \nabla.$$

Thus, slope of  $f(\alpha) = f(x' + \alpha s)$  along direction s:

$$\frac{df}{dx} = s^T \nabla f(x') =: s^T g(x')$$

## Deriving First-Order Conditions from Calculus

 $\min_{x\in\mathbb{R}^n} f(x),$ 

Thus, curvature of  $f(\alpha) = f(x' + \alpha s)$  along s:

$$\frac{d^2f}{dx^2} = \frac{d}{d\alpha}s^Tg(x') = s^T\nabla g(x')^Ts =: s^TH(x')s$$

#### Notation

- Gradient of f(x) denoted as  $g(x) := \nabla f(x)$
- Hessian of f(x) denoted as  $H(x) := \nabla^2 f(x)$

$$\Rightarrow f(x' + \alpha s) = f(x') + \alpha s^{T} g(x') + \frac{1}{2} \alpha^{2} s^{T} H(x') s + \dots$$

ignoring higher-order terms  $\mathcal{O}(|\alpha|^3)$ .

#### Example: Powell's Function

Consider

$$f(x) = x_1^4 + x_1 x_2 + (1 + x_2)^2$$

#### Gradient and Hessian are

$$\begin{pmatrix} 4x_1^3 + x_2 \\ x_1 + 2(1 + x_2) \end{pmatrix} \text{ and } \begin{bmatrix} 12x_1^2 & 1 \\ \\ 1 & 2 \end{bmatrix}$$

## Local and Global Minimizers

 $\min_{x\in\mathbb{R}^n} f(x),$ 

Possible outcomes of optimization problem:

- **O Unbounded** if  $\exists x^{(k)} \in \mathbb{R}^n$  such that  $f^{(k)} = f(x^{(k)}) \to -\infty$ ,
- 2 Minimizers may not exist, or
- **Solution** Local or Global Minimizer defined below.

#### Definition

Let  $x^* \in \mathbb{R}^n$ , and  $B(x^*, \epsilon) := \{x : ||x - x^*|| \le \epsilon\}$  ball around  $x^*$ .

- $x^*$  global minimizer, iff  $f(x^*) \leq f(x) \ \forall x \in \mathbb{R}^n$ .
- 2  $x^*$  local minimizer, iff  $f(x^*) \leq f(x) \ \forall x \in B(x^*, \epsilon)$ .
- **3**  $x^*$  strict local minimizer, iff  $f(x^*) < f(x) \ \forall x^* \neq x \in B(x^*, \epsilon)$

## Local and Global Minimizers

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$ 

Global minimizer is local minimizer.

#### Examples: minimizer does not exist

- $f(x) = x^3$  unbounded below  $\Rightarrow$  minimizer does not exist.
- f(x) = exp(x) bounded below, but minimizer does not exist.

... detected in practice monitoring  $x^{(k)}$ .



## Global Optimization is Hard



Contours of Schefel function:  $f(x) = 418.9829n + \sum_{i=1}^{n} x_i \sin(\sqrt{|x_i|})$ 

## Global Optimization is Hard

#### Global Optimization is Much Harder

Finding (and verifying) a global minimizer is much harder: ... global optimization can be NP-hard or even undecidable!

Initially only consider local minimizers ...

Necessary Condition for Local Minimizers

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$ 

At  $x^*$ , local minimizer

• Slope of f(x) along s is zero

$$\Rightarrow s^{\mathsf{T}}g(x^*) = 0 \quad \forall s \in \mathbb{R}^n$$

• Curvature of f(x) along s is nonnegative

$$\Rightarrow s^{\mathsf{T}} H(x^*) s \ge 0 \quad \forall s \in \mathbb{R}^n$$

Theorem (Necessary Conditions for Local Minimizer)

x\* local minimizer, then

$$g(x^*) := 
abla f(x^*) = 0$$
, and  $H(x^*) := 
abla^2 f(x^*) \succeq 0$ ,

where  $A \succeq 0$  means A positive semi-definite

#### Example: Powell's Function

Consider

$$f(x) = x_1^4 + x_1x_2 + (1+x_2)^2$$

Gradient and Hessian are

$$g(x) = egin{pmatrix} 4x_1^3 + x_2 \ x_1 + 2(1 + x_2) \end{pmatrix}$$
 and  $H(x) = egin{pmatrix} 12x_1 & 1 \ 1 & 2 \end{bmatrix}$ 

At x = (0.6959, -1.3479) get g = 0 and

$$\mathcal{H} = egin{bmatrix} 8.3508 & 1 \ & & \ 1 & 2 \end{bmatrix}$$
 pos. def.

 $\dots$  eigenvalue = 1.8463, 8.5045  $\dots$  using Matlab's eig(H) function

## Sufficient Condition for Local Minimizers

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$ 

Obtain sufficient condition by strengthening positive definiteness

Theorem (Sufficient Conditions for Local Min)

Assume that

$$g(x^*):=
abla f(x^*)=0, \;\; ext{and} \;\; H(x^*):=
abla^2 f(x^*)\succ 0,$$

then  $x^*$  is isolated local minimizer of f(x).

Recall  $A \succ 0$  positive definite, iff

- All eigenvalues of A are positive,
- $A = L^T DL$  factors exist with L lower triangular,  $L_{ii} = 1$  and D > 0 diagonal,
- Cholesky factors,  $A = L^T L$ , exist with  $L_{ii} > 0$ , or
- $s^T A s > 0$  for all  $s \in \mathbb{R}^n, s \neq 0$ .

Sufficient Condition for Local Minimizers

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$ 

Gap between necessary and the sufficient conditions:  $H(x^*) := \nabla^2 f(x^*) \succeq 0$  versus  $H(x^*) \succ 0$ 

#### Definition (Stationary Point)

 $x^*$  stationary point of f(x), iff  $g(x^*) = 0$  (aka 1<sup>st</sup>-order condition).

## Sufficient Condition for Local Minimizers

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$ 

#### Definition (Stationary Point)

 $x^*$  stationary point of f(x), iff  $g(x^*) = 0$  (aka 1<sup>st</sup>-order condition).

Classification of Stationary Points:

- Local Minimizer:  $H(x^*) \succ 0$  then  $x^*$  is local minimizer.
- Local Maximizer:  $H(x^*) \prec 0$  then  $x^*$  is local maximizer.
- **Unknown:**  $H(x^*) \succeq 0$  cannot be classified.

• Saddle Point:  $H(x^*)$  indefinite then  $x^*$  is a saddle point.  $H(x^*)$  indefinite, iff both positive and negative eigenvalues

## Discussion of Optimality Conditions

#### Limitations of Optimality Conditions

Almost impossible to say anything about global optimality.

Why are optimality conditions important?

- Provide guarantees that candidate  $x^*$  is local min.
- Indicate when point is not optimal: necessary conditions.
- Provide termination condition for algorithms, e.g.

 $\|g(x^{(k)})\| \le \epsilon$  for tolerance  $\epsilon > 0$ 

• Guide development of methods, e.g.

$$\underset{x}{\text{minimize } f(x)} \quad ``\Leftrightarrow " \quad g(x) = \nabla f(x) = 0$$

... nonlinear system of equations ... use Newton's method

### Outline

## Optimality Conditions for Unconstrained Optimization Local and Global Minimizers

2 Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

#### Iterative Methods for Unconstrained Optimization

In general, cannot solve

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$ 

analytically ... need iterative methods.

Iterative Methods for Optimization

- Start from initial guess of solution,  $x^{(0)}$
- Given  $x^{(k)}$ , construct new (better) iterate  $x^{(k+1)}$
- Construct sequence  $x^{(k)}$ , for k = 1, 2, ... converging to  $x^*$

#### Key Question

Does  $||x^{(k)} - x^*|| \rightarrow 0$  hold? Speed of convergence?

### Outline

Optimality Conditions for Unconstrained Optimization
 Local and Global Minimizers

2 Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

Class of methods that does not require gradients ... suitable for simulation-based optimization

Search for lower function value along coordinate directions:  $\pm e_i$ 

Reduce "step-length' if no progress is made

Weak convergence properties ... but can be effective for derivative-free optimization









No polling step reduced  $f(x) \Rightarrow \text{shrink } \Delta = \Delta/2$ 





No polling step reduced  $f(x) \Rightarrow \text{shrink } \Delta = \Delta/2$ 

### Outline

Optimality Conditions for Unconstrained Optimization
 Local and Global Minimizers

2 Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

## Coordinate Descend Algorithms [Wotao Yin, UCLA]

- Make progress by updating one (or a few) variables at a time.
- Regarded as inefficient and outdated since the 1960's
- Recently, found to work well for huge optimization problems ... arising in statistics, machine-learning, compressed sensing

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$ 

#### **Basic Coordinate Descend Method** Given $x^{(0)}$ , set k = 0.

#### repeat

Choose 
$$i \in \{1, ..., n\}$$
 coordinate; set  $x^{(k+1)} := x^{(k)}$ .  
 $x_i^{(k+1)} \leftarrow \underset{x_i \in \mathbb{R}}{\operatorname{argmin}} f\left(x_1^{(k)}, \dots, x_i, \dots, x_n^{(k)}\right)$   
Set  $k = k + 1$   
until  $x^{(k)}$  is (local) optimum;

## Coordinate Descend Algorithms [Wotao Yin, UCLA]



### Outline

## Optimality Conditions for Unconstrained Optimization Local and Global Minimizers

2 Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

## Line-Search Method

#### Line-Search Methods

- Find descend direction,  $s^{(k)}$ , such that  $s^{(k)^T}g(x^{(k)}) < 0$
- Search for reduction if f(x) along line  $s^{(k)}$

#### General Line-Search Method

Given  $x^{(0)}$ , set k = 0.

#### repeat

Find search direction  $s^{(k)}$  with  $s^{(k)^{T}}g(x^{(k)}) < 0$ Find steplength  $\alpha_{k}$  with  $f(x^{(k)} + \alpha_{k}s^{(k)}) < f(x^{(k)})$ Set  $x^{(k+1)} := x^{(k)} + \alpha_{k}s^{(k)}$  and k = k + 1until  $x^{(k)}$  is (local) optimum;

### Line-Search Methods



$$f(x,y) = (x - y)^4 - 2(x - y)^2 + (x - y)/2 + xy + 2x^2 + 2y^2,$$
  
Contours and restriction along  $x = -y$ .

## Line-Search Method

Remarks regarding general descend method:

- $s^{(k)^T}g(x^{(k)}) < 0$  not enough for convergence.
- Many possible choices for  $s^{(k)}$ .
- Exact line search:

minimize 
$$f(x^{(k)} + \alpha s^{(k)})$$

- ... impractical  $\Rightarrow$  consider approximate techniques.
- Simple descend,

$$f(x^{(k)} + \alpha_k s^{(k)}) < f(x^{(k)})$$

... not enough for convergence  $\Rightarrow$  strengthen!

## Armijo Line-Search

Armijo Line-Search Method at x in Direction s  $\alpha =$ function Armijo(f(x), x, s)Let t > 0,  $0 < \beta < 1$ , and  $0 < \sigma < 1$  constants Set  $\alpha_0 := t$ , and j := 0. while  $f(x) - f(x + \alpha s) < -\alpha \sigma g(x)^T s$  do | Set  $\alpha_{j+1} := \beta \alpha_j$  and j := j + 1. end

- Simple back-tracking line-search.
- Typically start at t = 1.
- Tightens simple descend condition  $f(x) f(x + \alpha s) < 0$ :
  - $g(x)^T s$  predicted reduction from linear model
  - $f(x) f(x + \alpha s)$  actual reduction
  - $\bullet\,$  Step must achieve factor  $\sigma<1$  of predicted reduction.
  - $\Rightarrow$  allows convergence proofs!

### Outline

Optimality Conditions for Unconstrained Optimization
 Local and Global Minimizers

2 Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

### Steepest Descend Method

Search direction that maximizes the descend,

 $s^{(k)} := -g(x^{(k)})$  steepest descend direction

Steepest descend satisfies descend property:

$$s^{(k)^{ op}}g(x^{(k)}) = -g^{(k)^{ op}}g^{(k)} = -\|g^{(k)}\|_2^2 < 0$$

 $s^{(k)} := -g^{(k)}/||g^{(k)}||$  normalized direction of most negative slope Let  $\theta$  be angle between direction, *s*, gradient *g*, then:

$$s^{\mathsf{T}}g = \|s\| \cdot \|g\| \cdot \cos(\theta),$$

and get min when  $\cos(\theta) = -1$ , or  $\theta = \pi$ , i.e. s = -g.

## Steepest Descend with Armijo Line-Search

**Steeped Descend Armijo Line-Search Method** Given  $x^{(0)}$ , set k = 0.

#### repeat

Find steepest descend direction  $s^{(k)} := -g(x^{(k)})$ 

Armijo Line search:  $\alpha_k := \operatorname{Armijo}(f(x), x^{(k)}, s^{(k)})$ 

Set 
$$x^{(k+1)} := x^{(k)} + \alpha_k s^{(k)}$$
 and  $k = k + 1$ .

**until**  $x^{(k)}$  is (local) optimum;

#### Theorem

If f(x) bounded below, then converge to stationary point.

Steepest Descend can be Inefficient in Practice



40/41

## Main Take-Aways from Lecture

- Optimality conditions
- General structure of methods
- Line Search
- Steepest Descend