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Unconstrained Optimization and Derivatives
Considering unconstrained optimization problem:

minimize
x∈Rn

f (x),

where f : Rn → R twice continuously differentiable.

Goal

Derive 1st and 2nd order optimality conditions.

Recall gradients and Hessian of f : Rn → R:

Gradient of f (x):

∇f (x) :=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)T

,

exists ∀x ∈ Rn.
Hessian (2nd derivative) matrix of f (x):

∇2f (x) :=

[
∂2f

∂xi∂xj

]
i=1,...,n,j=1,...,n

∈ Rn×n.

3 / 41



Derivatives: Simple Examples

Consider linear, l(x), and quadratic function, q(x):

l(x) = aT x + b, and q(x) =
1

2
xTGx + bT x + c

Gradients and Hessians are given by:

Gradient: ∇l(x) = a and Hessian ∇2l(x) = 0, zero matrix.

Gradient: ∇q(x) = Gx + b and Hessian ∇2q(x) = G ,
constant matrix.

Remark

Linear unconstrained optimization, minimize l(x), is unbounded.
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Lines and Restrictions along Lines
Consider restriction of nonlinear function along line, defined by:{

x ∈ Rn : x = x(α) = x ′ + αs, ∀α ∈ R
}

where α steplength for line through x ′ ∈ Rn in direction s.
Define restriction of f (x) along line:

f (α) := f (x(α)) = f (x ′ + αs).

f (x , y) = (x − y)4 − 2(x − y)2 + (x − y)/2 + xy + 2x2 + 2y2,
Contours and restriction along x = −y .
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Deriving First-Order Conditions from Calculus

minimize
x∈Rn

f (x),

Use restriction of the objective f (x) along a line ...
Recall sufficient conditions for local minimum of 1D function f (α):

df

dα
= 0, and

d2f

dα2
> 0

... first-order necessary condition is df
dα = 0

Use chain rule (line x = x ′ + αs) to derive operator

d

dx
=

n∑
I=1

dxi
dα

∂

∂xi
=

n∑
I=1

si
∂

∂xi
= sT∇.

Thus, slope of f (α) = f (x ′ + αs) along direction s:

df

dx
= sT∇f (x ′) =: sTg(x ′)
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Deriving First-Order Conditions from Calculus

minimize
x∈Rn

f (x),

Thus, curvature of f (α) = f (x ′ + αs) along s:

d2f

dx2
=

d

dα
sTg(x ′) = sT∇g(x ′)T s =: sTH(x ′)s

Notation

Gradient of f (x) denoted as g(x) := ∇f (x)

Hessian of f (x) denoted as H(x) := ∇2f (x)

⇒ f (x ′ + αs) = f (x ′) + αsTg(x ′) +
1

2
α2sTH(x ′)s + . . .

ignoring higher-order terms O(|α|3).
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Example: Powell’s Function

Consider
f (x) = x4

1 + x1x2 + (1 + x2)2

Gradient and Hessian are(
4x3

1 + x2
x1 + 2(1 + x2)

)
and

12x2
1 1

1 2
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Local and Global Minimizers

minimize
x∈Rn

f (x),

Possible outcomes of optimization problem:

1 Unbounded if ∃x (k) ∈ Rn such that f (k) = f (x (k))→ −∞,

2 Minimizers may not exist, or

3 Local or Global Minimizer defined below.

Definition

Let x∗ ∈ Rn, and B(x∗, ε) := {x : ‖x − x∗‖ ≤ ε} ball around x∗.

1 x∗ global minimizer, iff f (x∗) ≤ f (x) ∀x ∈ Rn.

2 x∗ local minimizer, iff f (x∗) ≤ f (x) ∀x ∈ B(x∗, ε).

3 x∗ strict local minimizer, iff f (x∗) < f (x) ∀x∗ 6= x ∈ B(x∗, ε)
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Local and Global Minimizers

minimize
x∈Rn

f (x)

Global minimizer is local minimizer.

Examples: minimizer does not exist

f (x) = x3 unbounded below
⇒ minimizer does not exist.

f (x) = exp(x) bounded below,
but minimizer does not exist.

... detected in practice monitoring x (k).
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Global Optimization is Hard

Contours of Schefel function: f (x) = 418.9829n +
n∑

i=1

xi sin(
√
|xi |)
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Global Optimization is Hard

Global Optimization is Much Harder

Finding (and verifying) a global minimizer is much harder:
... global optimization can be NP-hard or even undecidable!

Initially only consider local minimizers ...
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Necessary Condition for Local Minimizers

minimize
x∈Rn

f (x)

At x∗, local minimizer

Slope of f (x) along s is zero

⇒ sTg(x∗) = 0 ∀s ∈ Rn

Curvature of f (x) along s is nonnegative

⇒ sTH(x∗)s ≥ 0 ∀s ∈ Rn

Theorem (Necessary Conditions for Local Minimizer)

x∗ local minimizer, then

g(x∗) := ∇f (x∗) = 0, and H(x∗) := ∇2f (x∗) � 0,

where A � 0 means A positive semi-definite
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Example: Powell’s Function

Consider
f (x) = x4

1 + x1x2 + (1 + x2)2

Gradient and Hessian are

g(x) =

(
4x3

1 + x2
x1 + 2(1 + x2)

)
and H(x) =

12x1 1

1 2


At x = (0.6959,−1.3479) get g = 0 and

H =

8.3508 1

1 2

 pos. def.

... eigenvalue = 1.8463, 8.5045 ... using Matlab’s eig(H) function
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Sufficient Condition for Local Minimizers

minimize
x∈Rn

f (x)

Obtain sufficient condition by strengthening positive definiteness

Theorem (Sufficient Conditions for Local Min)

Assume that

g(x∗) := ∇f (x∗) = 0, and H(x∗) := ∇2f (x∗) � 0,

then x∗ is isolated local minimizer of f (x).

Recall A � 0 positive definite, iff

All eigenvalues of A are positive,

A = LTDL factors exist with L lower triangular, Lii = 1 and
D > 0 diagonal,

Cholesky factors, A = LTL, exist with Lii > 0, or

sTAs > 0 for all s ∈ Rn, s 6= 0.
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Sufficient Condition for Local Minimizers

minimize
x∈Rn

f (x)

Gap between necessary and the sufficient conditions:
H(x∗) := ∇2f (x∗) � 0 versus H(x∗) � 0

Definition (Stationary Point)

x∗ stationary point of f (x), iff g(x∗) = 0 (aka 1st-order condition).
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Sufficient Condition for Local Minimizers

minimize
x∈Rn

f (x)

Definition (Stationary Point)

x∗ stationary point of f (x), iff g(x∗) = 0 (aka 1st-order condition).

Classification of Stationary Points:

Local Minimizer: H(x∗) � 0 then x∗ is local minimizer.

Local Maximizer: H(x∗) ≺ 0 then x∗ is local maximizer.

Unknown: H(x∗) � 0 cannot be classified.

Saddle Point: H(x∗) indefinite then x∗ is a saddle point.

H(x∗) indefinite, iff both positive and negative eigenvalues
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Discussion of Optimality Conditions

Limitations of Optimality Conditions

Almost impossible to say anything about global optimality.

Why are optimality conditions important?

Provide guarantees that candidate x∗ is local min.

Indicate when point is not optimal: necessary conditions.

Provide termination condition for algorithms, e.g.

‖g(x (k))‖ ≤ ε for tolerance ε > 0

Guide development of methods, e.g.

minimize
x

f (x) “⇔ ” g(x) = ∇f (x) = 0

... nonlinear system of equations ... use Newton’s method
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Iterative Methods for Unconstrained Optimization

In general, cannot solve

minimize
x∈Rn

f (x)

analytically ... need iterative methods.

Iterative Methods for Optimization

Start from initial guess of solution, x (0)

Given x (k), construct new (better) iterate x (k+1)

Construct sequence x (k), for k = 1, 2, . . . converging to x∗

Key Question

Does ‖x (k) − x∗‖ → 0 hold? Speed of convergence?
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Pattern-Search Techniques

Class of methods that does not require gradients
... suitable for simulation-based optimization

Search for lower function value along coordinate directions: ±ei

Reduce “step-length’ if no progress is made

Weak convergence properties ... but can be effective for
derivative-free optimization
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Pattern-Search Techniques

Starting from x (0) with ∆ = 2
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Pattern-Search Techniques

First search step reduces f (x) ... new x (1)
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Pattern-Search Techniques

First search step reduces f (x) ... new x (2)
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Pattern-Search Techniques

No polling step reduced f (x) ⇒ shrink ∆ = ∆/2
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Pattern-Search Techniques

Second search step reduces f (x) ... new x (3)
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Pattern-Search Techniques

No polling step reduced f (x) ⇒ shrink ∆ = ∆/2
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Coordinate Descend Algorithms [Wotao Yin, UCLA]

Make progress by updating one (or a few) variables at a time.

Regarded as inefficient and outdated since the 1960’s

Recently, found to work well for huge optimization problems
... arising in statistics, machine-learning, compressed sensing

minimize
x∈Rn

f (x)

Basic Coordinate Descend Method
Given x (0), set k = 0.
repeat

Choose i ∈ {1, . . . , n} coordinate; set x (k+1) := x (k).

x
(k+1)
i ← argmin

xi∈R
f
(

x
(k)
1 , . . . , xi , . . . , x

(k)
n

)
Set k = k + 1

until x (k) is (local) optimum;
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Coordinate Descend Algorithms [Wotao Yin, UCLA]
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Line-Search Method

Line-Search Methods

Find descend direction, s(k), such that s(k)
T

g(x (k)) < 0

Search for reduction if f (x) along line s(k)

General Line-Search Method
Given x (0), set k = 0.
repeat

Find search direction s(k) with s(k)
T

g(x (k)) < 0

Find steplength αk with f (x (k) + αks(k)) < f (x (k))

Set x (k+1) := x (k) + αks(k) and k = k + 1

until x (k) is (local) optimum;
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Line-Search Methods

f (x , y) = (x − y)4 − 2(x − y)2 + (x − y)/2 + xy + 2x2 + 2y2,
Contours and restriction along x = −y .
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Line-Search Method

Remarks regarding general descend method:

s(k)
T

g(x (k)) < 0 not enough for convergence.

Many possible choices for s(k).

Exact line search:

minimize
α

f (x (k) + αs(k))

... impractical ⇒ consider approximate techniques.

Simple descend,

f (x (k) + αks(k)) < f (x (k))

... not enough for convergence ⇒ strengthen!
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Armijo Line-Search

Armijo Line-Search Method at x in Direction s
α = function Armijo(f (x), x , s)
Let t > 0, 0 < β < 1, and 0 < σ < 1 constants
Set α0 := t, and j := 0.
while f (x)− f (x + αs) < −ασg(x)T s do

Set αj+1 := βαj and j := j + 1.
end

Simple back-tracking line-search.

Typically start at t = 1.

Tightens simple descend condition f (x)− f (x + αs) < 0:

g(x)T s predicted reduction from linear model
f (x)− f (x + αs) actual reduction
Step must achieve factor σ < 1 of predicted reduction.

⇒ allows convergence proofs!
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Steepest Descend Method

Search direction that maximizes the descend,

s(k) := −g(x (k)) steepest descend direction

Steepest descend satisfies descend property:

s(k)
T

g(x (k)) = −g (k)T g (k) = −‖g (k)‖22 < 0

s(k) := −g (k)/‖g (k)‖ normalized direction of most negative slope
Let θ be angle between direction, s, gradient g , then:

sTg = ‖s‖ · ‖g‖ · cos(θ),

and get min when cos(θ) = −1, or θ = π, i.e. s = −g .
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Steepest Descend with Armijo Line-Search

Steeped Descend Armijo Line-Search Method
Given x (0), set k = 0.
repeat

Find steepest descend direction s(k) := −g(x (k))

Armijo Line search: αk := Armijo(f (x), x (k), s(k))

Set x (k+1) := x (k) + αks(k) and k = k + 1.

until x (k) is (local) optimum;

Theorem

If f (x) bounded below, then converge to stationary point.
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Steepest Descend can be Inefficient in Practice

Contours of f (x) = 10(x2 − x2
1 )2 + (x1 − 1)2
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Main Take-Aways from Lecture

Optimality conditions

General structure of methods

Line Search

Steepest Descend
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