Global Convergence Technique

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Introduction
(2) Line-Search Methods
(3) Trust-Region Methods

- The Cauchy Point
- Outline of Convergence Proof of Trust-Region Methods
- Solving the Trust-Region Subproblem
- Solving Large-Scale Trust-Region Subproblems

Global Convergence Techniques

Still consider

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x),
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice continuously differentiable.

Question

How can we ensure convergence from remote starting points?

Methods can fail if step is too large ... or too small
Two mechanisms restrict steps:
(1) Line-Search Methods \ldots search along descend direction $s^{(k)}$
(2) Trust-Region Methods ... restrict computation of step.

Both converge, because steps revert to steepest descend.

Failures of Newton's Method

Failure of Newton

$$
\left.f(x)=x_{1}^{4}+x-1 x_{2}+\left(1+x_{2}\right)^{2}\right)
$$

No descend direction
$\underset{x}{\operatorname{minimize}} f(x)=x^{2}-\frac{1}{4} x^{4}$.
Alternates $-\sqrt{2 / 5}$ and $\sqrt{2 / 5}$.

Step too large

Outline

(1) Introduction
(2) Line-Search Methods
(3) Trust-Region Methods

- The Cauchy Point
- Outline of Convergence Proof of Trust-Region Methods
- Solving the Trust-Region Subproblem
- Solving Large-Scale Trust-Region Subproblems

General Line-Search Method

Recall line-search method for $\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)$

General Line-Search Method

Let $\sigma>0$ constant. Given $x^{(0)}$, set $k=0$.
repeat
Find search direction $s^{(k)}$ such that $s^{(k)^{T}} g\left(x^{(k)}<0\right.$.
Compute steplength α_{k} such that Wolfe condition holds.
Set $x^{(k+1)}:=x^{(k)}+\alpha_{k} s^{(k)}$ and $k=k+1$.
until $x^{(k)}$ is (local) optimum;

Wolfe Line-Search Conditions

$$
\begin{aligned}
& f\left(x^{(k)}+\alpha_{k} s^{(k)}\right)-f^{(k)} \leq \delta \alpha_{k} g^{(k)^{T}} s^{(k)} \\
& g\left(x^{(k)}+\alpha_{k} s^{(k)}\right)^{T} s^{(k)} \geq \sigma g^{(k)^{T}} s^{(k)} .
\end{aligned}
$$

Illustration of Wolf Conditions

Wolfe Line-Search Conditions

$$
\begin{aligned}
& f\left(x^{(k)}+\alpha_{k} s^{(k)}\right) \leq f^{(k)}+\delta \alpha_{k} g^{(k)^{T}} s^{(k)} \\
& g\left(x^{(k)}+\alpha_{k} s^{(k)}\right)^{T} s^{(k)} \geq \sigma g^{(k)^{T}} s^{(k)}
\end{aligned}
$$

Slope at $x^{(k)}$ in direction $s^{(k)}$ is $s^{(k)^{T}} g^{(k)}$

- 1st condition requires sufficient decrease
- 2nd condition moves $x^{(k+1)}$ away from $x^{(k)}$

General Line-Search Method

Theorem (Convergence of Line-Search Methods)

- $f(x)$ continuously differentiable and gradient
- $g(x)=\nabla f(x)$ Lipschitz continuous on \mathbb{R}^{n}.

Then, one of three outcomes applies:
(1) finite termination: $g^{(k)}=0$ for some $k>0$, or
(2) unbounded iterates: $\lim _{k \rightarrow \infty} f^{(k)}=-\infty$, or
(3) directional convergence:

$$
\lim _{k \rightarrow \infty} \min \left(\left|s^{(k)^{T}} g^{(k)}\right|, \frac{\left|s^{(k)^{T}} g^{(k)}\right|}{\left\|s^{(k)}\right\|}\right)=0
$$

The third outcome only somewhat successful:
\ldots in the limit there is no descend along $s^{(k)}$.

General Line-Search Method

Corollary (Convergence of Steepest Descend Method)

- $f(x)$ continuously differentiable and gradient
- $g(x)=\nabla f(x)$ Lipschitz continuous on \mathbb{R}^{n}.

Then steepest descend algorithm results in:
(1) finite termination: $g^{(k)}=0$ for some $k>0$, or
(2) unbounded iterates: $\lim _{k \rightarrow \infty} f^{(k)}=-\infty$, or
(3) convergence to a stationary point: $\lim _{k \rightarrow \infty} g^{(k)}=0$.

Strengthen descend condition from $s^{(k)^{T}} g\left(x^{(k)}\right)<0$ to

$$
s^{(k)^{T}} g\left(x^{(k)}\right)<-\sigma\left\|g\left(x^{(k)}\right)\right\|
$$

$\ldots s^{(k)}$ has σ component of steepest descend direction
\Rightarrow any line-search method with stronger descend converges.

Outline

(1) Introduction
(2) Line-Search Methods
(3) Trust-Region Methods

- The Cauchy Point
- Outline of Convergence Proof of Trust-Region Methods
- Solving the Trust-Region Subproblem
- Solving Large-Scale Trust-Region Subproblems

Trust-Region Methods

More conservative than line-search methods:

- Computation of search direction inside a trust-region
- Revert to steepest descend as trust-region is reduced
- Computationally more expensive per iteration
... enjoy stronger convergence properties

Motivation for Trust-Region Methods

- Taylor model around $x^{(k)}$ accurate in neighborhood of $x^{(k)}$
- Minimize Taylor model inside some neighborhood.

How to define neighborhood?

- Depends on function
- Shape may be very complex

Use simple trust-region:

$$
\left\|x-x^{(k)}\right\|_{2} \leq \Delta_{k}
$$

Trust-Region Methods

Trust-region method for $\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)$

Basic Idea of Trust-Region Methods

(1) Minimize model of $f(x)$ inside trust-region $\left\|x-x^{(k)}\right\|_{2} \leq \Delta_{k}$
(2) Move to new point, if we make progress
(3) Reduce radius Δ_{k}, if we do not make progress

Trust-Region Methods

Trust-region models for

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)
$$

Trust-Region Models

- Linear model:

$$
I_{k}(s)=f^{(k)}+s^{\top} g^{(k)} \simeq f\left(x^{(k)}+s\right)
$$

- Quadratic model

$$
q_{k}(s)=f^{(k)}+s^{T} g^{(k)}+\frac{1}{2} s^{T} B^{(k)} s \simeq f\left(x^{(k)}+s\right)
$$

where $f^{(k)}=f\left(x^{(k)}\right), g^{(k)}=\nabla f\left(x^{(k)}\right)$, and $B^{(k)} \approx \nabla^{2} f\left(x^{(k)}\right)$

Illustration of Linear/Quadratic Trust-Region Models

Quadratic Trust-Region Subproblem

Quadratic trust-region subproblem

$\underset{s}{\operatorname{minimize}} q_{k}(s)=f^{(k)}+s^{T} g^{(k)} \frac{1}{2} s^{\top} B^{(k)} s \quad$ subject to $\|s\|_{2} \leq \Delta_{k}$
... only needs to be solved "approximately" ... more later!
ℓ_{2} norm is natural choice for unconstrained optimization.
M-norm for positive definite matrix, M, is a useful alternative:

$$
\left\|x-x^{(k)}\right\|_{M}:=\sqrt{\left(x-x^{(k)}\right)^{T} M\left(x-x^{(k)}\right)} \leq \Delta_{k} \quad M \text {-norm TR }
$$

- Mitigates poor scaling of variables
- Trust-region subproblem easy to solve
- Interpret M as a preconditioner for trust-region subproblem

Trust-Region Radius Adjustment

Adjust Δ_{k} based on agreement of actual and predicted reduction

$$
r_{k}:=\frac{\text { actual reduction }}{\text { predicted reduction }}:=\frac{f^{(k)}-f\left(x^{(k)}+s^{(k)}\right)}{f^{(k)}-q_{k}\left(s^{(k)}\right)}
$$

- $r_{k} \approx 1 \Rightarrow q_{k}(s)$ close to $f(x) \ldots \ldots$. ..
- $r_{k}<0 \Rightarrow f(x)$ increases over step $s^{(k)} \ldots \ldots \ldots \ldots$.......................

Trust-Region Radius Adjustment

- If $r_{k} \geq \eta_{s}>0$ then accept step \& possibly increase Δ_{k}
- If $r_{k}<\eta_{s}$ then reject step \& decrease Δ_{k}
... resolve TR subproblem to get better agreement, r_{k}

Trust-Region Radius Adjustment

Illustration of trust-region adjustment

General Trust-Region Method

Let $0<\eta_{s}<\eta_{v}$ and $0<\gamma_{d}<1<\gamma_{i}$.
Given $x^{(0)}$, set $k=0$, initialize $\Delta_{0}>0$.
repeat
Approximately solve the trust-region subproblem.
Compute $r_{k}=\frac{f^{(k)}-f\left(x^{(k)}+s^{(k)}\right)}{f^{(k)}-q_{k}\left(s^{(k)}\right)}$.
if $r_{k} \geq \eta_{v}$ very successful step then
Accept the step $x^{(k+1)}:=x^{(k)}+s^{(k)}$.
Increase the trust-region radius, $\Delta_{k+1}:=\gamma_{i} \Delta_{k}$.
else if $r_{k} \geq \eta_{v}$ successful step then
Accept the step $x^{(k+1)}:=x^{(k)}+s^{(k)}$.
Keep the trust-region radius unchanged, $\Delta_{k+1}:=\Delta_{k}$.
else if $r_{k}<\eta_{v}$ unsuccessful step then
Reject the step $x^{(k+1)}:=x^{(k)}$.
Decrease the trust-region radius, $\Delta_{k+1}:=\gamma_{d} \Delta_{k}$.
end
Set $k=k+1$.
until $x^{(k)}$ is (local) optimum;

General Trust-Region Method

Reasonable values for Trust-Region parameters:

- Very successful step agreement: $\eta_{v}=0.9$ or 0.99
- Successful step agreement: $\eta_{s}=0.1$ or 0.01 ,
- Trust-region increase/decrease factors $\gamma_{i}=2, \gamma_{d}=1 / 2$

Do not increase trust-region radius, unless step is on boundary

Trust-region algorithm much simpler than previous methods

- Computational difficulty hidden in subproblem solve
- Must be careful to solve TR subproblem efficiently.

The Cauchy Point \& Steepest Descend Directions

Use steepest descend for minimalist conditions on TR subproblem

Definition (Cauchy Point)

Cauchy point: minimizer of model in steepest descend direction

$$
\begin{aligned}
\alpha_{c} & :=\underset{\alpha}{\operatorname{argmin}} q_{k}\left(-\alpha g^{(k)}\right) \text { subject to } 0 \leq \alpha\left\|g^{(k)}\right\| \leq \Delta_{k} \\
& =\underset{\alpha}{\operatorname{argmin}} q_{k}\left(-\alpha g^{(k)}\right) \text { subject to } 0 \leq \alpha \leq \frac{\Delta_{k}}{\left\|g^{(k)}\right\|}
\end{aligned}
$$

then Cauchy point is $s_{C}^{(k)}=-\alpha_{C} g^{(k)}$

- Cauchy point is cheap to compute
- Cauchy point is minimalistic assumption for convergence:

$$
q_{k}\left(s^{(k)}\right) \leq q_{k}\left(s_{c}^{(k)}\right) \quad \text { and } \quad\left\|s^{(k)}\right\| \leq \Delta_{k}
$$

Outline of Convergence of Trust-Region Methods

Outline of convergence proof ... ideas apply in other areas
(1) Lower bound on predicted reduction from Cauchy point:
pred. reduct. $\quad f^{(k)}-q_{k}\left(s_{c}^{(k)}\right) \geq \frac{1}{2}\left\|g^{(k)}\right\|_{2} \min \left(\frac{\left\|g^{(k)}\right\|_{2}}{1+\left\|B^{(k)}\right\|}, \kappa \Delta_{k}\right)$.
(2) Corollary TR subproblem solution $s^{(k)}$, satisfies lower bound.

- TR step makes at least as much progress as $s_{c}^{(k)}$
(3) Bound agreement between objective and quadratic model:

$$
\left|f\left(x^{(k)}+s^{(k)}\right)-m_{k}\left(s^{(k)}\right)\right| \leq \kappa \Delta_{k}^{2},
$$

$\kappa>0$ depends Hessian bounds ... from Taylor's theorem.

Outline of Convergence of Trust-Region Methods

Cont. outline of convergence proof ...
(1) Crucial Result

Can always make progress from non-critical point $g^{(k)} \neq 0$:

$$
\text { If } \quad \Delta_{k} \leq\left\|g^{(k)}\right\|_{2} \kappa\left(1-\eta_{s}\right), \quad \text { then very successful step }
$$

\ldots and $\Delta_{k+1} \geq \Delta_{k}$

- Here $\kappa\left(1-\eta_{s}\right)$ constant
- η_{s} threshold for very successful step

Intuitive: reducing Δ gives better agreement
... make progress with $r_{k} \simeq 1$
(2) If gradient norm bounded away from zero, i.e. $\left\|g^{(k)}\right\| \geq \epsilon>0$,
... then trust-region radius also bounded away from zero:

$$
\left\|g^{(k)}\right\| \geq \epsilon>0 \Rightarrow \Delta_{k} \geq \epsilon \kappa\left(1-\eta_{v}\right)
$$

(3) If number of iteration finite, then final iterate is stationary.

Outline of Convergence of Trust-Region Methods

Summarize results in theorem ...

Theorem (Convergence of TR Method with Cauchy Condition)

$f(x)$ twice continuously differentiable and Hessian matrices $B^{(k)}, H^{(k)}$ bounded. Then, TR algorithm has on of three outcomes:
(1) finite termination: $g^{(k)}=0$ for some $k>0$, or
(2) unbounded iterates: $\lim _{k \rightarrow \infty} f^{(k)}=-\infty$, or
(3) convergence to a stationary point: $\lim _{k \rightarrow \infty} g^{(k)}=0$.

Solving the Trust-Region Subproblem

Remarkable Result about TR Subproblem

With ℓ_{2}-norm TR, can solve TR subproblem to global optimality.

Theorem

Global minimizer, s^{*}, of trust-region subproblem,

$$
\underset{s}{\operatorname{minimize}} q(s):=f+g^{T} s+\frac{1}{2} s^{T} B s \quad \text { subject to }\|s\|_{2} \leq \Delta
$$

satisfies $\left(B+\lambda^{*} I\right) s^{*}=-g$, where

- $B+\lambda^{*}$ I positive definite,
- $\lambda^{*} \geq 0$, and
- $\lambda^{*}\left(\left\|s^{*}\right\|_{2}-\Delta\right)=0$.

Moreover, if $B+\lambda^{*} I$ is positive definite, then s^{*} is unique.

Solving the Trust-Region Subproblem

Theorem

Global minimizer, s*, of trust-region subproblem,

$$
\underset{s}{\operatorname{minimize}} q(s):=f+g^{T} s+\frac{1}{2} s^{T} B s \quad \text { subject to }\|s\|_{2} \leq \Delta
$$

satisfies

$$
\left(B+\lambda^{*} I\right) s^{*}=-g,
$$

where $B+\lambda^{*} I$ positive definite, $\lambda^{*} \geq 0$, and $\lambda^{*}\left(\left\|s^{*}\right\|_{2}-\Delta\right)=0$.
Moreover, if $B+\lambda^{*} l$ is positive definite, then s^{*} is unique.

- Necessary and sufficient conditions for global minimizer
- Optimality conditions are KKT conditions of TR subproblem.
- Suggest way to solve TR subproblem to global optimality

Solving the Trust-Region Subproblem

Divide solution of TR subproblem,

$$
\underset{s}{\operatorname{minimize}} q(s):=f+g^{T} s+\frac{1}{2} s^{T} B s \quad \text { subject to }\|s\|_{2} \leq \Delta
$$

into two cases:
(1) B pos. def. and solution of $B s=-g$, satisfies $\|s\| \leq \Delta$
(2) B not pos. def. or solution of $B s=-g$, satisfies $\|s\|>\Delta$

Case 1: B positive def., and $B s=-g$, satisfies $\|s\| \leq \Delta$

- Solution s is global solution of TR subproblem
... modern factorization routines detect positive definiteness

Solving the Trust-Region Subproblem

Trust-region subproblem

$$
\underset{s}{\operatorname{minimize}} q(s):=f+g^{T} s+\frac{1}{2} s^{T} B s \quad \text { subject to }\|s\|_{2} \leq \Delta
$$

Case 2: B not pos. def. or solution of $B s=-g$, satisfies $\|s\|>\Delta$
Optimality conditions of TR subproblem: $\left(s^{*}, \lambda^{*}\right)$ satisfies

$$
(B+\lambda I) s=-g \quad \text { and } \quad s^{T} s=\Delta^{2}
$$

set of $(n+1)$ linear/quadratic equations in $(n+1)$ unknowns.
Methods for solving linear/quadratic equation:

- Compute Cholesky factors of $B+\lambda I$
- Eliminate s from quadratic equation
- Solve nonlinear equation for $\lambda \ldots$ repeat
... need to be careful in certain difficult cases.

Solving Large-Scale Trust-Region Subproblems

Trust-region subproblem

$$
\underset{s}{\operatorname{minimize}} q(s):=f+g^{T} s+\frac{1}{2} s^{\top} B s \quad \text { subject to }\|s\|_{2} \leq \Delta
$$

Cholesky factors are computationally impractical for large n
\Rightarrow consider iterative methods for solving TR subproblem

- Conjugate gradients good choice
... first step is steepest descend consistent with Cauchy step!
- Get convergence to stationary points for "free"

Adapting Conjugate Gradient to TR constraint

- What is the interaction between iterates and the trust region?
- What do we do, if B is indefinite?

Solving Large-Scale Trust-Region Subproblems

Trust-Region Subproblem Conjugate-Gradient Method
Set $s^{(0)}=0, g^{(0)}=g, d^{(0)}=-g$, and $i=0$.
repeat
Exact line search: $\alpha_{i}=\left\|g^{(i)}\right\|^{2} /\left(d^{(i)^{T}} B d^{(i)}\right)$
New iterate: $s^{(i+1)}=s^{(i)}+\alpha_{i} d^{(i)}$
Gradient update: $g^{(i+1)}=g^{(i)}+\alpha_{i} B d^{(i)}$
Fletcher-Reeves: $\beta_{i}=\left\|g^{(i+1)}\right\|^{2} /\left\|g^{(i)}\right\|^{2}$
New search direction: $d^{(i+1)}=-g^{(i+1)}+\beta_{i} d^{(i)}$
Set $i=i+1$.
until Breakdown or small $\left\|g^{(i)}\right\|$ found;

Breakdown: needs to be defined (reach TR or indefinite)

Solving Large-Scale Trust-Region Subproblems

$\underset{s}{\operatorname{minimize}} q(s):=f+g^{T} s+\frac{1}{2} s^{T} B s$ subject to $\|s\|_{2} \leq \Delta$
What is the interaction between iterates and the trust region?
Theorem
Apply conjugate-gradient to trust-region subproblem, assume $d^{(i)^{T}} B d^{(i)}>0$ for all $0 \leq i \leq k$. Then

$$
\left\|s^{(i)}\right\|_{2} \leq\left\|s^{(i+1)}\right\|_{2} \quad \forall 0 \leq i \leq k .
$$

- If $\left\|s^{(i)}\right\|>\Delta$ at iteration i,
... then subsequent iterates lie outside TR too.
- Once we pass TR boundary, then we know that $\left\|s^{*}\right\|=\Delta$

Solving Large-Scale Trust-Region Subproblems

$$
\underset{s}{\operatorname{minimize}} q(s):=f+g^{T} s+\frac{1}{2} s^{T} B s \quad \text { subject to }\|s\|_{2} \leq \Delta
$$

Termination Conditions for TR Conjugate Gradient

Terminate CG solution of TR subproblem, if
(1) Find non-positive curvature: $d^{(i)^{T}} B d^{(i)} \leq 0$:
$\Rightarrow q(s)$ is unbounded along $d^{(i)}$.
(2) Generate iterate outside TR
\Rightarrow all subsequent iterates lie outside the TR
If $\left\|\boldsymbol{s}^{(i+1)}\right\|>\Delta$, then compute step to boundary solving for α^{B} :

$$
\left\|s^{(i)}+\alpha^{B} d^{(i)}\right\|_{2}^{2}=\Delta .
$$

Approach OK convex case, poor for nonconvex $f(x)$.
Prefer more elaborate Lanczos method for nonconvex $f(x)$.

Conclusions

Introduction to Trust-Region Methods

- Minimize model of $f(x)$ inside trust-region

$$
\left\|x-x^{(k)}\right\| \leq \Delta_{k}
$$

- Measure progress ratio

$$
r=\frac{\text { actual reduct. }}{\text { predicted reduct. }}
$$

- Accept step if good progress
- Reject step if poor progress
\ldots and reduce Δ_{k}
- Solve TR subproblem to global optimality

