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Overview: Convexity and Duality

Convexity and duality are important optimization concepts.
e Convexity can replace the 2" order conditions

o Convexity guarantees global optimality
. snag: rarely holds in practice

@ Duality is a transformation for (convex) optimization problems

@ Duality can provide lower bounds & plays a role in MIPs

Start by discussing convexity
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Convexity

Set S C R" is convex, iff

xO xMDes = 1-0)xO+oxM es voelo1]

A set is convex, if for any two points in the set, the line between
the points also lies in the set.
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Convexity

Definition (Convex Set)
Set S C R" is convex, iff

X0 xMes = 1-0)xO +oxP s voelo,1]

A set is convex, if for any two points in the set, the line between
the points also lies in the set.

Nonconvex Convex

/27



Examples of Convex Sets

Definition (Convex Set)
Set S C R" is convex, iff

X0 xVes = 1-0)x@ +oxMes voe(o,1]

More Examples of Convex Sets
e (), R", single point, line, hyperplane (a” x = b)
o Half-spaces are convex: a’x > b
= any linear feasible set is convex
e Given % € R”, the ball, |[x — %|| < r is convex

m
e SCR" i=1,....mconvex = § = nS,- also convex
i=1
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N
Convex Combination and Convex Hull

Definition (Convex Combination and Convex Hull)

o For x( ... x(M c R" the point
m . m
xvi= ) AixDwith YN =1, 1>0
i=1 i=1

is convex combination of x(1) ... x(m)

e Convex hull, conv(S), of set S C R" is set of all convex
combinations of all points in S:

{x - zn: Aix() with i N=1 >0 xDe S}
i=1 i=1

v

In R?, put nails into points, then snap rubber band around nails to
get the convex hull.



Feasible Set of an LP or QP

Theorem (Convexity of Linear Feasible Sets)

Feasible set of an LP or QP is convex:

Fip:={x| Ax=b, x > 0}

Proof. Let x(O, x(\) € F;p and 0 € [0,1].

= (1 - 60)x© 4+ 6xM) >0, because x(O, x() >0,0,1-6>0
Now consider linear constraints:

A((1—0)x@ +-0x1)) = (1-0)AxO) + 9Ax) = (1-9)b+0b = b
because x(9), x(1) ¢ F, p satisfy Ax = b.

Thus, we conclude that (1 — 0)x(® +0x() e Fp O
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Extreme Points

Definition (Extreme Points)
x € S is extreme point, iff for any x(0, x(1) € §

x=(1-0)xO +oxB  witho < <1

implies x = x(0 = x(1).

Extreme Points
@ Vertices of feasible set

@ Cannot be written as strict convex
combination

o Play important role in algorithms:

@ lIterates of Simplex method for LP
@ Extreme points can be critical points in
global optimization
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Convex Functions

f(x) is a convex function, iff its epigraph is convex set:

& F(1-0)x@+0xW) < (1-0)F (x@) +of(x1), Vo€ o,1]
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N
Alternative Definition of Convex Functions

Definition (Convex Differentiable Function)

f(x) differentiable is convex, iff any tangent is supporting
hyperplane:

f(x(l)) > f(x(o)) + (X(l) — X(O)) TVf(x(o))

Examples of convex functions:
o Linear functions: a’x + b
@ Quadratics with Hessian, G = 0
e Norms, ||x||

@ Convex combinations of convex
functions
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N
Alternative Definition of Convex Functions

Definition (Convex Smooth Function)

f(x) twice continuously differentiable is convex, iff V2f(x) = 0
positive semi-definite.

More Examples of convex functions:
@ Quadratics with Hessian, G = 0

Definition (Concave Function) J

f(x) is concave, iff —f(x) is convex.

Implications

@ Convave function lies below any
linear tangent

@ Hessian of concave function is
negative semi-definite
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Convex Programming Problem
Convex Programming Problem note reversed sign
minimize  f(x)
subject to  ¢(x) <0,
where f : R” — R and ¢ : R" — R™ convex functions.

Theorem (Global Solution of Convex Programs)
@ Local solution x* of convex program is global solution.

@ The set of global solutions is convex.

Theorem (KKT Conditions are Necessary and Sufficient)

KKT conditions are necessary and sufficient for a global minimum
of a convex program.

Proofs. Exercises.
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Duality for Convex Programs

Duality is transformation for convex programs

P) {minixmize f(x)

subject to  ¢(x) <0,
where f : R" — R and ¢ : R” — R™ smooth convex functions.

Theorem (Wolfe Dual)

If x* solves (P), if f(x) and c(x) are smooth convex functions, and

if MFCQ holds, then (x*,y*) solves the dual problem

maximize  L(x, y)
X7y

(D) subject to  V,L(x,y)=0
y 20,

where Lagrangian L(x,y) = f(x) + y T c(x). Moreover, f* = L*.

V.
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Proof of Wolfe Dual

Let x* solve primal (satisfying MFCQ)

P) {minixmize f(x)

subject to  ¢(x) <0,
= 3 y* > 0 such that (x*, y*) is KKT point:
ViL(x*,y") =0, ci(x)yi =0
= (x*, y*) feasible in dual

maximize  L(x, y)
X7.y

(D) subject to  V,L(x,y) =0
y =0,

and f* = L* ... now show there is no better solution
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Proof of Wolfe Dual

Let (x', ) be any other feasible point of dual
maX|m|ze L(x,y)
subject to ViL(x,y)=0

y >0,
Now show L(x*,y*) > L(x',y’) to show optimality:

Ly ) =1 =+ ZYici x) = L(x",y)
i=1

because ¢j(x*) <0, and y/ > 0 implies > y/ci(x*) < 0.
Since L(x, y) is convex, use supporting hyperplane result:

L(x*,y") > L,y )+ (x* = X) TVXE(X’,y’) =L(xX,y")

Hence, L(x*,y*) > L(x',y’) and (x*, y*) is optimal.
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.
Dual of Linear Program in Standard Form

Dual of LP in standard form
minimize cTx
X
subjectto Ax=b
x>0

Lagrangian: £(x,y,z) =c'x—yT (Ax—b)—z"x

Wolfe-dual
maximize  L(x,y, z)
X’y’z
subject to  VL(x,y,z) =0

z>0
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Dual of Linear Program in Standard Form

Lagrangian: £(x,y,z) =c'x—yT (Ax—b) —z"x
Wolfe-dual
maximize  L(x,y,z)
X7y7Z
subject to  V,L(x,y,z) =0

z>0
Use first-order condition to eliminate (x, z):
ViL(x,y,z) =0 & c—ATy—2z=0 & c-Aly=2z>0
Simplify objective (eliminate z =c — ATy)

.
L(x,y,z)=c"x—yT (Ax—b) - (c - ATy) x=yTb
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.
Dual of Linear Program in Standard Form

Primal LP in standard form

minimize cTx
X

subjectto Ax=b
x>0

Dual LP:
maximize b’y
y
subjectto ATy <c

@ Any feasible point of dual gives lower bound on primal

e Given primal (dual) solution easy to get dual (primal) solution
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Dual of Another Linear Program

Dual of LP in not in standard form

minimize cTx
X

subjectto ATx>b
x>0

Introduce multipliers y > 0 of ATx>0and z>0for x>0
Can show that dual LP is
maximize b’y

y
subjectto Ay <c

y=0

. see exercise this afternoon.

This primal/dual pair is often called the symmetric dual
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Getting Dual Information from AMPL

Consider LP
minimize cTx
X
subject to a,-Tx =b; i€k
a,-Tx >b; i€l
Question

How do we get duals (Lagrange multipliers) from AMPL

AMPL provides reduced costs (variable duals) and constraint
multipliers in different formats:

display _varname, _var.rc;
display _conname, _con;

Note difference between variables and constraints!
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Dual of Quadratic Program in Standard Form

Dual of QP
minimize %XTGx—i—ng
X

subject to ATx > b

Lagrangian: £(x,y,z) =x"Gx+g'x —y' (Ax — b)

Wolfe-dual
maximize  L(x, y)
X?y
subject to  VL(x,y) =0
y=0

. not as nice as LP dual
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N
Dual of Quadratic Program in Standard Form

Lagrangian: £(x,y) =x"Gx+g'x —y' (Ax — b)

Wolfe-dual
maximize  L(x, y)
X’y
subject to  V,L(x,y) =0

y=0

As before, look at first-order condition
ViL(x,y)=0 < Gx+g—-ATy=0

& Gx=Ay—g & x:G_l(Ay—g)

.. can eliminate x, provided G~! nonsingular (i.e. positive def.)
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Dual of Quadratic Program in Standard Form

Primal QP

minimize %XTGX-i-gTX
X

subject to ATx> b

Eliminating x = G_I(Ay — g) gives ...

Dual QP

maxi/mize —3yT(ATG Ay +yT(b+ATG1g) — g7 G g

subjectto y >0

... bound constrained QP, but involves inverse G !
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Discussion of Duality

L maximize  L(x, y)
minimize f(x) dual X,y
X — . o
subject to  ¢(x) <0, subject to V,L(x,y) =0

y >0,

Remark (Discussion of Duality)

e Duals y > 0 implies ci(x*) = 0 ... indicates active set!
e Transformation interesting computationally, if
e m > n many more constraints than variables
e Can easily eliminate primal variables, e.g. QP with G =/
.. e.g. bundle methods for nonsmooth optimization
e Dual gives lower bound on primal optimum
. use in MIP to cut-off branches ... any feasible point

26
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Summary and Teaching Points

Convexity
@ Linear Programs are convex

@ Quadratic Programs with positive
semi-definite Hessian are convex

@ Rarely holds in practice
... but really useful if it does

@ Favorable complexity results & algorithms

Duality
@ Transformation for convex optimization

o Creates problem that can provide lower bounds
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