Newton and Quasi-Newton Methods
 GIAN Short Course on Optimization:
 Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Quadratic Models and Newton's Method

- Modifying the Hessian to Ensure Descend
(2) Quasi-Newton Methods
- The Rank-One Quasi-Newton Update.
- The BFGS Quasi-Newton Update.
- Limited-Memory Quasi-Newton Methods

Quadratic Models and Newton's Method

Consider unconstrained optimization problem:

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice continuously differentiable.

Motivation for Newton:

- Steepest descend is easy,
... but can be slow
- Quadratics approximate nonlinear $f(x)$ better
- Faster local convergence
- More "robust" methods

Quadratic Models and Newton's Method

$\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)$

Main Idea Behind Newton

- Quadratic function approximates a nonlinear $f(x)$ well.
- First-order conditions of quadratics are easy to solve.

Consider minimizing a quadratic function (wlog cons $\mathrm{t}=0$)

$$
\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} H x+b^{T} x
$$

First-order conditions, $\nabla q(x)=0$, are

$$
H x=-b
$$

... a linear system of equations

Quadratic Models and Newton's Method

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)
$$

Newton's method uses truncated Taylor series:

$$
f\left(x^{(k)}+d\right)=f^{(k)}+g^{(k)^{T}} d+\frac{1}{2} d^{T} H^{(k)} d+o\left(\|d\|^{2}\right)
$$

where $a=o\left(\|d\|^{2}\right)$ means that $\frac{a}{\|d\|^{2}} \rightarrow 0$ as $\|d\|^{2} \rightarrow 0$.

Notation Convention

Functions evaluated at $x^{(k)}$ are identified by superscripts:

- $f^{(k)}:=f\left(x^{(k)}\right)$
- $g^{(k)}:=g\left(x^{(k)}\right):=\nabla f\left(x^{(k)}\right)$
- $H^{(k)}:=H\left(x^{(k)}\right):=\nabla^{2} f\left(x^{(k)}\right)$

Quadratic Models and Newton's Method

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)
$$

Newton's method defines quadratic approx. at $x^{(k)}$

$$
q^{(k)}(d):=f^{(k)}+g^{(k)^{T}} d+\frac{1}{2} d^{T} H^{(k)} d
$$

and steps to minimum of $q^{(k)}(d)$.
If $H^{(k)}$ positive definite, solve linear system:

$$
\min _{d} q^{(k)}(d) \quad \Leftrightarrow \quad \nabla q^{(k)}(d)=0 \quad \Leftrightarrow \quad \nabla H^{(k)} d=-g^{(k)}
$$

... then sets $x^{(k+1)}:=x^{(k)}+d$

Simple Version of Newton's Method

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

Simple Newton Line-Search Method

Given $x^{(0)}$, set $k=0$.
repeat
Solve $H^{(k)} s^{(k)}:=-g\left(x^{(k)}\right)$ for Newton direction
Find step length $\alpha_{k}:=\operatorname{Armijo}\left(f(x), x^{(k)}, s^{(k)}\right)$

$$
\text { Set } x^{(k+1)}:=x^{(k)}+\alpha_{k} s^{(k)} \text { and } k=k+1 \text {. }
$$

until $x^{(k)}$ is (local) optimum;

Theory of Newton's Method

Newton direction is a descend direction if $H^{(k)}$ is positive definite:

Lemma

If $H^{(k)}$ is positive definite, then $s^{(k)}$ from solve of $H^{(k)} s^{(k)}:=-g\left(x^{(k)}\right)$ is a descend direction.

Proof.

Drop superscripts (k) for simplicity
H is positive definite $\Rightarrow H^{-1}$ inverse exists and is pos. definite
$\Rightarrow g^{T} s=g^{T} H^{-1}(-g)<0$
$\Rightarrow s$ is a descend direction.

Theory of Newton's Method

Newton's method converges quadratically
... steepest descend only linearly

Theorem

$f(x)$ twice continuously differentiable and that $H(x)$ is Lipschitz:

$$
\|H(x)-H(y)\| \leq L\|x-y\|
$$

near local minimum x^{*}.
If $x^{(k)}$ sufficiently close x^{*}, and if H^{*} positive definite, then Newton's method converges quadratically and $\alpha_{k}=1$.

Theory of Newton's Method

Newton's method converges quadratically
... steepest descend only linearly

Theorem

$f(x)$ twice continuously differentiable and that $H(x)$ is Lipschitz:

$$
\|H(x)-H(y)\| \leq L\|x-y\|
$$

near local minimum x^{*}.
If $x^{(k)}$ sufficiently close x^{*}, and if H^{*} positive definite, then Newton's method converges quadratically and $\alpha_{k}=1$.

This is a remarkable result:

- Near a local solution, we do not need a line search.
- Convergence is quadratic ... double the significant digits.

Illustrative Example of Newton's Method

Convergence \& failure of Newton: $f(x)=x_{1}^{4}+x_{1} x_{2}+\left(1+x_{2}\right)^{2}$

Discussion of Newton's Method I

Full Newton step may fail to reduce $f(x)$, E.g.

$$
\underset{x}{\operatorname{minimize}} f(x)=x^{2}-\frac{1}{4} x^{4} .
$$

$x^{(0)}=\sqrt{2 / 5}$ creates alternating iterates $-\sqrt{2 / 5}$ and $\sqrt{2 / 5}$.

Remedy: Use a line search.

Discussion of Newton's Method II

- Newton's method solves linear system at every iteration.

Can be computationally expensive, if n is large. Remedy: Apply iterative solvers, e.g. conjugate-gradients.

- Newton's method needs first and second derivatives.

Finite differences are computationally expensive.
Use automatic differentiation (AD) for gradient
... Hessian is harder, get efficient Hessian products: $H^{(k)} v$ Remedy: Code efficient gradients, or use AD tools.

Discussion of Newton's Method III

Problem, if Hessian, $H^{(k)}$ not positive definite

- Newton direction may not be defined

If $H^{(k)}$ singular, then $H^{(k)} s=-g^{(k)}$ not well defined:

- Either $H^{(k)} s=-g^{(k)}$ has no solution,
- or $H^{(k)} s=-g^{(k)}$ has infinitely many solutions!
- Even if Newton direction exists, it may not reduce $f(x)$
\Rightarrow Newton's method fails even with line search

Discussion of Newton's Method IV

Problem, if Hessian, $H^{(k)}$, has indefinite curvature:
Consider

$$
\underset{x}{\operatorname{minimize}} f(x)=x_{1}^{4}+x_{1} x_{2}+\left(1+x_{2}\right)^{2}
$$

Starting Newton at $x^{(0)}=0$, get

$$
x^{(0)}=0, \quad g^{(0)}=\binom{0}{2}, \quad H^{(0)}=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right], \quad \Rightarrow s^{(0)}=\binom{-2}{0}
$$

Line-search from $x^{(0)}$ in direction $s^{(0)}$:
$x^{(0)}+\alpha s^{(0)}=\binom{-2 \alpha}{0} \Rightarrow f\left(x^{(0)}+\alpha s^{(0)}\right)=(-2 \alpha)^{4}+1=16 \alpha^{4}+1>1$
for all $\alpha>0$, hence cannot decrease $f(x) \Rightarrow \alpha_{0}=0$
\Rightarrow Newton's method stalls

Failure of Newton's Method

Steepest descend works fine
\Rightarrow Remedy: Modify Hessian to make it positive definite.

Modifying the Hessian to Ensure Descend I

Newton's method can fail, if $H^{(k)}$, is not positive definite.

To modify the Hessian, estimate smallest eigenvalue, $\lambda_{\min }\left(H^{(k)}\right)$,

Define modification matrix, M_{k} :

$$
M_{k}:=\max \left(0, \epsilon-\lambda_{\min }\left(H^{(k)}\right)\right) I
$$

where $\epsilon>0$ small, and $I \in \mathbb{R}^{n \times n}$ identity matrix

Use modified Hessian, $H^{(k)}+M_{k}$, which is positive definite

Matlab get smallest eigenvalue: $\operatorname{Lmin}=\min (\operatorname{eig}(H))$

Modifying the Hessian to Ensure Descend II

Alternative modification

- Compute Cholesky factors of $H^{(k)}$:

$$
H^{(k)}+M_{k}=L_{k} L_{k}^{T}
$$

where L_{k} lower triangular with positive diagonal

- $L_{k} L_{k}^{T}$ is positive definite
- Choose $M_{k}=0$ if $H^{(k)}$ is positive definite
- Choose M_{k} not unreasonably large
- Related to $L_{k} D_{k} L_{k}^{T}$ factors
... perform modification as we solve the Newton system,

$$
H^{(k)} s^{(k)}:=-g\left(x^{(k)}\right)
$$

Modified Newton Line-Search Method

Given $x^{(0)}$, set $k=0$. repeat
Form M_{k} from eigenvalue est. or mod. Cholesky factors.
Get modified Newton direction: $\left(H^{(k)}+M_{k}\right) s^{(k)}:=-g\left(x^{(k)}\right)$.
Get step length $\alpha_{k}:=\operatorname{Armijo}\left(f(x), x^{(k)}, s^{(k)}\right)$.
Set $x^{(k+1)}:=x^{(k)}+\alpha_{k} s^{(k)}$ and $k=k+1$.
until $x^{(k)}$ is (local) optimum;
Modification $H^{(k)}-\lambda_{\min }\left(H^{(k)}\right) /$ bias towards steepest descend:
Let $\mu=\lambda_{\text {min }}\left(H^{(k)}\right)^{-1}$, then solve

$$
\lambda_{\min }\left(H^{(k)}\right)\left(\mu H^{(k)}+l\right) s^{(k)}:=-g\left(x^{(k)}\right)
$$

As $\mu \rightarrow 0$, recover steepest-descend direction, $s^{(k)} \simeq-g\left(x^{(k)}\right)$

Outline

(1) Quadratic Models and Newton's Method - Modifying the Hessian to Ensure Descend
(2) Quasi-Newton Methods

- The Rank-One Quasi-Newton Update.
- The BFGS Quasi-Newton Update.
- Limited-Memory Quasi-Newton Methods

Quasi-Newton Methods

Quasi-Newton Methods avoid pitfalls of Newton's method:
(1) Failure Newton's, if $H^{(k)}$ not positive definite;
(2) Need for second derivatives;
(3) Need to solve linear system at every iteration.

Study quasi-Newton and more modern limited-memory quasi-Newton methods

- Overcome computational pitfalls of Newton
- Retain fast local convergence (almost)

Quasi-Newton methods work with approx. $B^{(k)} \simeq H^{(k)^{-1}}$
\Rightarrow Newton solve becomes matrix-vector product: $s^{(k)}=-B^{(k)} g^{(k)}$

Quasi-Newton Methods

Choose initial approximation, $B^{(0)}=\nu l$ Define

$$
\begin{aligned}
& \gamma^{(k)}:=g^{(k+1)}-g^{(k)} \text { gradient difference } \\
& \delta^{(k)}:=x^{(k+1)}-x^{(k)} \text { iterate difference, }
\end{aligned}
$$

then, for quadratic $q(x):=q_{0}+g^{T} x+\frac{1}{2} x^{T} H x$, get

$$
\gamma^{(k)}=H \delta^{(k)} \Leftrightarrow \delta^{(k)}=H^{-1} \gamma^{(k)}
$$

Because $B^{(k)} \simeq H^{(k)^{-1}}$, ideally want $B^{(k)} \gamma^{(k)}=\delta^{(k)}$
Not possible, because need $B^{(k)}$ to compute $x^{(k+1)}$, hence use

Quasi-Newton Condition

$$
B^{(k+1)} \gamma^{(k)}=\delta^{(k)}
$$

Rank-One Quasi-Newton Update

Goal: Find rank-one update such that $B^{(k+1)} \gamma^{(k)}=\delta^{(k)}$
Express symmetric rank-one matrix as outer product:

$$
u u^{T}=\left[u_{1} u ; \ldots ; u_{n} u\right], \quad \text { and set } B^{(k+1)}=B^{(k)}+a u u^{T} .
$$

Choose $a \in R$ and $u \in \mathbb{R}^{n}$ such that update, $B^{(k+1)}$, satisfies

$$
\delta^{(k)}=B^{(k+1)} \gamma^{(k)}=B^{(k)} \gamma^{(k)}+a u u^{T} \gamma^{(k)}
$$

... quasi-Newton condition
Rewrite Quasi-newton condition as

$$
\Leftrightarrow \quad \delta^{(k)}-B^{(k)} \gamma^{(k)}=a u u^{T} \gamma^{(k)}
$$

"Solving" last equation of u, then quasi-Newton condition implies

$$
u=\left(\delta^{(k)}-B^{(k)} \gamma^{(k)}\right) /\left(a u^{T} \gamma^{(k)}\right)
$$

assuming $a u^{T} \gamma^{(k)} \neq 0$

Rank-One Quasi-Newton Update

From previous page: Quasi-Newton condition implies

$$
u=\left(\delta^{(k)}-B^{(k)} \gamma^{(k)}\right) /\left(a u^{T} \gamma^{(k)}\right)
$$

assuming $a u^{T} \gamma^{(k)} \neq 0$
We are looking for update $a u u^{T}$

- Assume $a u^{T} \gamma^{(k)} \neq 0$ (can be monitored)
- Choose $u=\delta^{(k)}-B^{(k)} \gamma^{(k)}$

Given this choice of u, we must set a as

$$
a=\frac{1}{u^{T} \gamma^{(k)}}=\frac{1}{\left(\delta^{(k)}-B^{(k)} \gamma^{(k)}\right)^{T} \gamma^{(k)}}
$$

Double check that we satisfy the quasi-Newton condition:

$$
B^{(k+1)} \gamma^{(k)}=B^{(k)} \gamma^{(k)}+a u u^{T} \gamma^{(k)}
$$

Rank-One Quasi-Newton Update

Substituting values for a and u we get \ldots

$$
\begin{gathered}
B^{(k+1)} \gamma^{(k)}=B^{(k)} \gamma^{(k)}+\frac{\left(\delta^{(k)}-B^{(k)} \gamma^{(k)}\right)\left(\delta^{(k)}-B^{(k)} \gamma^{(k)}\right)^{T} \gamma^{(k)}}{\left(\delta^{(k)}-B^{(k)} \gamma^{(k)}\right)^{T} \gamma^{(k)}} \\
=B^{(k)} \gamma^{(k)}+\delta^{(k)}-B^{(k)} \gamma^{(k)}=\delta^{(k)}
\end{gathered}
$$

Rank-One Quasi-Newton Update

Assuming that $(\delta-B \gamma)^{\top} \gamma \neq$ we use:

$$
B^{(k+1)}=B+\frac{(\delta-B \gamma)(\delta-B \gamma)^{T}}{(\delta-B \gamma)^{T} \gamma}
$$

Properties of Rank-One Quasi-Newton Update

Rank-One Quasi-Newton Update

$$
B^{(k+1)}=B+\frac{(\delta-B \gamma)(\delta-B \gamma)^{T}}{(\delta-B \gamma)^{T} \gamma}
$$

Theorem (Quadratic Termination of Rank-One)

If rank-one update is well defined, and $\delta^{(1)}, \ldots, \delta^{(n)}$ linearly independent, then rank-one method terminates in at most $n+1$ steps with $B^{(n+1)}=H^{-1}$ for quadratic with pos. definite Hessian.

Remark (Disadvantages of Rank-One Formula)

(1) Does not maintain positive definiteness of $B^{(k)}$ \Rightarrow steps may not be descend directions
(2) Rank-one breaks down, if denominator is zero or small.

BFGS Quasi-Newton Update

BFGS rank-two update ... method of choice

BFGS Quasi-Newton Update

$$
B^{(k+1)}=B-\left(\frac{\delta \gamma^{T} B+B \gamma \delta^{T}}{\delta^{T} \gamma}\right)+\left(1+\frac{\gamma^{T} B \gamma}{\delta^{T} \gamma}\right) \frac{\delta \delta^{T}}{\delta^{T} \gamma}
$$

... works well with low-accuracy line-search

Theorem (BFGS Update is Positive Definite)

If $\delta^{T} \gamma>0$, then BFGS update remains positive definite.

Picture of BFGS Quasi-Newton Update

We can visualize the BFGS update ...

Picture of BFGS Quasi-Newton Update

We can visualize the BFGS update ...

Convergence of BFGS Updates

Question (Convergence of BFGS with Wolfe Line Search)
Does BFGS converge for nonconvex $f(x)$ with Wolfe line-search?

Wolfe Line-Search Conditions

Wolfe line search finds α :

$$
\begin{aligned}
& f\left(x^{(k)}+\alpha_{k} s^{(k)}\right)-f^{(k)} \leq \delta \alpha_{k} g^{(k)^{T}} s^{(k)} \\
& g\left(x^{(k)}+\alpha_{k} s^{(k)^{T}} s^{(k)}\right) \geq \sigma g^{(k)^{T}} s^{(k)}
\end{aligned}
$$

Convergence of BFGS Updates

Question (Convergence of BFGS with Wolfe Line Search)
Does BFGS converge for nonconvex $f(x)$ with Wolfe line-search?

Wolfe Line-Search Conditions

Wolfe line search finds α :

$$
\begin{aligned}
& f\left(x^{(k)}+\alpha_{k} s^{(k)}\right)-f^{(k)} \leq \delta \alpha_{k} g^{(k)^{T}} s^{(k)} \\
& g\left(x^{(k)}+\alpha_{k} s^{(k)^{T}} s^{(k)}\right) \geq \sigma g^{(k)^{T}} s^{(k)} .
\end{aligned}
$$

Unfortunately, the answer is no!

Dai [2013] Example of Failure of BFGS

Constructs "perfect 4D example" for BFGS method:

- Steps $s^{(k)}$, gradients, $g^{(k)}$, satisfy

$$
s^{(k)}=\left[\begin{array}{cc}
R_{1} & 0 \\
0 & \tau R_{2}
\end{array}\right] s^{(k-1)} \quad \text { and } \quad g^{(k)}=\left[\begin{array}{cc}
\tau R_{1} & 0 \\
0 & R_{2}
\end{array}\right] g^{(k-1)},
$$

where τ parameter, and R_{1}, R_{2} rotation matrices

$$
R_{1}=\left[\begin{array}{cc}
\cos \alpha-\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \quad \text { and } \quad R_{2}=\left[\begin{array}{cc}
\cos \beta-\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right]
$$

Can show that

- $\alpha_{k}=1$ satisfies Wolfe or Armijo line search
- $f(x)$ is polynomial of degree 38 (strongly convex along $s^{(k)}$.
- Iterates converge to circle around vertices of octagon
... not stationary points.

Limited-Memory Quasi-Newton Methods

Disadvantage of quasi-Newton: Storage \& computat ${ }^{n}: \mathcal{O}\left(n^{2}\right)$

- Quasi-Newton matrices are dense (\exists sparse updates).
- Storage \& computation of $\mathcal{O}\left(n^{2}\right)$ prohibitive for large n
... solve inverse problems from geology with 10^{12} unknowns

Limited memory method are clever way to re-write quasi-Newton

- Store $m \ll n$ most recent difference pairs $m \simeq 10$
- Cost per iteration only $\mathcal{O}(n m)$ not $\mathcal{O}\left(n^{2}\right)$

Limited-Memory Quasi-Newton Methods

Recall BFGS update:

$$
\begin{gathered}
B^{(k+1)}=B-\left(\frac{\delta \gamma^{T} B+B \gamma \delta^{T}}{\delta^{T} \gamma}\right)+\left(1+\frac{\gamma^{T} B \gamma}{\delta^{T} \gamma}\right) \frac{\delta \delta^{T}}{\delta^{T} \gamma} . \\
=B-\left(\frac{\delta \gamma^{T} B+B \gamma \delta^{T}}{\delta^{T} \gamma}\right)+\left(\frac{\gamma^{T} B \gamma}{\delta^{T} \gamma}\right) \frac{\delta \delta^{T}}{\delta^{T} \gamma}+\frac{\delta \delta^{T}}{\delta^{T} \gamma}
\end{gathered}
$$

Rewrite BFGS update as (substitute and prove for yourself!)

$$
B_{\mathrm{BFGS}}^{(k+1)}=V_{k}^{T} B V_{k}+\rho_{k} \delta \delta^{T},
$$

where

$$
\rho_{k}=\left(\delta^{T} \gamma\right)^{-1}, \quad \text { and } \quad V_{k}=I-\rho_{k} \gamma \delta^{T} .
$$

Recur update back to initial matrix, $B^{(0)} \succ 0$

Limited-Memory Quasi-Newton Methods

Idea: Apply $m \ll n$ quasi-Newton updates at iteration k, corresponding to difference pairs, $\left(\delta_{i}, \gamma_{i}\right)$ for $i=k-m, \ldots, k-1$:

$$
\begin{aligned}
B^{(k)}= & {\left[V_{k-1}^{T} \cdots V_{k-m}^{T}\right] B^{(0)}\left[V_{k-1} \cdots V_{k-m}\right] } \\
& +\rho_{k-m}\left[V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right] B^{(0)}\left[V_{k-1} \cdots V_{k-m+1}\right] \\
& +\ldots \\
& +\rho_{k-1} \delta^{(k-1)} \delta^{(k-1)^{T}}
\end{aligned}
$$

... can be implemented recursively!

Limited-Memory Quasi-Newton Methods

Recursive procedure to compute BFGS direction, s :
Limited Memory BFGS Search Direction Computation Given initial $B^{(0)}$, memory m, set gradient, $q=\nabla f\left(x^{(k)}\right)$. for $i=k-1, \ldots, k-m$ do
Set $\alpha_{i}=\rho_{i} \delta^{(i)^{T}} \gamma^{(i)}$
Update gradient: $q=q-\alpha_{i} \gamma^{(i)}$
end
Apply initial quasi-Newton matrix: $r=H^{(0)} q$ for $i=k-1, \ldots, k-m$ do

Set $\beta=\rho_{i} \gamma^{(i)^{T}} r$
Update direction: $r=r+\delta^{(i)}\left(\alpha_{i}-\beta\right)$
end
Return search direction: $s^{(k)}:=r\left(=H^{(k)} g^{(k)}\right)$
Cost of recursion is $\mathcal{O}(4 \mathrm{~nm})$ if $H^{(0)}$ is diagonal

General Quasi-Newton Methods

Given any of updates discussed, quasi-Newton algorithm is

General Quasi-Newton (qN) Line-Search Method

 Given $x^{(0)}$, set $k=0$.repeat
Get quasi-Newton direction, $s^{(k)}=-B^{(k)} g^{(k)}$
Step length $\alpha_{k}:=\operatorname{Armijo}\left(f(x), x^{(k)}, s^{(k)}\right)$
Set $x^{(k+1)}:=x^{(k)}+\alpha_{k} s^{(k)}$.
Form $\gamma^{(k)}, \delta^{(k)}$, update $\mathrm{q} N$ matrix, $B^{(k+1)}$, set $k=k+1$. until $x^{(k)}$ is (local) optimum;

Summary: Newton and Quasi-Newton Methods

Methods for unconstrained optimization:

$$
\underset{x}{\operatorname{minimize}} f(x)
$$

- Quadratic model provides better approx. of $f(x)$
- Newton's method minimizes quadratic for step d :

$$
\underset{d}{\operatorname{minimize}} q^{(k)}(d):=f^{(k)}+g^{(k)^{T}} d+\frac{1}{2} d^{T} H^{(k)} d
$$

- Modify if $H^{(k)}$ not pos. def. (no descend): $H^{(k)}+M_{k} \succeq 0$
- Converges quadratically (near solution)
- Quasi-Newton methods avoid need for Hessian $H^{(k)}$
- Update quasi-Newton approx. $B^{(k)} \approx H^{(k)^{-1}}$
- Limited memory version for large-scale optimization

