Quadratic Programming
 GIAN Short Course on Optimization:
 Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Introduction to Quadratic Programming

- Applications of QP in Portfolio Selection
- Applications of QP in Machine Learning
(2) Active-Set Method for Quadratic Programming
- Equality-Constrained QPs
- General Quadratic Programs
(3) Methods for Solving EQPs
- Generalized Elimination for EQPs
- Lagrangian Methods for EQPs

Introduction to Quadratic Programming

Quadratic Program (QP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \frac{1}{2} x^{\top} G x+g^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I},
\end{array}
$$

where

- $G \in \mathbb{R}^{n \times n}$ is a symmetric matrix
... can reformulate QP to have a symmetric Hessian
- \mathcal{E} and \mathcal{I} sets of equality/inequality constraints

Quadratic Program (QP)

- Like LPs, can be solved in finite number of steps
- Important class of problems:
- Many applications, e.g. quadratic assignment problem
- Main computational component of SQP: Sequential Quadratic Programming for nonlinear optimization

Introduction to Quadratic Programming

Quadratic Program (QP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \frac{1}{2} x^{T} G x+g^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I}
\end{array}
$$

No assumption on eigenvalues of G

- If $G \succeq 0$ positive semi-definite, then QP is convex
\Rightarrow can find global minimum (if it exists)
- If G indefinite, then QP may be globally solvable, or not:
- If $A_{\mathcal{E}}$ full rank, then $\exists Z_{\mathcal{E}}$ null-space basis Convex, if "reduced Hessian" positive positive semi-definite:

$$
Z_{\mathcal{E}}^{T} G Z_{\mathcal{E}} \succeq 0, \quad \text { where } \quad Z_{\mathcal{E}}^{T} A_{\mathcal{E}}=0 \quad \text { then globally solvable }
$$

... eliminate some variables using the equations

Introduction to Quadratic Programming

Quadratic Program (QP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \frac{1}{2} x^{T} G x+g^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I}
\end{array}
$$

- Feasible set may be empty ... use phase-I methods from LP.
- Feasible set can be unbounded \Rightarrow QP may be unbounded ... detect during the line-search ... $G \succ 0$ implies boundedness
- Polyhedral feasible set ... but solution may not be at vertex:

$$
\underset{x}{\operatorname{minimize}} x^{2} \quad \text { subject to }-1 \leq x \leq 1
$$

Applications of QP in Portfolio Selection

Investment decisions across collection of financial assets (e.g. stocks)

- Return and risk on investment are unknown (random vars)
- Historical data provides
- Expected rate of return of investment
- Covariance of rates of returns for investments

Markowitz Investment Model

- Balances risk and return (multi-objective)
- Choose mix of investment
- minimize risk (covariance)
- subject to minimum expected return

Goal: Find how much to invest in each asset
Simple model, there exist more sophisticated models

Applications of QP in Portfolio Selection

Problem Data

- n number of available assets
- r desired minimum growth of portfolio
- β available capital for investment
- m_{i} expected rate of return of asset i
- C covariance matrix of asset returns
... models correlation between assets

Problem Variables

- x_{i} amount of investment in asset i
- Assume $x_{i} \geq 0$ and $x_{i} \in \mathbb{R}$ real

Applications of QP in Portfolio Selection

Problem Objective

- Minimize risk of investment

$$
\underset{x}{\operatorname{minimize}} x^{\top} C x
$$

Problem Constraints

- Minimum rate of return on investment

$$
\sum_{i=1}^{n} m_{i} x_{i} \geq r
$$

- Upper bound on total investment

$$
\sum_{i=1}^{n} x_{i} \leq \beta
$$

Applications of QP in Machine Learning

Least squares problem

- Solve system of equations with more equations than variables
- Classical problem in data fitting / regression analysis

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2}^{2}
$$

... dates back to Legendre (1805)

- Solution from normal equations or augmented system (preferred)

$$
A^{T} A x=A^{T} b \quad \Leftrightarrow \quad\left[\begin{array}{ll}
0 & A^{T} \\
A & -I
\end{array}\right]\binom{x}{u}=\binom{0}{b}
$$

- Writing least-squares as a QP:

$$
\|A x-b\|_{2}^{2}=(A x-b)^{T}(A x-b)=x^{T} A^{T} A x-2 b^{T} A x+b^{T} b
$$

Applications of QP in Machine Learning

Snag: Least-squares solution, x, typically dense Interested in sparse solution, x, with few nonzeros $\Rightarrow \ell_{1}$ norm
(1) LASSO: least absolute shrinkage and selection operator

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2}^{2} \quad \text { subject to }\|x\|_{1} \leq \tau
$$

- ℓ_{1}-norm constraint act like a "sparsifier"
- Least-squares problem with limit on number of nonzeros
(2) Regularized least-squares

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

- Related to basis pursuit denoising
- ℓ_{1}-norm penalty act like a "sparsifier"

Writing LASSO as QP Problem

LASSO: least absolute shrinkage and selection operator

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2}^{2} \quad \text { subject to }\|x\|_{1} \leq \tau
$$

Recall ℓ_{1} norm: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$

- v_{i} all 2^{n} vectors of $+1,-1$

$$
v_{0}=(1, \ldots, 1), v_{1}=(-1,1, \ldots, 1), \text { etc }
$$

- LASSO equivalent to exponential QP

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \|A x-b\|_{2}^{2} \\
\text { subject to } & v_{i}^{T} x \leq \tau, \forall i
\end{array}
$$

... QP with 2^{n} constraints

Regularized Least-Squares as QP Problem

Regularized least-squares

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

- Introduce variables x_{i}^{+}, x_{i}^{-}for positive/negative part of x_{i}
- Then it follows that

$$
x_{i}=x_{i}^{+}-x_{i}^{-}, \quad\left|x_{i}\right|=x_{i}^{+}+x_{i}^{-}, \quad x_{i}^{+} \geq 0, x_{i}^{-} \geq 0
$$

- Regularized least-squares equivalent to

$$
\begin{array}{cl}
\underset{x}{\operatorname{minimize}} & \|A x-b\|_{2}^{2}+\lambda\left(e^{T} x^{+}+e^{T} x^{-}\right) \\
\text {subject to } & x=x^{+}-x^{-} \\
& x^{+} \geq 0, x^{-} \geq 0
\end{array}
$$

where $e=(1, \ldots, 1)$

Outline

(1) Introduction to Quadratic Programming

- Applications of QP in Portfolio Selection
- Applications of QP in Machine Learning
(2) Active-Set Method for Quadratic Programming
- Equality-Constrained QPs
- General Quadratic Programs
(3) Methods for Solving EQPs
- Generalized Elimination for EQPs
- Lagrangian Methods for EQPs

Active-Set Method for Quadratic Programming

Quadratic Programming Problem (QP)

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I},
\end{aligned}
$$

Active-Set Method for QPs

- Create sequence of (feasible) iterates $x^{(k)}$
- Fix active constraints, $\mathcal{W} \subset \mathcal{A}\left(x^{(k)}\right)$
- Solve equality-constrained QP
- Either prove optimality, or find descend direction
- Update active set.
... first consider QPs with equality constraints only

Equality-Constrained QPs

Wlog assume solution, x^{*}, exists (other cases easily detected)

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } A^{T} x=b,
\end{aligned}
$$

where

- Columns of matrix $A \in \mathbb{R}^{n \times m}$ are a_{i} for $i \in \mathcal{E}$
- Assume $m \leq n$ and A has full rank \Rightarrow which implies that unique multipliers exist

QPs have meaningful solutions even for equality-constraints

- If $G \succeq 0$ positive semi-definite $\Rightarrow x^{*}$ global solution
- If $G \succ 0$ positive definite $\Rightarrow x^{*}$ is unique

Equality-Constrained QPs

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } A^{T} x=b,
\end{aligned}
$$

A full rank \Rightarrow partition x and A :

$$
x=\binom{x_{1}}{x_{2}} \quad A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]
$$

where $x_{1} \in \mathbb{R}^{m}, A_{1} \in \mathbb{R}^{m \times m}$ nonsingular

Then $\quad A^{T} x=b \quad \Leftrightarrow \quad A_{1}^{T} x_{1}+A_{2}^{T} x_{2}=b$
A full rank $\Rightarrow A_{1}^{-T}$ exists ... eliminate x_{1} :

$$
x_{1}=A_{1}^{-T}\left(b-A_{2} x_{2}\right)
$$

Equality-Constrained QPs

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \quad \text { subject to } A^{T} x=b
$$

Partition: $x=\left(x_{1}, x_{2}\right)$, similarly for A etc: A_{1}^{-1} exists

- In practice, factorize A_{1}... check rank!
- Check whether $A x=b$ inconsistent \Rightarrow QP no solution

Partitioning Hessian, G and gradient g

$$
g=\binom{g_{1}}{g_{2}} \quad G=\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right],
$$

\Rightarrow eliminate $x_{1}=A_{1}^{-T}\left(b-A_{2} x_{2}\right)$, get reduced unconstrained QP:

$$
\underset{x_{2}}{\operatorname{minimize}} \frac{1}{2} x_{2}^{\top} \tilde{G} x_{2}+\tilde{g}^{T} x_{2},
$$

For expressions for \tilde{G} and \tilde{g}, see Exercises!

Equality-Constrained QPs

$$
\text { Reduced QP } \quad \underset{x_{2}}{\operatorname{minimize}} \frac{1}{2} x_{2}^{\top} \tilde{G} x_{2}+\tilde{g}^{\top} x_{2},
$$

has unique solution, if reduced Hessian, $\tilde{G} \succ 0$, is positive definite
Solve reduced QP by solving the linear system $\tilde{G} x_{x}=-\tilde{g}$

- Apply Cholesky factors, or $L D L^{T}$ factors
- Reduced Hessian factors can be updated in active-set scheme
- Factorization reveals whether problem unbounded: If \tilde{G} has negative eigenvalues, then reduced QP unbounded.

Get x_{1} and multipliers by substituting/solving

$$
x_{1}=A_{1}^{-T}\left(b-A_{2} x_{2}\right) \quad \text { and } \quad A_{1} y=g_{1}
$$

Generalize elimination technique later!

General Quadratic Programs

General Quadratic Program (QP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \frac{1}{2} x^{T} G x+g^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I}
\end{array}
$$

Active-Set Method for QPs

- Builds on solving equality-constrained QPs (EQPs)
- Start from initial feasible, $x^{(k)}$, with working set, $\mathcal{W}^{(k)}$
- Regard inequality constraints $\mathcal{W}^{(k)}$ temporarily as equations
- Solve corresponding EQP, one of two outcomes:
(1) Prove $x^{(k)}$ is optimal
(2) Find descend direction, and change active set

General Quadratic Programs

General Quadratic Program (QP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \frac{1}{2} x^{T} G x+g^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I}
\end{array}
$$

Can have 0 to n active constraints in, $\mathcal{W}^{(k)}: \operatorname{EQP}\left(\mathcal{W}^{(k)}\right)$:

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \quad \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } a_{i}^{T} x=b_{i} \quad i \in \mathcal{W}^{(k)}
\end{aligned}
$$

... solve with any method available for EQPs

Two Key Questions

(1) When is solution of $\operatorname{EQP}\left(\mathcal{W}^{(k)}\right)$ optimal for general QP?
(2) If $\operatorname{EQP}\left(\mathcal{W}^{(k)}\right)$ not optimal, where's a descend direction?

Active-Set General QPs

Let solution $\operatorname{EQP}\left(\mathcal{W}^{(k)}\right)$ by $\hat{x}^{(k)}$

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } a_{i}^{T} x=b_{i} \quad i \in \mathcal{W}^{(k)}
\end{aligned}
$$

Solution of $\operatorname{EQP}\left(\mathcal{W}^{(k)}\right)$ is optimal for general QP, iff

- If $\hat{x}^{(k)}$ satisfies inactive inequality constraints:

$$
a_{i}^{T} \hat{x}^{(k)} \geq b_{i} \quad i \in \mathcal{I} \quad \text { feasibility test }
$$

- Multipliers have "right" sign:

$$
y_{i}^{(k)} \geq 0, \forall i \in \mathcal{I} \cap \mathcal{W}^{(k)} \quad \text { optimality test }
$$

Active-Set General QPs

Let solution $\operatorname{EQP}\left(\mathcal{W}^{(k)}\right)$ by $\hat{x}^{(k)}$

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \quad \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } a_{i}^{T} x=b_{i} \quad i \in \mathcal{W}^{(k)}
\end{aligned}
$$

If solution of $\operatorname{EQP}\left(\mathcal{W}^{(k)}\right)$ is not optimal for general QP, then either

- $\exists q: y_{q}<0$, e.g. $y_{q}:=\min \left\{y_{i}: i \in \mathcal{I} \cap \mathcal{W}^{(k)}\right\}$
- Can move away from constraint q, reducing objective
- Get search direction, s, by solving new EQP for $\mathcal{W}^{(k+1)}:=\mathcal{W}^{(k)}-\{q\}$.
or ...
- Inactive constraint becomes feasible ... ratio test

Active-Set Method for Quadratic Programming

Given initial feasible, $x^{(0)}$, and working set, $\mathcal{W}^{(0)}$, set $k=0$. repeat

```
if \(x^{(k)}\) does not solve the \(E Q P\) for \(\mathcal{W}^{(k)}\) then
    Solve the \(\operatorname{EQP}\left(\mathcal{W}^{(k)}\right)\), get \(\hat{x}\) and set \(s^{(k)}:=\hat{x}-x^{(k)}\)
                            Ratio Test: \(\quad \alpha=\min _{i \in \mathcal{I}: i \notin \mathcal{W}(k), a_{i}^{T} s_{q}<0}\left\{1, b_{i}-a_{i}^{T} x^{(k)} /\left(-a_{i}^{T} s_{q}\right)\right\}\)
    if \(\alpha<1\) then
    Update \(\mathcal{W}\) : Add \(p\) (min above) to \(\mathcal{W}^{(k+1)}=\mathcal{W}^{(k)} \cup\{p\}\)
    Set \(x^{(k+1)}=x^{(k)}+\alpha s^{(k)}\) and \(k=k+1\)
    else
    Optimality Test: Find \(y_{q}:=\min \left\{y_{i}: i \in \mathcal{W}^{(k)} \cap \mathcal{I}\right\}\)
    if \(y_{q} \geq 0\) then \(x^{(k)}\) optimal solution ;
    else
        Update \(\mathcal{W}\) : Remove \(q\) from \(\mathcal{W}^{(k+1)}=\mathcal{W}^{(k)}-\{q\}\)
    end
    end
until \(x^{(k)}\) is optimal or QP unbounded;
```

Active-Set Method for Quadratic Programming

Iterates are solutions to EQPs, or ratio test.

Active-Set Method for Quadratic Programming

Can implement algorithm in stable/efficient way

- Update $L U$ factors of A_{1}
- Update $L D L^{T}$ factors of reduced Hessian
... can include term for one negative eigenvalue
Get initial feasible point using LP phase I approach
Algorithm is primal active-set method (iterates remain feasible)
Dual active-set method can be derived
- Maintains dual feasibility, i.e. multipliers satisfy $y_{i}^{(k)} \geq 0$
- Move toward primal feasibility
- Equivalent to applying primal active-set method to dual QP \Rightarrow requires G^{-1} to exist!
- Fast re-optimization ... good for MIQP solvers

Outline

(1) Introduction to Quadratic Programming

- Applications of QP in Portfolio Selection
- Applications of QP in Machine Learning
(2) Active-Set Method for Quadratic Programming
- Equality-Constrained QPs
- General Quadratic Programs
(3) Methods for Solving EQPs
- Generalized Elimination for EQPs
- Lagrangian Methods for EQPs

Generalized Elimination for EQPs

Consider general EQP

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } A^{T} x=b
\end{aligned}
$$

Assumption

Assume $A \in \mathbb{R}^{n \times m}$, with $m \leq n$ has full rank

- If $n=m$, then solution of $E Q P$ is $x=A^{-1} b$
- Interested in case $m<n$
A full rank implies that
$\exists[Y: Z]$ nonsingular $Y^{T} A=I_{m}, Z^{T} A=0$
$\ldots Y^{T}$ is left generalized inverse of A, Z is basis of null-space

Generalized Elimination for EQPs

Consider general EQP

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } A^{T} x=b
\end{aligned}
$$

A full rank implies that

$$
\exists[Y: Z] \text { nonsingular } Y^{T} A=I_{m}, Z^{T} A=0
$$

$\ldots Y^{T}$ is left generalized inverse of A, Z is basis of null-space
\Rightarrow all solution of $A^{T} x=b$ are

$$
x=Y b+Z \delta
$$

... any point in feasible set can be expressed in this way.

Generalized Elimination for EQPs

Consider general EQP

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } A^{T} x=b
\end{aligned}
$$

\Rightarrow all solution of $A^{T} x=b$ are

$$
x=Y b+Z \delta
$$

Use equation to "eliminate" x, get reduced QP:

$$
\underset{\delta}{\operatorname{minimize}} \frac{1}{2} \delta^{T}\left(Z^{T} G Z\right) \delta+(g+G Y b)^{T} Z \delta
$$

If reduced Hessian $Z^{T} G Z \succ 0$ pos. def., then unique solution:

$$
\nabla_{\delta}=0 \Leftrightarrow\left(Z^{T} G Z\right) \delta=-Z^{T}(g+G Y b)
$$

Generalized Elimination for EQPs

Consider general EQP

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } A^{T} x=b
\end{aligned}
$$

Once we have δ^{*}, get

$$
x^{*}=Y b+Z \delta^{*}
$$

Find multipliers from

$$
G x^{*}+g=A y^{*} \quad \Leftrightarrow \quad y^{*}=Y^{T}\left(G x^{*}+g\right)
$$

because $Y^{T} A=I_{m}$, left generalized inverse

Generalized Elimination for EQPs

Consider general EQP

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } A^{T} x=b
\end{aligned}
$$

A full rank implies that

$$
\exists[Y: Z] \quad \text { nonsingular } \quad Y^{T} A=I_{m}, Z^{T} A=0
$$

That's all very cute

... but how on Earth am I supposed to find , Z???
(1) Orthonormal QR factors of A
(2) General elimination: border $[A: V]$ invertible

Orthogonal Elimination for EQPs

(EQP) $\underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x$ subject to $A^{T} x=b$
Define QR factors of A (exist, because A has full rank)

$$
A=Q\left[\begin{array}{l}
R \\
0
\end{array}\right], \quad Q=\left[Q_{1}: Q_{2}\right]
$$

where $Q_{1} \in \mathbb{R}^{m \times m}$ and R upper triangular
Setting $Z=Q_{2}$, and $Y=Q_{1} R^{-T}$, we observe

$$
Y^{T} A=R^{-1} Q_{1}^{T}\left[Q_{1}: Q_{2}\right]\left[\begin{array}{c}
R \\
0
\end{array}\right]=R^{-1} I_{m} R=I_{m}
$$

because Q_{1} orthonomal, and

$$
Z^{T} A=Q_{2}^{T}\left[Q_{1}: Q_{2}\right]\left[\begin{array}{c}
R \\
0
\end{array}\right]=[0: I]\left[\begin{array}{l}
R \\
0
\end{array}\right]=0
$$

... so factors have desired format, and are numerically stable!

General Elimination for EQPs

$$
\text { (EQP) } \begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{T} G x+g^{T} x \\
& \text { subject to } A^{T} x=b
\end{aligned}
$$

Border A by matrix V such that $[A: V]$ nonsingular (exists!)
Define Y, Z as

$$
[A: V]^{-1}=\left[\begin{array}{l}
Y^{T} \\
Z^{T}
\end{array}\right]
$$

Then, it follows that

$$
I_{n}=\left[\begin{array}{l}
Y^{T} \\
Z^{T}
\end{array}\right]\left[\begin{array}{lll}
A: V
\end{array}\right]=\left[\begin{array}{c|c}
Y^{T} A \mid Y^{T} V \\
\hline Z^{T} A \mid Z^{T} V
\end{array}\right]
$$

$\Rightarrow Y^{\top} A=I$ and $Z^{T} A=0$ as desired.
In practice, use "previously" active columns to form V
\Rightarrow using LU factors, sparse updates, efficient

General Elimination for EQPs

$$
\text { (EQP) } \begin{aligned}
& \underset{x}{\operatorname{minimize}} \frac{1}{2} x^{\top} G x+g^{T} x \\
& \text { subject to } A^{T} x=b
\end{aligned}
$$

Define Y, Z as

$$
[A: V]^{-1}=\left[\begin{array}{l}
Y^{T} \\
Z^{T}
\end{array}\right]
$$

Border A with special matrix $V \ldots$ to get first approach

$$
\left[\begin{array}{l|l}
A_{1} \mid 0 \\
\hline A_{2} \mid I
\end{array}\right]^{-1}=\left[\begin{array}{ll}
A_{1}^{-1} & 0 \\
\hline-A_{2} A_{1}^{-1} & I
\end{array}\right]=\left[\begin{array}{l}
Y^{T} \\
Z^{T}
\end{array}\right]
$$

Then $x=Y b+Z \delta$ becomes

$$
x=\left[\begin{array}{c}
A_{1}^{-T} \\
0
\end{array}\right] b+\left[\begin{array}{c}
-A_{1}^{-T} A_{2}^{-T} \\
l
\end{array}\right] \delta
$$

\ldots and $\delta=x_{2} \ldots$ from our original partition method!

Lagrangian Method for EQPs

$$
\begin{array}{ll}
\text { (EQP) } & \begin{array}{l}
\underset{x}{\operatorname{minimize}} \\
\text { subject to } A^{T} \\
A^{T} x
\end{array}=b x+g^{T} x \\
\text { sut }
\end{array}
$$

Lagrangian: $\mathcal{L}(x, y)=\frac{1}{2} x^{T} G x+g^{T} x-y^{T}\left(A^{T} x-b\right)$

First-order optimality gives: $\nabla_{x} \mathcal{L}=0$ and $\nabla_{y} \mathcal{L}=0$:

$$
\left[\begin{array}{cc}
G & -A \\
-A^{T} & 0
\end{array}\right]\binom{x}{y}=-\binom{g}{b}
$$

... symmetric system, use factorization that reveals inertia

Summary and Teaching Points

Quadratic Programs

- Many applications in finance, data analysis
- Building block for algorithms for nonlinear optimization Active-Set Method for QPs
- Generalizes active-set methods for LPs
- Moves from EQP to another ... exploring active sets
- Method of choice for MIQPs (next week)

