Optimality Conditions for Unconstrained Optimization

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Optimality Conditions for Unconstrained Optimization

- Local and Global Minimizers
(2) Iterative Methods for Unconstrained Optimization
- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

Unconstrained Optimization and Derivatives

Considering unconstrained optimization problem:

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x),
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice continuously differentiable.

Goal

Derive $1^{\text {st }}$ and $2^{\text {nd }}$ order optimality conditions.
Recall gradients and Hessian of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

- Gradient of $f(x)$:

$$
\nabla f(x):=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)^{T}
$$

exists $\forall x \in \mathbb{R}^{n}$.

- Hessian (2 $2^{\text {nd }}$ derivative) matrix of $f(x)$:

$$
\nabla^{2} f(x):=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{i=1, \ldots, n, j=1, \ldots, n} \in \mathbb{R}^{n \times n}
$$

Derivatives: Simple Examples

Consider linear, $I(x)$, and quadratic function, $q(x)$:

$$
I(x)=a^{T} x+b, \quad \text { and } \quad q(x)=\frac{1}{2} x^{\top} G x+b^{T} x+c
$$

Gradients and Hessians are given by:

- Gradient: $\nabla I(x)=a$ and Hessian $\nabla^{2} I(x)=0$, zero matrix.
- Gradient: $\nabla q(x)=G x+b$ and Hessian $\nabla^{2} q(x)=G$, constant matrix.

Remark

Linear unconstrained optimization, minimize $I(x)$, is unbounded.

Lines and Restrictions along Lines

Consider restriction of nonlinear function along line, defined by:

$$
\left\{x \in \mathbb{R}^{n}: x=x(\alpha)=x^{\prime}+\alpha s, \forall \alpha \in \mathbb{R}\right\}
$$

where α steplength for line through $x^{\prime} \in \mathbb{R}^{n}$ in direction s. Define restriction of $f(x)$ along line:

$$
f(\alpha):=f(x(\alpha))=f\left(x^{\prime}+\alpha s\right) .
$$

$$
f(x, y)=(x-y)^{4}-2(x-y)^{2}+(x-y) / 2+x y+2 x^{2}+2 y^{2}
$$

Contours and restriction along $x=-y$.

Deriving First-Order Conditions from Calculus

Use restriction of the objective $f(x)$ along a line ...
Recall sufficient conditions for local minimum of 1D function $f(\alpha)$:

$$
\frac{d f}{d \alpha}=0, \text { and } \frac{d^{2} f}{d \alpha^{2}}>0
$$

... first-order necessary condition is $\frac{d f}{d \alpha}=0$
Use chain rule (line $x=x^{\prime}+\alpha s$) to derive operator

$$
\frac{d}{d x}=\sum_{l=1}^{n} \frac{d x_{i}}{d \alpha} \frac{\partial}{\partial x_{i}}=\sum_{l=1}^{n} s_{i} \frac{\partial}{\partial x_{i}}=s^{T} \nabla .
$$

Thus, slope of $f(\alpha)=f\left(x^{\prime}+\alpha s\right)$ along direction s :

$$
\frac{d f}{d x}=s^{T} \nabla f\left(x^{\prime}\right)=: s^{\top} g\left(x^{\prime}\right)
$$

Deriving First-Order Conditions from Calculus

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x),
$$

Thus, curvature of $f(\alpha)=f\left(x^{\prime}+\alpha s\right)$ along s :

$$
\frac{d^{2} f}{d x^{2}}=\frac{d}{d \alpha} s^{T} g\left(x^{\prime}\right)=s^{T} \nabla g\left(x^{\prime}\right)^{T} s=: s^{T} H\left(x^{\prime}\right) s
$$

Notation

- Gradient of $f(x)$ denoted as $g(x):=\nabla f(x)$
- Hessian of $f(x)$ denoted as $H(x):=\nabla^{2} f(x)$

$$
\Rightarrow \quad f\left(x^{\prime}+\alpha s\right)=f\left(x^{\prime}\right)+\alpha s^{T} g\left(x^{\prime}\right)+\frac{1}{2} \alpha^{2} s^{T} H\left(x^{\prime}\right) s+\ldots
$$

ignoring higher-order terms $\mathcal{O}\left(|\alpha|^{3}\right)$.

Example: Powell's Function

Consider

$$
f(x)=x_{1}^{4}+x_{1} x_{2}+\left(1+x_{2}\right)^{2}
$$

Gradient and Hessian are

$$
\binom{4 x_{1}^{3}+x_{2}}{x_{1}+2\left(1+x_{2}\right)} \quad \text { and } \quad\left[\begin{array}{cc}
12 x_{1}^{2} & 1 \\
1 & 2
\end{array}\right]
$$

Local and Global Minimizers

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

Possible outcomes of optimization problem:
(1) Unbounded if $\exists x^{(k)} \in \mathbb{R}^{n}$ such that $f^{(k)}=f\left(x^{(k)}\right) \rightarrow-\infty$,
(2) Minimizers may not exist, or
(3) Local or Global Minimizer defined below.

Definition

Let $x^{*} \in \mathbb{R}^{n}$, and $B\left(x^{*}, \epsilon\right):=\left\{x:\left\|x-x^{*}\right\| \leq \epsilon\right\}$ ball around x^{*}.
(1) x^{*} global minimizer, iff $f\left(x^{*}\right) \leq f(x) \forall x \in \mathbb{R}^{n}$.
(2) x^{*} local minimizer, iff $f\left(x^{*}\right) \leq f(x) \forall x \in B\left(x^{*}, \epsilon\right)$.
(3) x^{*} strict local minimizer, iff $f\left(x^{*}\right)<f(x) \forall x^{*} \neq x \in B\left(x^{*}, \epsilon\right)$

Local and Global Minimizers

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)
$$

Global minimizer is local minimizer.
Examples: minimizer does not exist

- $f(x)=x^{3}$ unbounded below \Rightarrow minimizer does not exist.
- $f(x)=\exp (x)$ bounded below, but minimizer does not exist.
... detected in practice monitoring $x^{(k)}$.

Global Optimization is Hard

Contours of Schefel function: $f(x)=418.9829 n+\sum_{i=1}^{n} x_{i} \sin \left(\sqrt{\left|x_{i}\right|}\right)$

Global Optimization is Hard

Global Optimization is Much Harder

Finding (and verifying) a global minimizer is much harder:
... global optimization can be NP-hard or even undecidable!

Initially only consider local minimizers ...

Necessary Condition for Local Minimizers

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

At x^{*}, local minimizer

- Slope of $f(x)$ along s is zero

$$
\Rightarrow s^{T} g\left(x^{*}\right)=0 \quad \forall s \in \mathbb{R}^{n}
$$

- Curvature of $f(x)$ along s is nonnegative

$$
\Rightarrow s^{T} H\left(x^{*}\right) s \geq 0 \quad \forall s \in \mathbb{R}^{n}
$$

Theorem (Necessary Conditions for Local Minimizer)

x^{*} local minimizer, then

$$
g\left(x^{*}\right):=\nabla f\left(x^{*}\right)=0, \quad \text { and } H\left(x^{*}\right):=\nabla^{2} f\left(x^{*}\right) \succeq 0,
$$

where $A \succeq 0$ means A positive semi-definite

Example: Powell's Function

Consider

$$
f(x)=x_{1}^{4}+x_{1} x_{2}+\left(1+x_{2}\right)^{2}
$$

Gradient and Hessian are

$$
g(x)=\binom{4 x_{1}^{3}+x_{2}}{x_{1}+2\left(1+x_{2}\right)} \quad \text { and } \quad H(x)=\left[\begin{array}{cc}
12 x_{1} & 1 \\
1 & 2
\end{array}\right]
$$

At $x=(0.6959,-1.3479)$ get $g=0$ and

$$
H=\left[\begin{array}{cc}
8.3508 & 1 \\
1 & 2
\end{array}\right] \quad \text { pos. def. }
$$

... eigenvalue $=1.8463,8.5045 \ldots$ using Matlab's eig(H) function

Sufficient Condition for Local Minimizers

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}}^{\min } f(x)
$$

Obtain sufficient condition by strengthening positive definiteness

Theorem (Sufficient Conditions for Local Min)

Assume that

$$
g\left(x^{*}\right):=\nabla f\left(x^{*}\right)=0, \quad \text { and } H\left(x^{*}\right):=\nabla^{2} f\left(x^{*}\right) \succ 0,
$$

then x^{*} is isolated local minimizer of $f(x)$.
Recall $A \succ 0$ positive definite, iff

- All eigenvalues of A are positive,
- $A=L^{T} D L$ factors exist with L lower triangular, $L_{i i}=1$ and $D>0$ diagonal,
- Cholesky factors, $A=L^{T} L$, exist with $L_{i i}>0$, or
- $s^{T} A s>0$ for all $s \in \mathbb{R}^{n}, s \neq 0$.

Sufficient Condition for Local Minimizers

$$
\underset{x \in \mathbb{R}^{z}}{\operatorname{minimize}} f(x)
$$

Gap between necessary and the sufficient conditions: $H\left(x^{*}\right):=\nabla^{2} f\left(x^{*}\right) \succeq 0$ versus $H\left(x^{*}\right) \succ 0$

Definition (Stationary Point)

x^{*} stationary point of $f(x)$, iff $g\left(x^{*}\right)=0$ (aka $1^{\text {st }}$-order condition).

Sufficient Condition for Local Minimizers

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

Definition (Stationary Point)

x^{*} stationary point of $f(x)$, iff $g\left(x^{*}\right)=0$ (aka $1^{\text {st }}$-order condition).

Classification of Stationary Points:

- Local Minimizer: $H\left(x^{*}\right) \succ 0$ then x^{*} is local minimizer.
- Local Maximizer: $H\left(x^{*}\right) \prec 0$ then x^{*} is local maximizer.
- Unknown: $H\left(x^{*}\right) \succeq 0$ cannot be classified.
- Saddle Point: $H\left(x^{*}\right)$ indefinite then x^{*} is a saddle point.
$H\left(x^{*}\right)$ indefinite, iff both positive and negative eigenvalues

Discussion of Optimality Conditions

Limitations of Optimality Conditions

Almost impossible to say anything about global optimality.

Why are optimality conditions important?

- Provide guarantees that candidate x^{*} is local min.
- Indicate when point is not optimal: necessary conditions.
- Provide termination condition for algorithms, e.g.

$$
\left\|g\left(x^{(k)}\right)\right\| \leq \epsilon \quad \text { for tolerance } \quad \epsilon>0
$$

- Guide development of methods, e.g.

$$
\underset{x}{\operatorname{minimize}} f(x) \quad " \Leftrightarrow " g(x)=\nabla f(x)=0
$$

... nonlinear system of equations ... use Newton's method

Outline

(1) Optimality Conditions for Unconstrained Optimization - Local and Global Minimizers
(2) Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

Iterative Methods for Unconstrained Optimization

In general, cannot solve

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

analytically ... need iterative methods.
Iterative Methods for Optimization

- Start from initial guess of solution, $x^{(0)}$
- Given $x^{(k)}$, construct new (better) iterate $x^{(k+1)}$
- Construct sequence $x^{(k)}$, for $k=1,2, \ldots$ converging to x^{*}

Key Question

Does $\left\|x^{(k)}-x^{*}\right\| \rightarrow 0$ hold? Speed of convergence?

Outline

(1) Optimality Conditions for Unconstrained Optimization - Local and Global Minimizers
(2) Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

Pattern-Search Techniques

Class of methods that does not require gradients
... suitable for simulation-based optimization

Search for lower function value along coordinate directions: $\pm e_{i}$

Reduce "step-length' if no progress is made

Weak convergence properties ... but can be effective for derivative-free optimization

Pattern-Search Techniques

Starting from $x^{(0)}$ with $\Delta=2$

Pattern-Search Techniques

First search step reduces $f(x) \ldots$ new $x^{(1)}$

Pattern-Search Techniques

First search step reduces $f(x) \ldots$ new $x^{(2)}$

Pattern-Search Techniques

No polling step reduced $f(x) \Rightarrow$ shrink $\Delta=\Delta / 2$

Pattern-Search Techniques

Second search step reduces $f(x) \ldots$ new $x^{(3)}$

Pattern-Search Techniques

No polling step reduced $f(x) \Rightarrow$ shrink $\Delta=\Delta / 2$

Outline

(1) Optimality Conditions for Unconstrained Optimization - Local and Global Minimizers
(2) Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

Coordinate Descend Algorithms [Wotao Yin, UCLA]

- Make progress by updating one (or a few) variables at a time.
- Regarded as inefficient and outdated since the 1960's
- Recently, found to work well for huge optimization problems ... arising in statistics, machine-learning, compressed sensing

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

Basic Coordinate Descend Method

Given $x^{(0)}$, set $k=0$.

repeat

Choose $i \in\{1, \ldots, n\}$ coordinate; set $x^{(k+1)}:=x^{(k)}$.
$x_{i}^{(k+1)} \leftarrow \underset{x_{i} \in \mathbb{R}}{\operatorname{argmin}} f\left(x_{1}^{(k)}, \ldots, x_{i}, \ldots, x_{n}^{(k)}\right)$
Set $k=k+1$
until $x^{(k)}$ is (local) optimum;

Coordinate Descend Algorithms [Wotao Yin, UCLA]

Outline

(1) Optimality Conditions for Unconstrained Optimization - Local and Global Minimizers
(2) Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

Line-Search Method

Line-Search Methods

- Find descend direction, $s^{(k)}$, such that $s^{(k)^{T}} g\left(x^{(k)}\right)<0$
- Search for reduction if $f(x)$ along line $s^{(k)}$

General Line-Search Method

Given $x^{(0)}$, set $k=0$.
repeat
Find search direction $s^{(k)}$ with $s^{(k)^{T}} g\left(x^{(k)}\right)<0$
Find steplength α_{k} with $f\left(x^{(k)}+\alpha_{k} s^{(k)}\right)<f\left(x^{(k)}\right)$

$$
\text { Set } x^{(k+1)}:=x^{(k)}+\alpha_{k} s^{(k)} \text { and } k=k+1
$$

until $x^{(k)}$ is (local) optimum;

Line-Search Methods

$$
f(x, y)=(x-y)^{4}-2(x-y)^{2}+(x-y) / 2+x y+2 x^{2}+2 y^{2}
$$

Contours and restriction along $x=-y$.

Line-Search Method

Remarks regarding general descend method:

- $s^{(k)^{T}} g\left(x^{(k)}\right)<0$ not enough for convergence.
- Many possible choices for $s^{(k)}$.
- Exact line search:

$$
\underset{\alpha}{\operatorname{minimize}} f\left(x^{(k)}+\alpha s^{(k)}\right)
$$

... impractical \Rightarrow consider approximate techniques.

- Simple descend,

$$
f\left(x^{(k)}+\alpha_{k} s^{(k)}\right)<f\left(x^{(k)}\right)
$$

... not enough for convergence \Rightarrow strengthen!

Armijo Line-Search

Armijo Line-Search Method at x in Direction s
$\alpha=$ function $\operatorname{Armijo}(f(x), x, s)$
Let $t>0,0<\beta<1$, and $0<\sigma<1$ constants
Set $\alpha_{0}:=t$, and $j:=0$.
while $f(x)-f(x+\alpha s)<-\alpha \sigma g(x)^{T} s$ do
\mid Set $\alpha_{j+1}:=\beta \alpha_{j}$ and $j:=j+1$.
end

- Simple back-tracking line-search.
- Typically start at $t=1$.
- Tightens simple descend condition $f(x)-f(x+\alpha s)<0$:
- $g(x)^{T}$ s predicted reduction from linear model
- $f(x)-f(x+\alpha s)$ actual reduction
- Step must achieve factor $\sigma<1$ of predicted reduction.
\Rightarrow allows convergence proofs!

Outline

(1) Optimality Conditions for Unconstrained Optimization - Local and Global Minimizers
(2) Iterative Methods for Unconstrained Optimization

- Pattern Search Algorithms
- Coordinate Descend with Exact Line Search
- Line-Search Methods
- Steepest Descend and Armijo Line Search

Steepest Descend Method

Search direction that maximizes the descend,

$$
s^{(k)}:=-g\left(x^{(k)}\right) \text { steepest descend direction }
$$

Steepest descend satisfies descend property:

$$
s^{(k)^{T}} g\left(x^{(k)}\right)=-g^{(k)^{T}} g^{(k)}=-\left\|g^{(k)}\right\|_{2}^{2}<0
$$

$s^{(k)}:=-g^{(k)} /\left\|g^{(k)}\right\|$ normalized direction of most negative slope Let θ be angle between direction, s, gradient g, then:

$$
s^{T} g=\|s\| \cdot\|g\| \cdot \cos (\theta)
$$

and get \min when $\cos (\theta)=-1$, or $\theta=\pi$, i.e. $s=-g$.

Steepest Descend with Armijo Line-Search

Steeped Descend Armijo Line-Search Method

Given $x^{(0)}$, set $k=0$.

repeat

Find steepest descend direction $s^{(k)}:=-g\left(x^{(k)}\right)$
Armijo Line search: $\alpha_{k}:=\operatorname{Armijo}\left(f(x), x^{(k)}, s^{(k)}\right)$

$$
\text { Set } x^{(k+1)}:=x^{(k)}+\alpha_{k} s^{(k)} \text { and } k=k+1
$$

until $x^{(k)}$ is (local) optimum;

Theorem

If $f(x)$ bounded below, then converge to stationary point.

Steepest Descend can be Inefficient in Practice

Main Take-Aways from Lecture

- Optimality conditions
- General structure of methods
- Line Search
- Steepest Descend

