Mixed-Integer Nonlinear Optimization: Convex MINLPs
 GIAN Short Course on Optimization:
 Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Multi-Tree Methods
(2) Single-Tree Methods
(3) Presolve for MINLP

Montivation MINLP Trees are Huge

Synthesis MINLP B\&B Tree: 10000+ nodes after 360s

- Requires solution of thousands of NLPs QP solves can be good alternative
- Can we have even faster solves at nodes? Consider MILP solvers to search tree ...

Multi-Tree Methods

MILP solvers much better developed than MINLP

- LPs are easy to hot-start
- Decades of investment into software
- MILPs much easier; e.g. no need for constraint qualifications
\Rightarrow developed methods that exploit this technology
Multi-Tree Methods
- Outer approximation [Duran and Grossmann, 1986]
- Benders decomposition [Geoffrion, 1972]
- Extended cutting plane method [Westerlund and Pettersson, 1995]
... solve a sequence of MILP (and NLP) problems
Multi-tree methods evaluate functions "only" at integer points!

Multi-Tree Methods

Recall the η-MINLP formulation

$$
\begin{cases}\underset{\eta, x}{\operatorname{minimize}} & \eta, \\ \text { subject to } & f(x) \leq \eta, \\ & c(x) \leq 0, \\ & x \in \mathcal{X}, \\ & x_{i} \in \mathbb{Z}, \forall i \in \mathcal{I} .\end{cases}
$$

where we have "linearized" the objective: $\eta \geq f(x)$

Use η-MINLP in this section

Outer Approximation

Mixed-Integer Nonlinear Program (MINLP)

```
minimize}f(x) subject to c(x)\leq0,x\in\mathcal{X},\mp@subsup{x}{i}{}\in\mathbb{Z}\foralli\in\mathcal{I
```

NLP subproblem for fixed integers $x_{\mathcal{I}}^{(j)}$:

$$
\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\left\{\begin{array}{l}
\underset{x}{\operatorname{minimize}} f(x) \\
\text { subject to } c(x) \leq 0 \\
\\
x \in \mathcal{X} \quad \text { and } x_{\mathcal{I}}=x_{\mathcal{I}}^{(j)},
\end{array}\right.
$$

with solution $x^{(j)}$.

If $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$ infeasible then solve feasibility problem ...

Outer Approximation

Convexity of f and c implies that

Lemma (Supporting Hyperplane)

Linearization about solution $x^{(j)}$ of (NLP($\left.x_{\mathcal{I}}^{(j)}\right)$)
(OA) $\quad \eta \geq f^{(j)}+\nabla f^{(j)^{T}}\left(x-x^{(j)}\right) \quad$ and $\quad 0 \geq c^{(j)}+\nabla c^{(j)^{T}}\left(x-x^{(j)}\right)$, are outer approximations of the feasible set of η-MINLP.

Lemma (Feasibility Cuts)

If ($\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)$) infeasible, then $(O A)$ cuts off $x_{\mathcal{I}}=x_{\mathcal{I}}^{(j)}$.

Outer Approximation

Mixed-Integer Nonlinear Program (η-MINLP)

$$
\min _{x} \eta \text { s.t. } \eta \geq f(x), c(x) \leq 0, x \in \mathcal{X}, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
$$

Define index set of all possible feasible integers, \mathcal{F}

$$
\mathcal{F}:=\left\{x^{(j)} \in \mathcal{X}: x^{(j)} \text { solves }\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right) \quad \text { or }\left(F\left(x_{\mathcal{I}}^{(j)}\right)\right)\right\} .
$$

... boundedness of \mathcal{X} implies $|\mathcal{F}|<\infty$
Construct equivalent OA-MILP (outer approximation MILP)

$$
\left\{\begin{aligned}
\underset{\eta, x}{\operatorname{minimize}} & \eta, \\
\text { subject to } & \eta \geq f^{(j)}+\nabla f^{(j)^{T}}\left(x-x^{(j)}\right), \forall x^{(j)} \in \mathcal{F} \\
& 0 \geq c^{(j)}+\nabla c^{(j)^{T}}\left(x-x^{(j)}\right), \forall x^{(j)} \in \mathcal{F} \\
& x \in \mathcal{X}, \\
& x_{i} \in \mathbb{Z}, \forall i \in \mathcal{I} .
\end{aligned}\right.
$$

Outer Approximation in Less Than 1000 Words

Outer Approximation Algorithm

Solving OA-MILP clearly not sensible; define upper bound as

$$
U^{k}:=\min _{j \leq k}\left\{f^{(j)} \mid\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right) \text { is feasible }\right\} .
$$

Define relaxation of OA-MILP, using $\mathcal{F}^{k} \subset \mathcal{F}$, with $\mathcal{F}^{0}=\{0\}$

$$
M\left(\mathcal{F}^{k}\right)\left\{\begin{aligned}
\underset{\eta, x}{\operatorname{minimize}} & \eta, \\
\text { subject to } & \eta \leq U^{k}-\epsilon \\
& \eta \geq f^{(j)}+\nabla f^{(j)^{T}}\left(x-x^{(j)}\right), \forall x^{(j)} \in \mathcal{F}^{k} \\
0 & \geq c^{(j)}+\nabla c^{(j)^{T}}\left(x-x^{(j)}\right), \forall x^{(j)} \in \mathcal{F}^{k} \\
& x \in \mathcal{X}, \\
& x_{i} \in \mathbb{Z}, \forall i \in \mathcal{I} .
\end{aligned}\right.
$$

... build up better OA \mathcal{F}^{k} iteratively for $k=0,1, \ldots$

Outer Approximation Algorithm

Alternate between solve $\operatorname{NLP}\left(y_{j}\right)$ and MILP relaxation

MILP \Rightarrow lower bound; \quad NLP \Rightarrow upper bound
... convergence follows from convexity \& finiteness

Outer Approximation Algorithm

Alternate between solve $\operatorname{NLP}\left(y_{j}\right)$ and MILP relaxation

MILP \Rightarrow lower bound; \quad NLP \Rightarrow upper bound
... convergence follows from convexity \& finiteness

Outer Approximation Algorithm

Outer approximation ;
Given $x^{(0)}$, choose tol $\epsilon>0$, set $U^{-1}=\infty$, set $k=0$, and $\mathcal{F}^{-1}=\emptyset$.;
repeat
Solve $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$ or $\left(F\left(x_{I}^{(j)}\right)\right)$; solution $x^{(j)}$.;
if $\left(N L P\left(x_{\mathcal{I}}^{(j)}\right)\right)$ feasible \& $f^{(j)}<U^{k-1}$ then
Update best point: $x^{*}=x^{(j)}$ and $U^{k}=f^{(j)}$;
else
Set $U^{k}=U^{k-1}$;
end
Linearize f and c about $x^{(j)}$ and set $\mathcal{F}^{k}=\mathcal{F}^{k-1} \cup\{j\}$.; Solve $\left(M\left(\mathcal{F}^{k}\right)\right)$, let solution be $x^{(k+1)}$ \& set $k=k+1$.; until MILP $\left(M\left(\mathcal{F}^{k}\right)\right)$ is infeasible;

Outer Approximation Algorithm

Theorem (Convergence of Outer Approximation)

Let Assumptions A1-A3 hold, then outer approximation terminates finitely at optimal solution of MINLP or indicates it is infeasible.

Outline of Proof.

- Optimality of $x^{(j)}$ in ($\left.\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$ $\Rightarrow \eta \geq f^{(j)}$ for feasible point of $\left(M\left(\mathcal{F}^{k}\right)\right)$
... ensures finiteness, since \mathcal{X} compact
- Convexity \Rightarrow linearizations are supporting hyperplanes
... ensures optimality

Worst Case Example of Outer Approximation

 [Hijazi et al., 2010] construct infeasible MINLP:minimize 0
subject to $\sum_{i=1}^{n}\left(y_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}$

$$
y \in\{0,1\}^{n}
$$

Intersection of ball of radius $\frac{\sqrt{n-1}}{2}$ with unit hypercube.

Lemma

OA cannot cut more than one vertex of the hypercube MILP master problem feasible for any $k<2^{n}$ OA cuts

Theorem

OA visits all 2^{n} vertices

Benders Decomposition

Can derive Benders cut from outer approximation:

- Take optimal multipliers $\lambda^{(j)}$ of $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$
- Sum outer approximations

$$
\begin{aligned}
& \eta \geq f^{(j)}+\nabla f^{(j)^{T}}\left(x-x^{(j)}\right) \\
&+\quad \lambda^{(j)^{T}}\left(0 \geq c^{(j)}+\nabla c^{(j)^{T}}\left(x-x^{(j)}\right)\right) \\
& \eta \geq f^{(j)}+\nabla_{\mathcal{I}} \mathcal{L}^{(j)^{T}}\left(x_{\mathcal{I}}-x_{I}^{(j)}\right)
\end{aligned}
$$

- Using KKT conditions wrt continuous variables x_{C} : $0=\nabla_{C} \mathcal{L}^{(j)}=\nabla_{C} f+\nabla_{C} c \lambda^{(j)} \& \lambda^{(j)^{T}}{ }_{c}(j)=0$
... eliminates continuous variables, x_{C}
Benders cut only involves integer variables $x_{\mathcal{I}}$.
Can write cut as $\eta \geq f^{(j)}+\mu^{(j)^{T}}\left(x_{\mathcal{I}}-x_{\mathcal{I}}^{(j)}\right)$, where $\mu^{(j)}$ multiplier of $x=x_{\mathcal{I}}^{(j)}$ in $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$

Benders Decomposition

For MINLPs with convex problems functions f, c, we can show:
(1) Benders cuts are weaker than outer approximation

- Benders cuts are linear combination of OA
(2) Outer Approximation \& Benders converge finitely
- Functions f, c convex \Rightarrow OA cuts are outer approximations
- OA cut derived at optimal solution to NLP subproblem
$\Rightarrow \nexists$ feasible descend directions
... every OA cut corresponds to first-order condition
- Cannot visit same integer $x_{\mathcal{I}}^{(j)}$ more than once
\Rightarrow terminate finitely at optimal solution
Readily extended to situations where $\left(\operatorname{NLP}\left(x_{\mathcal{I}}^{(j)}\right)\right)$ not feasible.

Summary of Multi-Tree Methods

Three Classes of Multi-Tree Methods (did not discuss ECP)
(1) Outer approximation based on first-order expansion
(2) Benders decomposition linear combination of OA cuts
(3) Extended cutting plane method: avoids NLP solves

Common Properties of Multi-Tree Methods

- Only need to solve final MILP to optimality ... can terminate MILP early ... adding more NLPs
- Can add cuts from incomplete NLP solves
- Worst-case example for OA also applies for Benders and ECP
- No warm-starts for MILP ... expensive tree-search
... motivates single-tree methods next ...

Outline

(1) Multi-Tree Methods

(2) Single-Tree Methods
(3) Presolve for MINLP

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Form MILP outer approximation

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Form MILP outer approximation
- Take initial MILP tree

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Form MILP outer approximation
- Take initial MILP tree
- interrupt MILP, when new integral $x_{l}^{(j)}$ found
\Rightarrow solve $\operatorname{NLP}\left(x_{I}^{(j)}\right)$ get $x^{(j)}$

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Form MILP outer approximation
- Take initial MILP tree
- interrupt MILP, when new integral $x_{I}^{(j)}$ found
\Rightarrow solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$
- linearize f, c about $x^{(j)}$
\Rightarrow add linearization to tree

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Form MILP outer approximation
- Take initial MILP tree
- interrupt MILP, when new integral $x_{I}^{(j)}$ found
\Rightarrow solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$
- linearize f, c about $x^{(j)}$
\Rightarrow add linearization to tree
- continue MILP tree-search
... until lower bound \geq upper bound
Software:
FilMINT: FilterSQP + MINTO [L \& Linderoth] BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA

Branch-and-Cut in MINOTAUR

Suppose we need a branch-and-cut solver.

Node Relaxer

Obtain linear relaxation in root node.

Brancher

Pick a fractional variable.

CxLinHandler
IntVarHandler

Only
CxLinHandler

```
relax() {
// Solve NLP
// get Linearization at sol.
}
bool isFeasible() {
```

// check non-linear constraints
separate() \{
// solve NLP
// get Linearization at sol.
\}
cand* findBrCandidates() \{
// empty
\}

LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]

- Advanced MILP search and cut management techniques ... remove "old" OA cuts from LP relaxation \Rightarrow faster LP
- Generate cuts at non-integer points: ECP cuts are cheap ... generate cuts early (near root) of tree
- Strong branching, adaptive node selection \& cut management
- Fewer nodes, if we add more cuts (e.g. ECP cuts)
- More cuts make LP harder to solve
\Rightarrow remove outdated/inactive cuts from LP relaxation
... balance OA accuracy with LP solvability
- Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]
Benders and ECP versions are also possible.

Outline

(1) Multi-Tree Methods

(2) Single-Tree Methods
(3) Presolve for MINLP

Presolve for MINLP

Presolve plays key role in MILP solvers

- Bound tightening techniques
- Checking for duplicate rows
- Fixing or removing variables
- Identifying redundant constraints
... creates tighter LP/NLP relaxations \Rightarrow smaller trees!
... some presolve in AMPL, but no nonlinear presolve

What Could Go Wrong in MINLP?

Syn20M04M: a synthesis design problem in chemical engineering
Problem size: 160 Integer Variables, 56 Nonlinear constraints

1000+ nodes after solving for 75 s

5000+ nodes after solving for 200s

250+ nodes after solving for 45s

Solver	CPU	Nodes
Bonmin	$>2 h$	$>149 k$
MINLPBB	$>2 h$	$>150 k$
Minotaur	$>2 h$	$>264 k$

Improving Coefficients: An Example
(1) $x_{1}+21 x_{2} \leq 30$
$0 \leq x_{1} \leq 14$
$x_{2} \in\{0,1\}$

Improving Coefficients: An Example

(1) $x_{1}+21 x_{2} \leq 30$
$0 \leq x_{1} \leq 14$ $x_{2} \in\{0,1\}$

If $x_{2}=0$
$x_{1}+0 \leq 30$
(1) is loose.

If $x_{2}=1$
$x_{1} \leq 9$
(1) is tight.

Improving Coefficients: An Example

(1) $x_{1}+21 x_{2} \leq 30$ $0 \leq x_{1} \leq 14$ $x_{2} \in\{0,1\}$

If $x_{2}=0$
$x_{1}+0 \leq 30$
(1) is loose.

Improving Coefficients: An Example

Reformulation:
(2) $x_{1}+5 x_{2} \leq 14$

$$
\begin{array}{r}
0 \leq x_{1} \leq 14 \\
x_{2} \in\{0,1\}
\end{array}
$$

If $x_{2}=0$
$x_{1}+0 \leq 30$
(1) is loose.

If $x_{2}=1$
$x_{1} \leq 9$
(1) is tight.
(1) and (2) equivalent. But relaxation of (2) is tighter.

Improving Coefficients: Linear to Nonlinear

$$
\begin{aligned}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \leq M\left(1-x_{0}\right) \\
l_{i} \leq x_{i} & \leq u_{i}, \quad i=1, \ldots, k \\
x_{0} & \in\{0,1\}
\end{aligned}
$$

Improving Coefficients: Linear to Nonlinear

$$
\begin{aligned}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \leq M\left(1-x_{0}\right) \\
l_{i} \leq x_{i} & \leq u_{i}, \quad i=1, \ldots, k \\
x_{0} & \in\{0,1\}
\end{aligned}
$$

- If $c\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leq M(1-0)$, is loose, tighten it!

$$
\text { Let } \begin{align*}
c^{u}= & \max _{x} \tag{MAX-c}\\
& c\left(x_{1}, \ldots, x_{k}\right) \\
& \text { s.t. } \quad l_{i} \leq x_{i} \leq u_{i}, \quad i=1, \ldots, k
\end{align*}
$$

- If $c^{u}<M$, then tighten: $c\left(x_{1}, \ldots, x_{k}\right) \leq c^{u}\left(1-x_{0}\right)$

Improving Coefficients: Linear to Nonlinear

$$
\begin{aligned}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \leq M\left(1-x_{0}\right) \\
l_{i} \leq x_{i} & \leq u_{i}, \quad i=1, \ldots, k \\
x_{0} & \in\{0,1\}
\end{aligned}
$$

- If $c\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leq M(1-0)$, is loose, tighten it!

$$
\text { Let } \begin{align*}
& c^{u}=\max _{x} \tag{MAX-c}\\
& c\left(x_{1}, \ldots, x_{k}\right) \\
& \text { s.t. } \quad l_{i} \leq x_{i} \leq u_{i}, \quad i=1, \ldots, k
\end{align*}
$$

- If $c^{u}<M$, then tighten: $c\left(x_{1}, \ldots, x_{k}\right) \leq c^{u}\left(1-x_{0}\right)$
- (MAX-c) is a nonconvex NLP ... time-consuming
- Upper bound on (MAX-c) will also tighten
- Trade-off between time and quality of bound: Fast or Tight!

Improving Coefficients: Using Implications

$$
\begin{aligned}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \leq M\left(1-x_{0}\right) \\
l_{i} \leq x_{i} & \leq u_{i}, \quad i=1, \ldots, k \\
x_{0} & \in\{0,1\} .
\end{aligned}
$$

- Often, x_{0}, x_{i} also occur in other constraints of MINLP. e.g.

$$
\begin{aligned}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \leq M\left(1-x_{0}\right) \\
0 \leq x_{1} & \leq M_{1} x_{0} \\
0 \leq x_{2} & \leq M_{2} x_{0}
\end{aligned}
$$

$$
x_{0} \in\{0,1\}
$$

Improving Coefficients: Using Implications

$$
\begin{aligned}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \leq M\left(1-x_{0}\right) \\
l_{i} \leq x_{i} & \leq u_{i}, \quad i=1, \ldots, k \\
x_{0} & \in\{0,1\} .
\end{aligned}
$$

- Often, x_{0}, x_{i} also occur in other constraints of MINLP. e.g.

$$
\begin{gathered}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leq M\left(1-x_{0}\right) \\
0 \leq x_{1} \leq M_{1} x_{0} \\
0 \leq x_{2} \leq M_{2} x_{0}
\end{gathered}
$$

$$
x_{0} \in\{0,1\}
$$

- $x_{0}=0 \Rightarrow x_{1}=x_{2}, \ldots=x_{k}=0$. (Implications)
- If $c(0, \ldots, 0)<M$, then we can tighten.

Improving Coefficients: Using Implications

$$
\begin{aligned}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \leq M\left(1-x_{0}\right) \\
l_{i} \leq x_{i} & \leq u_{i}, \quad i=1, \ldots, k \\
x_{0} & \in\{0,1\} .
\end{aligned}
$$

- Often, x_{0}, x_{i} also occur in other constraints of MINLP. e.g.

$$
\begin{aligned}
c\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \leq M\left(1-x_{0}\right) \\
0 \leq x_{1} & \leq M_{1} x_{0} \\
0 \leq x_{2} & \leq M_{2} x_{0}
\end{aligned}
$$

$$
x_{0} \in\{0,1\}
$$

- $x_{0}=0 \Rightarrow x_{1}=x_{2}, \ldots=x_{k}=0$. (Implications)
- If $c(0, \ldots, 0)<M$, then we can tighten.
- No need to solve (MAX-c). Fast and Tight.

Presolve for MINLP

Advanced functions of presolve (Reformulating):

- Improve coefficients.
- Disaggregate constraints.
- Derive implications and conflicts.

Basic functions of presolve (Housekeeping):

- Tighten bounds on variables and constraints.
- Fix/remove variables.
- Identify and remove redundant constraints.
- Check duplicacy.

Popular in Mixed-Integer Linear Optimization [Savelsbergh, 1994]

Presolve for MINLP: Computational Results

Syn20M04M from egon.cheme.cmu.edu No Presolve Basic Presolve Full Presolve

Variables:	420	328	292
Binary Vars:	160	144	144
Constraints:	1052	718	610
Nonlin. Constr:	56	56	56
Bonmin(sec):	>7200	NA	NA
Minotaur(sec):	>7200	>7200	2.3

Minotaur, no presolve: 10000+ nodes after solving for 360s Why does no one else do this?

Full Presolve

Presolve for MINLP: Results

Time taken in Branch-and-Bound on all 463 instances.

Presolve for MINLP: Results

Time for $\mathrm{B} \& \mathrm{~B}$ on 96 RSyn- X and Syn- X instances.

Presolve for MINLP: Constraint Disaggregation

Nonlinear disaggregation [Tawarmalani and Sahinidis, 2005]

$$
S:=\left\{x \in \mathbb{R}^{n}: c(x)=h(g(x)) \leq 0\right\}
$$

$g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ smooth convex;
$h: \mathbb{R}^{p} \rightarrow \mathbb{R}$ smooth, convex, and nondecreasing
$\Rightarrow c(x)$ smooth convex

Disaggregated formulation: introduce $y=g(x) \in \mathbb{R}^{p}$

$$
S_{d}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p}: h(y) \leq 0, y \geq g(x)\right\} .
$$

Lemma

S is projection of S_{d} onto x.

Presolve for MINLP: Constraint Disaggregation

Consider

$$
S:=\left\{x \in \mathbb{R}^{n}: c(x)=h(g(x)) \leq 0\right\}
$$

and

$$
S_{d}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p}: h(y) \leq 0, y \geq g(x)\right\}
$$

Theorem

Any outer approximation of S_{d} is stronger than $O A$ of S
Given $\mathcal{X}^{k}:=\left\{x^{(1)}, \ldots, x^{(k)}\right\}$ construct OA for S, S_{d} :

$$
\begin{gathered}
S^{\text {oa }:=} \begin{array}{c}
\left\{x: c^{(I)}+\nabla c^{(I)^{T}}\left(x-x^{(I)}\right) \leq 0, \forall x^{(I)} \in \mathcal{X}^{k}\right\} \\
S_{d}^{o a}:=\left\{(x, y): h^{(I)}+\nabla h^{(I)^{T}}\left(y-g\left(x^{(I)}\right)\right) \leq 0\right. \\
\left.y \geq g^{(I)}+\nabla g^{(I)^{T}}\left(x-x^{(I)}\right), \forall x^{(I)} \in \mathcal{X}^{k}\right\}
\end{array} .
\end{gathered}
$$

[Tawarmalani and Sahinidis, 2005] show $S_{d}^{o a}$ stronger than $S^{o a}$

Presolve for MINLP: Constraint Disaggregation

[Hijazi et al., 2010] study

$$
\left\{x: c(x):=\sum_{j=1}^{q} h_{j}\left(a_{j}^{\top} x+b_{j}\right) \leq 0\right\}
$$

where $h_{j}: \mathbb{R} \rightarrow \mathbb{R}$ are smooth and convex
Disaggregated formulation: introduce $y \in \mathbb{R}^{q}$

$$
\left\{(x, y): \sum_{j=1}^{q} y_{j} \leq 0, \text { and } y_{j} \geq h_{j}\left(a_{j}^{\top} x+b_{j}\right)\right\}
$$

can be shown to be tighter

Recall: Worst Case Example of OA

Apply disaggregation to [Hijazi et al., 2010] example:
minimize 0
subject to $\sum_{\substack{i=1 \\ x}}\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}$
$x \in\{0,1\}^{n}$
Intersection of ball of radius $\frac{\sqrt{n-1}}{2}$ with unit hypercube.

Disaggregate $\sum\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}$ as

$$
\sum_{i=1}^{n} y_{i} \leq 0 \quad \text { and } \quad\left(x_{i}-\frac{1}{2}\right)^{2} \leq y_{i}
$$

Presolve for MINLP: Constraint Disaggregation

[Hijazi et al., 2010] disaggregation on worst-case example of OA

- Linearize around $x^{(1)} \in\{0,1\}^{n}$ and complement $x^{(2)}:=e-x^{(1)}$, where $e=(1, \ldots, 1)$
- OA of disaggregated constraint is

$$
\sum_{i=1}^{n} y_{i}, \quad \text { and } \quad x_{i}-\frac{3}{4} \leq y_{i}, \quad \text { and } \frac{1}{4}-x_{i} \leq y_{i}
$$

- Using $x_{i} \in\{0,1\}$ implies $z_{i} \geq 0$, implies $\sum z_{i} \geq \frac{n}{4}>\frac{n-1}{4}$
\Rightarrow OA-MILP master of $x^{(1)}$ and $x^{(2)}$ is infeasible.
... terminate in two iterations

Abhishek, K., Leyffer, S., and Linderoth, J. T. (2010).
FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs.
INFORMS Journal on Computing, 22:555-567.
DOI:10.1287/ijoc.1090.0373.
Ronami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A. (2008).

An algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5(2):186-204.
Duran, M. A. and Grossmann, I. (1986).
An outer-approximation algorithm for a class of mixed-integer nonlinear programs.
Mathematical Programming, 36:307-339.

Geoffrion, A. M. (1972).
Generalized Benders decomposition.
Journal of Optimization Theory and Applications, 10(4):237-260.

Griewank, A. and Toint, P. L. (1984).
On the exsistence of convex decompositions of partially separable functions. Mathematical Programming, 28:25-49.

Hijazi, H., Bonami, P., and Ouorou, A. (2010).
An outer-inner approximation for separable MINLPs.
Technical report, LIF, Faculté des Sciences de Luminy, Université de Marseille.
Savelsbergh, M. W. P. (1994).

Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal on Computing, 6:445-454.

Tawarmalani, M. and Sahinidis, N. V. (2005).
A polyhedral branch-and-cut approach to global optimization.
Mathematical Programming, 103(2):225-249.
Westerlund, T. and Pettersson, F. (1995).
A cutting plane method for solving convex MINLP problems. Computers \& Chemical Engineering, 19:s131-s136.
B
Wolsey, L. A. (1998).
Integer Programming.
John Wiley and Sons, New York.

