Conjugate Direction Methods

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Conjugate Direction Methods
(2) Classical Conjugate Gradient Method
(3) The Barzilai-Borwein Method

Exact Line-Search for Quadratics

Analysis uses exact line-search arguments.
Consider quadratic

$$
q(x)=\frac{1}{2} x^{T} G x+b^{T} x
$$

and perform an exact line-search: $\hat{x}+\alpha \boldsymbol{s}$:

$$
\underset{\alpha \geq 0}{\operatorname{minimize}} q(\hat{x}+\alpha s)=\frac{1}{2}(\hat{x}+\alpha s)^{T} G(\hat{x}+\alpha s)+b^{T}(\hat{x}+\alpha s)
$$

Re-arrange quadratic as

$$
q(\hat{x}+\alpha s)=\frac{1}{2} \alpha^{2} s^{T} G s+\alpha\left(s^{T} G \hat{x}+b^{T} s\right)+\frac{1}{2} \hat{x}^{T} G \hat{x}+b^{T} \hat{x}
$$

Setting $\frac{d q}{d \alpha}=0$ we get:

$$
0=\alpha s^{T} G s+s^{T}(G \hat{x}+b) \Leftrightarrow \alpha=-\frac{s^{T}(G \hat{x}+b)}{s^{T} G s}=\frac{-s^{T} \nabla q(\hat{x})}{s^{T} G s}
$$

Conjugate Direction Methods

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)
$$

Conjugate direction methods relate to a quadratic model of $f(x)$.

Definition (Conjugacy)

$m \leq n$ nonzero vectors, $s^{(1)}, \ldots, s^{(m)} \in \mathbb{R}^{n}$ are conjugate wrt positive definite Hessian G, iff $s^{(i)^{T}} G s^{(j)}=0$ for all $i \neq j$.

- Conjugacy is orthogonality across positive definite Hessian, G.
- For $G=I$, get orthogonality.

Definition (Conjugacy)

A conjugate direction method generates conjugate directions applied to a positive definite quadratic.

Conjugate Direction Methods

Theorem (Linear Independence of Conjugate Directions)

A set of m conjugate directions is linearly independent.
Proof. $s^{(1)}, \ldots, s^{(m)} \in \mathbb{R}^{n}$ conjugate. Consider $\sum_{i=1}^{m} a_{i} s^{(i)}=0$
... need to show $a_{i}=0$ is only solution of this system
G positive definite $\Rightarrow G$ nonsingular, hence

$$
\sum_{i=1}^{m} a_{i} s^{(i)}=0 \quad \Leftrightarrow \quad G\left(\sum_{i=1}^{m} a_{i} s^{(i)}\right)=0
$$

Pre-multiply by $s^{(j)}$:

$$
s^{(j)^{T}} G\left(\sum_{i=1}^{m} a_{i} s^{(i)}\right)=0 \quad \Leftrightarrow \quad a_{j} s^{(j)^{T}} G s^{(j)}=0 \quad \Leftrightarrow \quad a_{j}=0,
$$

because G positive definite.

Conjugate Direction Methods

Theorem (Termination of Conjugate Direction Methods)

- A conjugate direction method terminates for a positive definite quadratic in at most n exact line-searches.
- Each iterate, $x^{(k+1)}$ reached by $k \leq n$ descend steps along conjugate directions $s^{(1)}, \ldots, s^{(k)} \in \mathbb{R}^{n}$.

Proof. Define the quadratic as

$$
q(x)=\frac{1}{2} x^{T} G x+b^{T} x .
$$

Conjugate direction, $s^{(k)}$, gives $k+1$ iterate as
$x^{(k+1)}=x^{(k)}+\alpha_{k} s^{(k)}=\ldots=x^{(1)}+\sum_{j=1}^{k} \alpha_{j} s^{(j)}=x^{(i+1)}+\sum_{j=i+1}^{k} \alpha_{j} s^{(j)}$.

Conjugate Direction Methods

Proof cont.

From previous page: Conjugate direction, $s^{(k)}$, give iterates

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} s^{(k)}=\ldots=x^{(1)}+\sum_{j=1}^{k} \alpha_{j} s^{(j)}=x^{(i+1)}+\sum_{j=i+1}^{k} \alpha_{j} s^{(j)}
$$

Corresponding gradient of quadratic is

$$
\begin{aligned}
& g^{(k+1)}=G x^{(k+1)}+b=G\left(x^{(i+1)}+\sum_{j=i+1}^{k} \alpha_{j} s^{(j)}\right)+b \\
& \Rightarrow g^{(k+1)}=g^{(i+1)}+\sum_{j=i+1}^{k} \alpha_{j} G s^{(j)}
\end{aligned}
$$

Pre-multiply by $s^{(i)}$ we get
$s^{(i)^{T}} g^{(k+1)}=s^{(i)^{T}} g^{(i+1)}+\sum_{j=i+1}^{k} \alpha_{j} s^{(i)^{T}} G s^{(j)}=0, \quad \forall i=1, \ldots, k-1$,

Conjugate Direction Methods

Proof cont.

From previous: pre-multiply by $s^{(i)}$ we get
$s^{(i)^{T}} g^{(k+1)}=s^{(i)^{T}} g^{(i+1)}+\sum_{j=i+1}^{k} \alpha_{j} s^{(i)^{T}} G s^{(j)}=0, \quad \forall i=1, \ldots, k-1$,
where

- $s^{(i)^{T}} g^{(i+1)}=0$ due to exact line search.
- $s^{(i)^{T}} G s^{(j)}=0$ due to conjugacy.
- $s^{(k)^{T}} g^{(k+1)}=0$ due to exact line-search.

Hence,

$$
s^{(i)^{\top}} g^{(k+1)}=0, \forall i=1, \ldots, k
$$

Now, let $k=n$, then it follows that

$$
s^{(i)^{T}} g^{(n+1)}=0, \forall i=1, \ldots, n \quad \Rightarrow \quad g^{(n+1)}=0
$$

because, $g^{(n+1)}$ orthogonal to n linearly independent vectors

Conjugate Direction Methods

Remark

Previous Theorem holds for all conjugate direction methods!

Methods differ how $s^{(k)}$ constructed without knowing Hessian
Conjugate Direction Line-Search Method
Given $x^{(0)}$, set $k=0$. repeat
Compute the conjugate direction $s^{(k)}$.
Compute the steplength $\alpha_{k}:=\operatorname{Armijo}\left(f(x), x^{(k)}, s^{(k)}\right)$

$$
\text { Set } x^{(k+1)}:=x^{(k)}+\alpha_{k} s^{(k)} \text { and } k=k+1
$$

until $x^{(k)}$ is (local) optimum;
... next consider different ways to create conjugate directions.

Outline

(1) Conjugate Direction Methods

(2) Classical Conjugate Gradient Method
(3) The Barzilai-Borwein Method

Classical Conjugate Gradient Method

Idea Behind Conjugate Gradients

Modify steepest descend so that directions are conjugate.

Start by deriving method for quadratic

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} G x+b^{T} x
$$

then generalize to nonlinear $f(x)$.

Start with $s^{(0)}=-g^{(0)}$, steepest descend direction
\Rightarrow first step guaranteed to be downhill ... no stalling like Newton!

Classical Conjugate Gradient Method

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} G x+b^{T} x
$$

Start with $s^{(0)}=-g^{(0)}$, steepest descend direction
Choose $s^{(1)}$ as component of $-g^{(1)}$ conjugate to $s^{(0)}$:

$$
s^{(1)}=-g^{(1)}+\beta_{0} s^{(0)}
$$

Look for formula for β_{0} such that conjugacy holds, i.e.

$$
0=s^{(0)^{T}} G s^{(1)}=s^{(0)^{T}} G\left(-g^{(1)}+\beta_{0} s^{(0)}\right) .
$$

Solve for β_{0}, and get

$$
\beta_{0}=\frac{s^{(0)^{T}} G g^{(1)}}{s^{(0)^{T}} G s^{(0)}}
$$

where $s^{(0)^{T}} G s^{(0)} \neq 0$, because G positive definite, and $s^{(0)} \neq 0$.

Classical Conjugate Gradient Method

Simplify formula for β_{0} :

$$
\beta_{0}=\frac{s^{(0)^{T}} G g^{(1)}}{s^{(0)^{T}} G s^{(0)}}
$$

Recall, that

$$
x^{(1)}=x^{(0)}+\alpha_{1} s^{(0)} \Leftrightarrow s^{(0)}=\left(x^{(1)}-x^{(0)}\right) / \alpha_{1}
$$

where $\alpha_{1} \neq 0$, because of steepest descend.
Now use $G \delta=\gamma$ to write β_{0} as

$$
\beta_{0}=\frac{\left(x^{(1)}-x^{(0)}\right)^{T} G g^{(1)}}{\left(x^{(1)}-x^{(0)}\right)^{T} G s^{(0)}}=\frac{\left(g^{(1)}-g^{(0)}\right)^{T} g^{(1)}}{\left(g^{(1)}-g^{(0)}\right)^{T} s^{(0)}}
$$

Exact line-search implies $0=g^{(1)^{T}} s^{(0)}=-g^{(1)^{T}} g^{(0)}$, and thus

$$
\beta_{0}=\frac{g^{(1)^{T}} g^{(1)}}{g^{(0)^{T}} g^{(0)}}
$$

Classical Conjugate Gradient Method

Consider general step, k :

$$
s^{(k)}=\text { the component of }-g^{(k)} \text { conjugate to } s^{(0)}, \ldots, s^{(k-1)}
$$

Desired conjugacy:

$$
s^{(k)^{T}} G s^{(j)}=0, \forall j<k \quad \Leftrightarrow \quad s^{(k)^{T}} \gamma^{(j)}=0, \forall j<k,
$$

Use Gram-Schmidt orthogonalization procedure to get

$$
s^{(k)}=-g^{(k)}+\sum_{j=0}^{k-1} \beta_{j} s^{(j)} \quad \text { Can } \beta_{j}=0 \text { for } j<k ? ? ?
$$

For quadratic, can show that $\beta_{j}=0, \forall j<k$. Hence get:
$s^{(k)}=-g^{(k)}+\beta_{k-1} s^{(k-1)}$ where $\quad \beta_{k-1}= \begin{cases}0 & \text { if } k=0 \\ \frac{g^{(k)^{T}} g^{(k)}}{g^{(k-1)^{T}} g^{(k-1)}} & \text { otherwise }\end{cases}$
Fletcher-Reeves conjugate gradient method

Classical Conjugate Gradient Method

Min. quadratic $q(x)=\frac{1}{2} x^{T} G x+b^{T} x$ with Fletcher-Reeves (FR)
$s^{(k)}=g^{(k)}+\beta_{k-1} s^{(k-1)}$ where $\quad \beta_{k}= \begin{cases}0 & \text { if } k=-1 \\ \frac{g^{(k)^{T}} g^{(k)}}{g^{(k-1)^{T}} g^{(k-1)}} & \text { otherwise }\end{cases}$

Theorem (Convergence of FR for Convex Quadratics)

$F R$ with exact line-search terminates at stationary point, $x^{(m)}$ after $m \leq n$ iterations for a pos. definite quadratic. Moreover, for $0 \leq i \leq m-1$, we have that:
(1) Conjugate search directions: $s^{(i)^{T}} G s^{(j)}=0 \forall i \neq j, j<i$.
(2) Orthogonal gradients: $g^{(i)^{T}} g^{(j)}=0 \forall i \neq j, j=1, \ldots, i-1$.
(3) Descend property: $s^{(i)^{T}} g^{(j)}=-g^{(i)^{T}} g^{(j)}<0 \forall i \neq j$.

Proof of Fletcher-Reeves Convergence

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, $x^{(m)}$ after $m \leq n$ iterations for a pos. definite quadratic Moreover, for $0 \leq i \leq m-1$, we have that:
(1) Conjugate search directions: $\left.s^{(i)}\right)^{\top} G s^{(j)}=0 \forall i \neq j, j<i$.
(2) Orthogonal gradients: $g^{(i)}{ }^{T} g^{(j)}=0 \forall i \neq j, j=1, \ldots, i-1$.
(0) Descend property: $s^{(i)^{T}} g^{(i)}=-g^{(i)^{T}} g^{(i)}<0 \forall i \neq j$.

Proof. By induction over m...
For $m=0$, there is nothing to show.
For $m \geq 1$, show 1 . to 3 . of Theorem by induction over i.
For $i=0$, observe

$$
s^{(0)}=-g^{(0)} \Rightarrow s^{(0)^{T}} g^{(0)}=-g^{(0)^{T}} g^{(0)}
$$

$\Rightarrow 3$. holds for $i=0$, nothing to show for 1. and 2. (no $j<0$!)

Proof of Fletcher-Reeves Convergence

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, $x^{(m)}$ after $m \leq n$ iterations for a pos. definite quadratic Moreover, for $0 \leq i \leq m-1$, we have that:
(1) Conjugate search directions: $s^{(i)^{T}} G s^{(j)}=0 \forall i \neq j, j<i$.
(2) Orthogonal gradients: $g^{(i)^{T}} g^{(j)}=0 \forall i \neq j, j=1, \ldots, i-1$.

- Descend property: $s^{(i)^{T}} g^{(i)}=-g^{(i)^{T}} g^{(i)}<0 \forall i \neq j$.

Proof cont. Induction hypothesis: Assume that 1.-3. hold for i. Show 1.-3. also hold for $i+1$: Quadratic objective implies:

$$
g^{(i+1)}=G x^{(i+1)}+b=G\left(x^{(i)}+\alpha_{i} S^{(i)}\right)+b=g^{(i)}+\alpha_{i} G s^{(i)}
$$

Exact line search α_{i} implies:

$$
\alpha_{i}=\frac{-g^{(i)^{T}} s^{(i)}}{s^{(i)^{\top}} G s^{(i)}}=\frac{g^{(i)^{T}} g^{(i)}}{s^{(i)^{T}} G s^{(i)}}, \quad \text { from 3. by induction }
$$

Proof of Fletcher-Reeves Convergence

Now, we consider Part 2 for $g^{(i)^{T}} g^{(j)}=0$:

$$
\begin{aligned}
g^{(i+1)^{T}} g^{(j)} & =g^{(i)^{T}} g^{(j)}+\alpha_{i} s^{(i)^{T}} G g^{(j)} \\
& =g^{(i)^{T}} g^{(j)}+\alpha_{i} s^{(i)^{T}} G\left(-s^{(j)}+\beta_{j-1} s^{(j-1)}\right)
\end{aligned}
$$

from definition of $s^{(j)}=-g^{(j)}+\beta_{j-1} s^{(j-1)}$, to get $g^{(j)}$. Thus,

$$
g^{(i+1)^{T}} g^{(j)}=g^{(i)^{T}} g^{(j)}-\alpha_{i} s^{(i)^{T}} G s^{(j)}+\alpha_{i} \beta_{j-1} s^{(i)^{T}} G s^{(j-1)}
$$

For $i=j$ observe:

- Exact line-search $\Rightarrow \alpha=\frac{-s^{\top} g}{s^{T} G s} \Rightarrow$ sum of first terms is zero
- Induction Part 1. \Rightarrow last expression zero.

Proof of Fletcher-Reeves Convergence

Now, we consider Part 2 for $g^{(i+1)^{T}} g^{(j)}=0$:

$$
g^{(i+1)^{T}} g^{(j)}=g^{(i)^{T}} g^{(j)}-\alpha_{i} s^{(i)^{T}} G s^{(j)}+\alpha_{i} \beta_{j-1} s^{(i)^{T}} G s^{(j-1)}
$$

For $i<j$ observe:

- Induction Part 2. \Rightarrow first expression zero
- Induction Part 1. \Rightarrow last two expressions zero.

Thus, $g^{(i+1)^{T}} g^{(j)}=0$ for $j=1, \ldots, i$ which proves Part 2.

Proof of Fletcher-Reeves Convergence

Consider Part 1. Use $s^{(i+1)}=-g^{(i+1)}+\beta_{i} s^{(i)}$:

$$
\begin{aligned}
s^{(i+1)^{T}} G s^{(j)} & =-g^{(i+1)^{T}} G s^{(j)}+\beta_{i} s^{(i)^{T}} G s^{(j)} \\
& =\alpha_{j}^{-1} g^{(i+1)^{T}}\left(g^{(j)}-g^{(j+1)}\right)+\beta_{i} s^{(i)^{T} G s^{(j)}}
\end{aligned}
$$

because $G s^{(j)}=\alpha_{j}^{-1} G\left(x^{(j)}-x^{(j+1)}\right)=\alpha_{j}^{-1} G\left(g^{(j)}-g^{(j+1)}\right)$.

For $j<i$ get:

- Part 2. \Rightarrow first component is zero
- Part 1. and induction \Rightarrow second component is zero

Proof of Fletcher-Reeves Convergence

Consider again

$$
\begin{aligned}
s^{(i+1)^{T}} G s^{(j)} & =-g^{(i+1)^{T}} G s^{(j)}+\beta_{i} s^{(i)^{T}} G s^{(j)} \\
& =\alpha_{j}^{-1} g^{(i+1)^{T}}\left(g^{(j)}-g^{(j+1)}\right)+\beta_{i} s^{(i)^{T}} G s^{(j)}
\end{aligned}
$$

For $j=i$ re-write this expression as
$s^{(j+1)^{T}} G s^{(j)}=\alpha_{j}^{-1} g^{(j+1)^{T}} g^{(j)}-\alpha_{j}^{-1} g^{(j+1)^{T}} g^{(j+1)}+\beta_{j} s^{(j+1)^{T}} G s^{(j)}$.
Part 2. \Rightarrow first component is zero
Use exact line-search α_{j} second component becomes

$$
\begin{aligned}
& -\alpha_{j}^{-1} g^{(j+1)^{T}} g^{(j+1)}+\beta_{j} s^{(j+1)^{T}} G s^{(j)} \\
& =-s^{(j+1)^{T}} G s^{(j)} \frac{g^{(j+1)^{T}} g^{(j+1)}}{g^{(j)^{T}} g^{(j)}}+\beta_{j} s^{(j+1)^{T}} G s^{(j)}=0,
\end{aligned}
$$

from β_{j} formula.
$\Rightarrow s^{(i+1)^{T}} G s^{(j)}=0$ for all $j=1, \ldots, i$, which proves Part 1 .
Quadratic termination follows from Part 1., and conjugate directions, $s^{(1)}, \ldots, s^{(m)}$.

Conjugate Gradient Method for Nonlinear Functions

Consider $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)$, then

$$
x \in \mathbb{R}^{n}
$$

- Cannot perform exact line-search ... approx, e.g. Armijo
- Cannot expect termination after n steps \Rightarrow re-start $s^{(n+1)}=-g^{(n+1)}$ or re-orthogonalize

Other Conjugate Gradient Schemes

$$
\begin{aligned}
& \beta_{k}^{P R}=\frac{\left(g^{(k+1)}-g^{(k)}\right)^{T} g^{(k)}}{g^{(k-1)^{T}} g^{(k-1)}} \\
& \text { and } \\
& \beta_{k}^{D Y}=\frac{g^{(k)^{T}} g^{(k)}}{s^{(k-1)^{T}} g^{(k-1)}}
\end{aligned}
$$

Dai-Yuan better than Polak-Ribiere better than Fletcher-Reeves

Outline

(1) Conjugate Direction Methods

(2) Classical Conjugate Gradient Method
(3) The Barzilai-Borwein Method

The Barzilai-Borwein Method

Recent renewed interest in a simpler two-step gradient method

- Satisfy quasi-Newton in least-squares sense.

Barzilai-Borwein Method

Given $x^{(0)}$, set $k=0$.
repeat
Set the step-size α_{k} using one of BB schemes below.
Set $x^{(k+1)}:=x^{(k)}-\alpha_{k} g^{(k)}$ and $k=k+1$. [Steepest Descend]
until $x^{(k)}$ is (local) optimum;

Surprise: No Line Search

- Barzilai-Borwein Algorithm has no line-search
- Success relies on non-monotone behavior (may increase $f(x)$)

The Barzilai-Borwein Method

Popular formulas for BB step size

$$
\begin{align*}
\alpha_{k}^{B B} & =\frac{\delta^{(k-1)} \delta^{(k-1)}}{\delta^{(k-1)} \gamma^{(k-1)}} \tag{1}\\
\alpha_{k}^{B B s} & =\frac{\delta^{(k-1)} \gamma^{(k-1)}}{\gamma^{(k-1)} \gamma^{(k-1)}} \tag{2}\\
\alpha_{k}^{a B B} & = \begin{cases}\alpha_{k}^{B B} & \text { for odd } k \\
\alpha_{k}^{B B s} & \text { for even } k\end{cases} \tag{3}
\end{align*}
$$

- Can reset the step length to steepest-descend
- Generalized to bound-constrained optimization using projection

Summary of Conjugate Direction Methods

Methods for unconstrained optimization:

$$
\underset{x}{\operatorname{minimize}} f(x)
$$

- Conjugacy is orthogonality across Hessian G, i.e.

$$
s^{(i)^{T}} G s^{(j)}=0 \quad \forall i \neq j
$$

- Conjugate direction methods terminate finitely for quadratic
- Good alternative to quasi-Newton
- Recently, interest in Barzilai-Borwein schemes

