Tutorial 4: Newton Methods

- Show that Newton's method oscillates for $\min f(x)=x^{2}-x^{4} / 4$. Starting from $x^{(0)}=\sqrt{2 / 5}$ it creates alternating iterates $-\sqrt{2 / 5}$ and $\sqrt{2 / 5}$.
- Show that the quasi-Newton condition, $B \gamma=\delta$ holds for a quadratic function.
- Apply Newton's method to nonlinear least-squares:

$$
\underset{x}{\operatorname{minimize}} f(x)=\sum_{i=1}^{m} r_{i}(x)^{2}=r(x)^{T} r(x)=\|r(x)\|_{2}^{2}
$$

What happens, if $r_{i}(x)$ are linear? Can you propose a strategy for handling the case, where $\nabla^{2} r_{i}(x)$ are bounded, and $r_{i}(x) \rightarrow 0$?
This is the basis of the Gauss-Newton method.

Tutorial 4: Stationarity

- Consider

$$
f(x)=2 x_{1}^{3}-3 x_{1}^{2}-6 x_{1} x_{2}\left(x_{1}-x_{2}-1\right)
$$

Find its gradient and Hessian matrix, and find and classify all its stationary points.
If you like, plot $f(x)$ in domain $[-1,1]^{2}$ using Matlab:

$$
x x=[-1: 0.05: 1] ;
$$

$$
[x, y]=\operatorname{meshgrid}(x x, x x) ;
$$

$$
f=2 * x . \wedge 3-3 * x . \wedge 2-6 * x . * y . *(x-y-1) ;
$$

$$
\operatorname{surfc}(x, y, f) ;
$$

Use Matlab's help function to understand this code! Why is there a "." before the ?

- Repeat the previous question for Powell's function:

$$
f(x)=x_{1}^{4}+x_{1} x_{2}+\left(1+x_{2}\right)^{2}
$$

Tutorial 4: Bound Constrained Optimization

- For quadratic, $q(x)=g^{T} x+\frac{1}{2} x^{T} G x$, give an explicit formula for the Cauchy Point in (6.7).
- Given \hat{x} find the steepest descend direction $\hat{s}=-\nabla q(\hat{x})$
- Minimize the quadratic from \hat{x} in the direction \hat{s} :

$$
\underset{\alpha}{\operatorname{minimize}} q(\hat{x}+\alpha \hat{s}) \quad \text { subject to }\|\alpha \hat{s}\| \leq \Delta
$$

- Solve the problem

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} c^{T} x \quad \text { subject to } l \leq x \leq u
$$

where $c, l, u \in \mathbb{R}^{n}$ and $-\infty<l \leq u<\infty$.
What happens if some l_{i} or u_{i} are not finite?

