
Convexity and Duality
GIAN Short Course on Optimization:

Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016



Outline

1 Overview: Convexity and Duality

2 Convexity

3 Duality
Example: Dual of LP
Example: Dual of Strictly Convex QP

2 / 27



Overview: Convexity and Duality

Convexity and duality are important optimization concepts.

Convexity can replace the 2nd order conditions

Convexity guarantees global optimality
... snag: rarely holds in practice

Duality is a transformation for (convex) optimization problems

Duality can provide lower bounds & plays a role in MIPs

Start by discussing convexity
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Convexity

Definition (Convex Set)

Set S ⊂ Rn is convex, iff

x (0), x (1) ∈ S ⇒ (1− θ)x (0) + θx (1) ∈ S ∀θ ∈ [0, 1]

A set is convex, if for any two points in the set, the line between
the points also lies in the set.

Nonconvex Convex
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Examples of Convex Sets

Definition (Convex Set)

Set S ⊂ Rn is convex, iff

x (0), x (1) ∈ S ⇒ (1− θ)x (0) + θx (1) ∈ S ∀θ ∈ [0, 1]

More Examples of Convex Sets

∅, Rn, single point, line, hyperplane (aT x = b)

Half-spaces are convex: aT x ≥ b
⇒ any linear feasible set is convex

Given x̂ ∈ Rn, the ball, ‖x − x̂‖ ≤ r is convex

Si ⊂ Rn, i = 1, . . . ,m convex ⇒ S =
m⋂
i=1

Si also convex
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Convex Combination and Convex Hull

Definition (Convex Combination and Convex Hull)

For x (1), . . . , x (m) ∈ Rn, the point

xλ :=
m∑
i=1

λix
(i), with

m∑
i=1

λi = 1, λi ≥ 0

is convex combination of x (1), . . . , x (m)

Convex hull, conv(S), of set S ⊂ Rn is set of all convex
combinations of all points in S:{

x =
n∑

i=1

λix
(i) with

m∑
i=1

λi = 1, λi ≥ 0, x (i) ∈ S
}

In R2, put nails into points, then snap rubber band around nails to
get the convex hull.
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Feasible Set of an LP or QP

Theorem (Convexity of Linear Feasible Sets)

Feasible set of an LP or QP is convex:

FLP := {x | Ax = b, x ≥ 0}

Proof. Let x (0), x (1) ∈ FLP and θ ∈ [0, 1].

⇒ (1− θ)x (0) + θx (1) ≥ 0, because x (0), x (1) ≥ 0, θ, 1− θ ≥ 0

Now consider linear constraints:

A
(
(1−θ)x (0) +θx (1)

)
= (1−θ)Ax (0) +θAx (1) = (1−θ)b +θb = b

because x (0), x (1) ∈ FLP satisfy Ax = b.

Thus, we conclude that (1− θ)x (0) + θx (1) ∈ FLP �
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Extreme Points

Definition (Extreme Points)

x ∈ S is extreme point, iff for any x (0), x (1) ∈ S

x = (1− θ)x (0) + θx (1), with 0 < θ < 1

implies x = x (0) = x (1).

Extreme Points

Vertices of feasible set

Cannot be written as strict convex
combination

Play important role in algorithms:
1 Iterates of Simplex method for LP
2 Extreme points can be critical points in

global optimization
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Convex Functions

Definition (Convex Function)

f (x) is a convex function, iff its epigraph is convex set:

⇔ f
(
(1−θ)x (0) +θx (1)

)
≤ (1−θ)f

(
x (0)

)
+θf

(
x (1)

)
, ∀θ ∈ [0, 1]
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Alternative Definition of Convex Functions

Definition (Convex Differentiable Function)

f (x) differentiable is convex, iff any tangent is supporting
hyperplane:

f
(
x (1)

)
≥ f
(
x (0)

)
+
(
x (1) − x (0)

)T∇f
(
x (0)

)
Examples of convex functions:

Linear functions: aT x + b

Quadratics with Hessian, G � 0

Norms, ‖x‖
Convex combinations of convex
functions

11 / 27



Alternative Definition of Convex Functions

Definition (Convex Smooth Function)

f (x) twice continuously differentiable is convex, iff ∇2f (x) � 0
positive semi-definite.

More Examples of convex functions:

Quadratics with Hessian, G � 0

Definition (Concave Function)

f (x) is concave, iff −f (x) is convex.

Implications

Convave function lies below any
linear tangent

Hessian of concave function is
negative semi-definite
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Convex Programming Problem

Convex Programming Problem note reversed sign

minimize f (x)
subject to c(x) ≤ 0,

where f : Rn → R and c : Rn → Rm convex functions.

Theorem (Global Solution of Convex Programs)

Local solution x∗ of convex program is global solution.

The set of global solutions is convex.

Theorem (KKT Conditions are Necessary and Sufficient)

KKT conditions are necessary and sufficient for a global minimum
of a convex program.

Proofs. Exercises.
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Duality for Convex Programs

Duality is transformation for convex programs

(P)

{
minimize

x
f (x)

subject to c(x) ≤ 0,

where f : Rn → R and c : Rn → Rm smooth convex functions.

Theorem (Wolfe Dual)

If x∗ solves (P), if f (x) and c(x) are smooth convex functions, and
if MFCQ holds, then (x∗, y∗) solves the dual problem

(D)


maximize

x ,y
L(x , y)

subject to ∇xL(x , y) = 0
y ≥ 0,

where Lagrangian L(x , y) = f (x) + yT c(x). Moreover, f ∗ = L∗.
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Proof of Wolfe Dual

Let x∗ solve primal (satisfying MFCQ)

(P)

{
minimize

x
f (x)

subject to c(x) ≤ 0,

⇒ ∃ y∗ ≥ 0 such that (x∗, y∗) is KKT point:

∇xL(x∗, y∗) = 0, ci (x∗)y∗i = 0

⇒ (x∗, y∗) feasible in dual

(D)


maximize

x ,y
L(x , y)

subject to ∇xL(x , y) = 0
y ≥ 0,

and f ∗ = L∗ ... now show there is no better solution
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Proof of Wolfe Dual
Let (x ′, y ′) be any other feasible point of dual

(D)


maximize

x ,y
L(x , y)

subject to ∇xL(x , y) = 0
y ≥ 0,

Now show L(x∗, y∗) ≥ L(x ′, y ′) to show optimality:

L(x∗, y∗) = f ∗ ≥ f ∗ +
m∑
i=1

y ′i ci (x∗) = L(x∗, y ′)

because ci (x∗) ≤ 0, and y ′i ≥ 0 implies
∑

y ′i ci (x∗) ≤ 0.

Since L(x , y) is convex, use supporting hyperplane result:

L(x∗, y ′) ≥ L(x ′, y ′) +
(
x∗ − x ′

)T∇xL(x ′, y ′) = L(x ′, y ′)

Hence, L(x∗, y∗) ≥ L(x ′, y ′) and (x∗, y∗) is optimal.
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Dual of Linear Program in Standard Form

Dual of LP in standard form

minimize
x

cT x

subject to Ax = b
x ≥ 0

Lagrangian: L(x , y , z) = cT x − yT (Ax − b)− zT x

Wolfe-dual
maximize

x ,y ,z
L(x , y , z)

subject to ∇xL(x , y , z) = 0
z ≥ 0
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Dual of Linear Program in Standard Form

Lagrangian: L(x , y , z) = cT x − yT (Ax − b)− zT x

Wolfe-dual
maximize

x ,y ,z
L(x , y , z)

subject to ∇xL(x , y , z) = 0
z ≥ 0

Use first-order condition to eliminate (x , z):

∇xL(x , y , z) = 0 ⇔ c−AT y−z = 0 ⇔ c−AT y = z ≥ 0

Simplify objective (eliminate z = c − AT y)

L(x , y , z) = cT x − yT (Ax − b)−
(

c − AT y
)T

x = yTb
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Dual of Linear Program in Standard Form

Primal LP in standard form

minimize
x

cT x

subject to Ax = b
x ≥ 0

Dual LP:
maximize

y
bT y

subject to AT y ≤ c

Any feasible point of dual gives lower bound on primal

Given primal (dual) solution easy to get dual (primal) solution
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Dual of Another Linear Program

Dual of LP in not in standard form

minimize
x

cT x

subject to AT x ≥ b
x ≥ 0

Introduce multipliers y ≥ 0 of AT x ≥ 0 and z ≥ 0 for x ≥ 0

Can show that dual LP is

maximize
y

bT y

subject to Ay ≤ c
y ≥ 0

... see exercise this afternoon.

This primal/dual pair is often called the symmetric dual
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Getting Dual Information from AMPL

Consider LP
minimize

x
cT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

Question

How do we get duals (Lagrange multipliers) from AMPL

AMPL provides reduced costs (variable duals) and constraint
multipliers in different formats:

display _varname, _var.rc;

display _conname, _con;

Note difference between variables and constraints!
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Dual of Quadratic Program in Standard Form

Dual of QP
minimize

x

1
2xTGx + gT x

subject to AT x ≥ b

Lagrangian: L(x , y , z) = xTGx + gT x − yT (Ax − b)

Wolfe-dual
maximize

x ,y
L(x , y)

subject to ∇xL(x , y) = 0
y ≥ 0

... not as nice as LP dual
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Dual of Quadratic Program in Standard Form

Lagrangian: L(x , y) = xTGx + gT x − yT (Ax − b)

Wolfe-dual
maximize

x ,y
L(x , y)

subject to ∇xL(x , y) = 0
y ≥ 0

As before, look at first-order condition

∇xL(x , y) = 0 ⇔ Gx + g − AT y = 0

⇔ Gx = Ay − g ⇔ x = G−1
(
Ay − g

)
... can eliminate x , provided G−1 nonsingular (i.e. positive def.)
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Dual of Quadratic Program in Standard Form

Primal QP
minimize

x

1
2xTGx + gT x

subject to AT x ≥ b

Eliminating x = G−1
(
Ay − g

)
gives ...

Dual QP

maximize
y

−1
2yT

(
ATG−1A

)
y + yT

(
b + ATG−1g

)
− 1

2gTG−1g

subject to y ≥ 0

... bound constrained QP, but involves inverse G−1
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Discussion of Duality

{
minimize

x
f (x)

subject to c(x) ≤ 0,

dual−−→


maximize

x ,y
L(x , y)

subject to ∇xL(x , y) = 0
y ≥ 0,

Remark (Discussion of Duality)

Duals y∗i > 0 implies ci (x∗) = 0 ... indicates active set!

Transformation interesting computationally, if

m� n many more constraints than variables
Can easily eliminate primal variables, e.g. QP with G = I
... e.g. bundle methods for nonsmooth optimization

Dual gives lower bound on primal optimum
... use in MIP to cut-off branches ... any feasible point
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Summary and Teaching Points

Convexity

Linear Programs are convex

Quadratic Programs with positive
semi-definite Hessian are convex

Rarely holds in practice
... but really useful if it does

Favorable complexity results & algorithms

Duality

Transformation for convex optimization

Creates problem that can provide lower bounds
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