

Conjugate Direction Methods GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

2 Classical Conjugate Gradient Method

3 The Barzilai-Borwein Method

Exact Line-Search for Quadratics

Analysis uses exact line-search arguments. Consider quadratic

$$q(x) = \frac{1}{2}x^T G x + b^T x$$

and perform an exact line-search: $\hat{x} + \alpha s$:

$$\underset{\alpha \ge 0}{\text{minimize}} q(\hat{x} + \alpha s) = \frac{1}{2}(\hat{x} + \alpha s)^T G(\hat{x} + \alpha s) + b^T (\hat{x} + \alpha s)$$

Re-arrange quadratic as

$$q(\hat{x} + \alpha s) = \frac{1}{2}\alpha^2 s^T G s + \alpha \left(s^T G \hat{x} + b^T s \right) + \frac{1}{2} \hat{x}^T G \hat{x} + b^T \hat{x}$$

Setting $\frac{dq}{d\alpha} = 0$ we get:

$$0 = \alpha s^{T} G s + s^{T} (G \hat{x} + b) \quad \Leftrightarrow \quad \alpha = -\frac{s^{T} (G \hat{x} + b)}{s^{T} G s} = \frac{-s^{T} \nabla q(\hat{x})}{s^{T} G s}$$

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$

Conjugate direction methods relate to a quadratic model of f(x).

Definition (Conjugacy)

 $m \leq n$ nonzero vectors, $s^{(1)}, \ldots, s^{(m)} \in \mathbb{R}^n$ are conjugate wrt positive definite Hessian G, iff $s^{(i)^T} G s^{(j)} = 0$ for all $i \neq j$.

- Conjugacy is orthogonality across positive definite Hessian, G.
- For G = I, get orthogonality.

Definition (Conjugacy)

A *conjugate direction method* generates conjugate directions applied to a positive definite quadratic.

Theorem (Linear Independence of Conjugate Directions)

A set of m conjugate directions is linearly independent.

Proof. $s^{(1)}, \ldots, s^{(m)} \in \mathbb{R}^n$ conjugate. Consider $\sum_{i=1}^m a_i s^{(i)} = 0$... need to show $a_i = 0$ is only solution of this system *G* positive definite $\Rightarrow G$ nonsingular, hence

$$\sum_{i=1}^{m} a_i s^{(i)} = 0 \quad \Leftrightarrow \quad G\left(\sum_{i=1}^{m} a_i s^{(i)}\right) = 0$$

Pre-multiply by $s^{(j)}$:

$$s^{(j)^{T}}G\left(\sum_{i=1}^{m}a_{i}s^{(i)}
ight)=0 \quad \Leftrightarrow \quad a_{j}s^{(j)^{T}}Gs^{(j)}=0 \quad \Leftrightarrow \quad a_{j}=0,$$

because G positive definite.

Theorem (Termination of Conjugate Direction Methods)

- A conjugate direction method terminates for a positive definite quadratic in at most n exact line-searches.
- Each iterate, x^(k+1) reached by k ≤ n descend steps along conjugate directions s⁽¹⁾,..., s^(k) ∈ ℝⁿ.

Proof. Define the quadratic as

$$q(x) = \frac{1}{2}x^T G x + b^T x.$$

Conjugate direction, $s^{(k)}$, gives k + 1 iterate as

$$x^{(k+1)} = x^{(k)} + \alpha_k s^{(k)} = \dots = x^{(1)} + \sum_{j=1}^k \alpha_j s^{(j)} = x^{(i+1)} + \sum_{j=i+1}^k \alpha_j s^{(j)}.$$

Proof cont.

From previous page: Conjugate direction, $s^{(k)}$, give iterates

$$x^{(k+1)} = x^{(k)} + \alpha_k s^{(k)} = \ldots = x^{(1)} + \sum_{j=1}^k \alpha_j s^{(j)} = x^{(i+1)} + \sum_{j=i+1}^k \alpha_j s^{(j)}.$$

Corresponding gradient of quadratic is

$$g^{(k+1)} = Gx^{(k+1)} + b = G\left(x^{(i+1)} + \sum_{j=i+1}^{k} \alpha_j s^{(j)}\right) + b$$

$$\Rightarrow g^{(k+1)} = g^{(i+1)} + \sum_{j=i+1}^{k} \alpha_j G s^{(j)}$$

Pre-multiply by $s^{(i)}$ we get

$$s^{(i)^{T}}g^{(k+1)} = s^{(i)^{T}}g^{(i+1)} + \sum_{j=i+1}^{k} \alpha_{j}s^{(i)^{T}}Gs^{(j)} = 0, \quad \forall i = 1, \dots, k-1,$$

Proof cont.

From previous: pre-multiply by $s^{(i)}$ we get

$$s^{(i)^{T}}g^{(k+1)} = s^{(i)^{T}}g^{(i+1)} + \sum_{j=i+1}^{k} \alpha_{j}s^{(i)^{T}}Gs^{(j)} = 0, \quad \forall i = 1, \dots, k-1,$$

where

- $s^{(i)^T}g^{(i+1)} = 0$ due to exact line search.
- $s^{(i)^T} G s^{(j)} = 0$ due to conjugacy.
- $s^{(k)^T}g^{(k+1)} = 0$ due to exact line-search.

Hence,

$$s^{(i)^{T}}g^{(k+1)} = 0, \ \forall i = 1, \dots, k.$$

Now, let k = n, then it follows that

$$s^{(i)^{T}}g^{(n+1)} = 0, \ \forall i = 1, \dots, n \qquad \Rightarrow \qquad g^{(n+1)} = 0$$

because, $g^{(n+1)}$ orthogonal to n linearly independent vectors

Remark

Previous Theorem holds for all conjugate direction methods!

Methods differ how $s^{(k)}$ constructed without knowing Hessian

Conjugate Direction Line-Search Method

Given $x^{(0)}$, set k = 0. repeat

Compute the conjugate direction $s^{(k)}$.

Compute the steplength $\alpha_k := \operatorname{Armijo}(f(x), x^{(k)}, s^{(k)})$

Set
$$x^{(k+1)} := x^{(k)} + \alpha_k s^{(k)}$$
 and $k = k + 1$.

until $x^{(k)}$ is (local) optimum;

... next consider different ways to create conjugate directions.

Outline

1 Conjugate Direction Methods

2 Classical Conjugate Gradient Method

Idea Behind Conjugate Gradients

Modify steepest descend so that directions are conjugate.

Start by deriving method for quadratic

$$\underset{x \in \mathbb{R}^{n}}{\text{minimize } q(x)} = \frac{1}{2}x^{T}Gx + b^{T}x$$

then generalize to nonlinear f(x).

Start with $s^{(0)} = -g^{(0)}$, steepest descend direction \Rightarrow first step guaranteed to be downhill ... no stalling like Newton!

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} q(x) = \frac{1}{2} x^T G x + b^T x$$

Start with $s^{(0)} = -g^{(0)}$, steepest descend direction Choose $s^{(1)}$ as component of $-g^{(1)}$ conjugate to $s^{(0)}$:

$$s^{(1)} = -g^{(1)} + \beta_0 s^{(0)}$$

Look for formula for β_0 such that conjugacy holds, i.e.

$$0 = s^{(0)^{T}} G s^{(1)} = s^{(0)^{T}} G \left(-g^{(1)} + \beta_0 s^{(0)} \right).$$

Solve for β_0 , and get

$$\beta_0 = \frac{s^{(0)^T} G g^{(1)}}{s^{(0)^T} G s^{(0)}},$$

where $s^{(0)^T}Gs^{(0)} \neq 0$, because G positive definite, and $s^{(0)} \neq 0$.

Simplify formula for β_0 :

$$\beta_0 = \frac{s^{(0)^T} G g^{(1)}}{s^{(0)^T} G s^{(0)}},$$

Recall, that

$$x^{(1)} = x^{(0)} + \alpha_1 s^{(0)} \Leftrightarrow s^{(0)} = \left(x^{(1)} - x^{(0)}\right) / \alpha_1,$$

where $\alpha_1 \neq 0$, because of steepest descend. Now use $G\delta = \gamma$ to write β_0 as

$$\beta_0 = \frac{\left(x^{(1)} - x^{(0)}\right)^T Gg^{(1)}}{\left(x^{(1)} - x^{(0)}\right)^T Gs^{(0)}} = \frac{\left(g^{(1)} - g^{(0)}\right)^T g^{(1)}}{\left(g^{(1)} - g^{(0)}\right)^T s^{(0)}}$$

Exact line-search implies $0 = g^{(1)^T} s^{(0)} = -g^{(1)^T} g^{(0)}$, and thus

$$\beta_0 = \frac{g^{(1)}{}^{\tau}g^{(1)}}{g^{(0)}{}^{\tau}g^{(0)}}.$$

Consider general step, k:

 $s^{(k)}$ = the component of $-g^{(k)}$ conjugate to $s^{(0)}, \ldots, s^{(k-1)}$. Desired conjugacy:

 $s^{(k)^T}Gs^{(j)} = 0, \ \forall j < k \quad \Leftrightarrow \quad s^{(k)^T}\gamma^{(j)} = 0, \ \forall j < k,$

Use Gram-Schmidt orthogonalization procedure to get

$$s^{(k)} = -g^{(k)} + \sum_{j=0}^{k-1} \beta_j s^{(j)}$$
 Can $\beta_j = 0$ for $j < k$???

For quadratic, can show that $\beta_j = 0, \forall j < k$. Hence get:

$$s^{(k)} = -g^{(k)} + \beta_{k-1} s^{(k-1)} \text{ where } \beta_{k-1} = \begin{cases} 0 & \text{if } k = 0 \\ \\ \frac{g^{(k)^T} g^{(k)}}{g^{(k-1)^T} g^{(k-1)}} & \text{otherwise} \end{cases}$$

Fletcher-Reeves conjugate gradient method

Min. quadratic $q(x) = \frac{1}{2}x^T G x + b^T x$ with Fletcher-Reeves (FR)

$$s^{(k)} = g^{(k)} + \beta_{k-1} s^{(k-1)} \text{ where } \beta_k = \begin{cases} 0 & \text{if } k = -1 \\ \frac{g^{(k)^T} g^{(k)}}{g^{(k-1)^T} g^{(k-1)}} & \text{otherwise} \end{cases}$$

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, $x^{(m)}$ after $m \le n$ iterations for a pos. definite quadratic. Moreover, for $0 \le i \le m - 1$, we have that:

- Conjugate search directions: $s^{(i)^T} Gs^{(j)} = 0 \quad \forall i \neq j, j < i.$
- Orthogonal gradients: $g^{(i)^T}g^{(j)} = 0 \ \forall i \neq j, \ j = 1, \dots, i-1.$
- **3** Descend property: $s^{(i)^T}g^{(j)} = -g^{(i)^T}g^{(j)} < 0 \ \forall i \neq j.$

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, $x^{(m)}$ after $m \le n$ iterations for a pos. definite quadratic Moreover, for $0 \le i \le m - 1$, we have that:

- Conjugate search directions: $s^{(i)^T} G s^{(j)} = 0 \ \forall i \neq j, \ j < i.$
- **2** Orthogonal gradients: $g^{(i)^T}g^{(j)} = 0 \ \forall i \neq j, \ j = 1, \dots, i-1.$
- **3** Descend property: $s^{(i)^{T}}g^{(i)} = -g^{(i)^{T}}g^{(i)} < 0 \ \forall i \neq j.$

Proof. By induction over *m* ...

For m = 0, there is nothing to show. For $m \ge 1$, show 1. to 3. of Theorem by induction over *i*. For i = 0, observe

$$s^{(0)} = -g^{(0)} \ \Rightarrow \ s^{(0)^{ op}}g^{(0)} = -g^{(0)^{ op}}g^{(0)}.$$

 \Rightarrow 3. holds for i = 0, nothing to show for 1. and 2. (no j < 0!)

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, $x^{(m)}$ after $m \le n$ iterations for a pos. definite quadratic Moreover, for $0 \le i \le m - 1$, we have that:

- Conjugate search directions: $s^{(i)^T}Gs^{(j)} = 0 \ \forall i \neq j, \ j < i.$
- Orthogonal gradients: $g^{(i)^T}g^{(j)} = 0 \quad \forall i \neq j, j = 1, \dots, i-1.$
- **3** Descend property: $s^{(i)^{T}}g^{(i)} = -g^{(i)^{T}}g^{(i)} < 0 \ \forall i \neq j.$

Proof cont. Induction hypothesis: Assume that 1.-3. hold for *i*. Show 1.-3. also hold for i + 1: Quadratic objective implies:

$$g^{(i+1)} = Gx^{(i+1)} + b = G\left(x^{(i)} + \alpha_i s^{(i)}\right) + b = g^{(i)} + \alpha_i Gs^{(i)}$$

Exact line search α_i implies:

$$\alpha_{i} = \frac{-g^{(i)^{T}} s^{(i)}}{s^{(i)^{T}} G s^{(i)}} = \frac{g^{(i)^{T}} g^{(i)}}{s^{(i)^{T}} G s^{(i)}}, \quad \text{from 3. by induction}$$

Now, we consider Part 2 for $g^{(i)^T}g^{(j)} = 0$:

$$g^{(i+1)^{T}}g^{(j)} = g^{(i)^{T}}g^{(j)} + \alpha_{i}s^{(i)^{T}}Gg^{(j)}$$

= $g^{(i)^{T}}g^{(j)} + \alpha_{i}s^{(i)^{T}}G\left(-s^{(j)} + \beta_{j-1}s^{(j-1)}\right)$

from definition of $s^{(j)} = -g^{(j)} + \beta_{j-1}s^{(j-1)}$, to get $g^{(j)}$. Thus,

$$g^{(i+1)^{T}}g^{(j)} = g^{(i)^{T}}g^{(j)} - \alpha_{i}s^{(i)^{T}}Gs^{(j)} + \alpha_{i}\beta_{j-1}s^{(i)^{T}}Gs^{(j-1)}$$

For i = j observe:

- Exact line-search $\Rightarrow \alpha = \frac{-s^T g}{s^T G s} \Rightarrow$ sum of first terms is zero
- Induction Part 1. \Rightarrow last expression zero.

Now, we consider Part 2 for $g^{(i+1)^T}g^{(j)} = 0$:

$$g^{(i+1)^{T}}g^{(j)} = g^{(i)^{T}}g^{(j)} - \alpha_{i}s^{(i)^{T}}Gs^{(j)} + \alpha_{i}\beta_{j-1}s^{(i)^{T}}Gs^{(j-1)}$$

For i < j observe:

- Induction Part 2. \Rightarrow first expression zero
- Induction Part 1. \Rightarrow last two expressions zero.

Thus, $g^{(i+1)^T}g^{(j)} = 0$ for $j = 1, \dots, i$ which proves Part 2.

Consider Part 1. Use $s^{(i+1)} = -g^{(i+1)} + \beta_i s^{(i)}$:

$$s^{(i+1)^{T}}Gs^{(j)} = -g^{(i+1)^{T}}Gs^{(j)} + \beta_{i}s^{(i)^{T}}Gs^{(j)} = \alpha_{j}^{-1}g^{(i+1)^{T}}\left(g^{(j)} - g^{(j+1)}\right) + \beta_{i}s^{(i)^{T}}Gs^{(j)},$$

because $Gs^{(j)} = \alpha_j^{-1} G\left(x^{(j)} - x^{(j+1)}\right) = \alpha_j^{-1} G\left(g^{(j)} - g^{(j+1)}\right).$

For j < i get:

- Part 2. \Rightarrow first component is zero
- Part 1. and induction \Rightarrow second component is zero

Consider again

$$s^{(i+1)^{T}}Gs^{(j)} = -g^{(i+1)^{T}}Gs^{(j)} + \beta_{i}s^{(i)^{T}}Gs^{(j)} = \alpha_{j}^{-1}g^{(i+1)^{T}}\left(g^{(j)} - g^{(j+1)}\right) + \beta_{i}s^{(i)^{T}}Gs^{(j)},$$

For j = i re-write this expression as

$$s^{(j+1)^{T}}Gs^{(j)} = \alpha_{j}^{-1}g^{(j+1)^{T}}g^{(j)} - \alpha_{j}^{-1}g^{(j+1)^{T}}g^{(j+1)} + \beta_{j}s^{(j+1)^{T}}Gs^{(j)}.$$

Part 2. \Rightarrow first component is zero Use exact line-search α_i second component becomes

$$-\alpha_{j}^{-1}g^{(j+1)^{T}}g^{(j+1)} + \beta_{j}s^{(j+1)^{T}}Gs^{(j)} = -s^{(j+1)^{T}}Gs^{(j)}\frac{g^{(j+1)^{T}}g^{(j+1)}}{g^{(j)^{T}}g^{(j)}} + \beta_{j}s^{(j+1)^{T}}Gs^{(j)} = 0,$$

from β_j formula. $\Rightarrow s^{(i+1)^T} Gs^{(j)} = 0$ for all j = 1, ..., i, which proves Part 1. Quadratic termination follows from Part 1., and conjugate directions, $s^{(1)}, ..., s^{(m)}$. Conjugate Gradient Method for Nonlinear Functions

- Consider minimize f(x), then
 - Cannot perform exact line-search ... approx, e.g. Armijo
 - Cannot expect termination after *n* steps
 ⇒ re-start s⁽ⁿ⁺¹⁾ = −g⁽ⁿ⁺¹⁾ or re-orthogonalize

Other Conjugate Gradient Schemes

$$\beta_{k}^{PR} = \frac{\left(g^{(k+1)} - g^{(k)}\right)^{T} g^{(k)}}{g^{(k-1)^{T}} g^{(k-1)}}$$

and
$$\beta_{k}^{DY} = \frac{g^{(k)^{T}} g^{(k)}}{s^{(k-1)^{T}} g^{(k-1)}}$$

Dai-Yuan better than Polak-Ribiere better than Fletcher-Reeves

Outline

1 Conjugate Direction Methods

2 Classical Conjugate Gradient Method

The Barzilai-Borwein Method

Recent renewed interest in a simpler two-step gradient method

• Satisfy quasi-Newton in least-squares sense.

Barzilai-Borwein Method

Given $x^{(0)}$, set k = 0.

repeat

Set the step-size α_k using one of BB schemes below.

Set $x^{(k+1)} := x^{(k)} - \alpha_k g^{(k)}$ and k = k + 1. [Steepest Descend] until $x^{(k)}$ is (local) optimum;

Surprise: No Line Search

- Barzilai-Borwein Algorithm has no line-search
- Success relies on non-monotone behavior (may increase f(x))

The Barzilai-Borwein Method

Popular formulas for BB step size

$$\alpha_k^{BB} = \frac{\delta^{(k-1)}\delta^{(k-1)}}{\delta^{(k-1)}\gamma^{(k-1)}} \tag{1}$$

$$\alpha_k^{BBs} = \frac{\delta^{(k-1)}\gamma^{(k-1)}}{\gamma^{(k-1)}\gamma^{(k-1)}} \tag{2}$$

$$\alpha_{k}^{aBB} = \begin{cases} \alpha_{k}^{BB} \text{ for odd } k \\ \alpha_{k}^{BBs} \text{ for even } k \end{cases}$$
(3)

- Can reset the step length to steepest-descend
- Generalized to bound-constrained optimization using projection

Summary of Conjugate Direction Methods

Methods for unconstrained optimization:

 $\min_{x} f(x)$

• Conjugacy is orthogonality across Hessian G, i.e.

$$s^{(i)^T}Gs^{(j)} = 0 \quad \forall i \neq j$$

- Conjugate direction methods terminate finitely for quadratic
- Good alternative to quasi-Newton
- Recently, interest in Barzilai-Borwein schemes