

Quadratic Programming

GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

- 1 Introduction to Quadratic Programming
 - Applications of QP in Portfolio Selection
 - Applications of QP in Machine Learning
- 2 Active-Set Method for Quadratic Programming
 - Equality-Constrained QPs
 - General Quadratic Programs
- Methods for Solving EQPs
 - Generalized Elimination for EQPs
 - Lagrangian Methods for EQPs

Introduction to Quadratic Programming

Quadratic Program (QP)

where

- $G \in \mathbb{R}^{n \times n}$ is a symmetric matrix ... can reformulate QP to have a symmetric Hessian
- ullet ${\cal E}$ and ${\cal I}$ sets of equality/inequality constraints

Quadratic Program (QP)

- Like LPs, can be solved in finite number of steps
- Important class of problems:
 - Many applications, e.g. quadratic assignment problem
 - Main computational component of SQP:
 Sequential Quadratic Programming for nonlinear optimization

Introduction to Quadratic Programming

Quadratic Program (QP)

No assumption on eigenvalues of G

- If $G \succeq 0$ positive semi-definite, then QP is convex \Rightarrow can find global minimum (if it exists)
- If G indefinite, then QP may be globally solvable, or not:
 - If $A_{\mathcal{E}}$ full rank, then $\exists Z_{\mathcal{E}}$ null-space basis Convex, if "reduced Hessian" positive positive semi-definite:

$$Z_{\mathcal{E}}^T G Z_{\mathcal{E}} \succeq 0$$
, where $Z_{\mathcal{E}}^T A_{\mathcal{E}} = 0$ then globally solvable

... eliminate some variables using the equations

Introduction to Quadratic Programming

Quadratic Program (QP)

minimize
$$\frac{1}{2}x^TGx + g^Tx$$

subject to $a_i^Tx = b_i \quad i \in \mathcal{E}$
 $a_i^Tx \ge b_i \quad i \in \mathcal{I}$,

- Feasible set may be empty ... use phase-I methods from LP.
- Feasible set can be unbounded \Rightarrow QP may be unbounded ... detect during the line-search ... $G \succ 0$ implies boundedness
- Polyhedral feasible set ... but solution may not be at vertex:

minimize
$$x^2$$
 subject to $-1 \le x \le 1$

Applications of QP in Portfolio Selection

Investment decisions across collection of financial assets (e.g. stocks)

- Return and risk on investment are unknown (random vars)
- Historical data provides
 - Expected rate of return of investment
 - Covariance of rates of returns for investments

Markowitz Investment Model

- Balances risk and return (multi-objective)
- Choose mix of investment
 - minimize risk (covariance)
 - subject to minimum expected return

Goal: Find how much to invest in each asset

Simple model, there exist more sophisticated models

Applications of QP in Portfolio Selection

Problem Data

- n number of available assets
- r desired minimum growth of portfolio
- ullet eta available capital for investment
- m_i expected rate of return of asset i
- C covariance matrix of asset returns
 ... models correlation between assets

Problem Variables

- x_i amount of investment in asset i
- Assume $x_i \geq 0$ and $x_i \in \mathbb{R}$ real

Applications of QP in Portfolio Selection

Problem Objective

Minimize risk of investment

$$\underset{x}{\mathsf{minimize}} \quad x^T C x$$

Problem Constraints

Minimum rate of return on investment

$$\sum_{i=1}^{n} m_i x_i \ge r$$

Upper bound on total investment

$$\sum_{i=1}^{n} x_i \le \beta$$

Applications of QP in Machine Learning

Least squares problem

- Solve system of equations with more equations than variables
- Classical problem in data fitting / regression analysis

$$\underset{x}{\mathsf{minimize}} \|Ax - b\|_2^2$$

... dates back to Legendre (1805)

Solution from normal equations or augmented system (preferred)

$$A^{T}Ax = A^{T}b$$
 \Leftrightarrow $\begin{bmatrix} 0 & A^{T} \\ A & -I \end{bmatrix} \begin{pmatrix} x \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix}$

Writing least-squares as a QP:

$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b) = x^T A^T Ax - 2b^T Ax + b^T b$$

Applications of QP in Machine Learning

Snag: Least-squares solution, x, typically dense Interested in sparse solution, x, with few nonzeros $\Rightarrow \ell_1$ norm

LASSO: least absolute shrinkage and selection operator

$$\underset{x}{\text{minimize}} \|Ax - b\|_2^2 \quad \text{subject to } \|x\|_1 \le \tau$$

- ℓ_1 -norm constraint act like a "sparsifier"
- Least-squares problem with limit on number of nonzeros
- Regularized least-squares

$$\underset{x}{\mathsf{minimize}} \|Ax - b\|_2^2 + \lambda \|x\|_1$$

- Related to basis pursuit denoising
- ℓ_1 -norm penalty act like a "sparsifier"

Writing LASSO as QP Problem

LASSO: least absolute shrinkage and selection operator

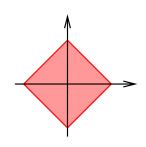
$$\underset{x}{\text{minimize}} \ \|Ax - b\|_2^2 \quad \text{subject to} \ \|x\|_1 \leq \tau$$

Recall
$$\ell_1$$
 norm: $||x||_1 = \sum_{i=1}^n |x_i|$

- v_i all 2^n vectors of +1, -1 $v_0 = (1, ..., 1), v_1 = (-1, 1, ..., 1),$ etc
- LASSO equivalent to exponential QP

minimize
$$||Ax - b||_2^2$$

subject to $v_i^T x \le \tau, \forall i$



... QP with 2^n constraints

Regularized Least-Squares as QP Problem

Regularized least-squares

$$\underset{x}{\mathsf{minimize}} \ \|Ax - b\|_2^2 \ + \lambda \|x\|_1$$

- Introduce variables x_i^+, x_i^- for positive/negative part of x_i
- Then it follows that

$$x_i = x_i^+ - x_i^-, \quad |x_i| = x_i^+ + x_i^-, \quad x_i^+ \ge 0, x_i^- \ge 0$$

• Regularized least-squares equivalent to

minimize
$$||Ax - b||_2^2 + \lambda (e^T x^+ + e^T x^-)$$

subject to $x = x^+ - x^-$
 $x^+ \ge 0, x^- \ge 0$

where
$$e = (1, ..., 1)$$

Outline

- 1 Introduction to Quadratic Programming
 - Applications of QP in Portfolio Selection
 - Applications of QP in Machine Learning
- 2 Active-Set Method for Quadratic Programming
 - Equality-Constrained QPs
 - General Quadratic Programs
- Methods for Solving EQPs
 - Generalized Elimination for EQPs
 - Lagrangian Methods for EQPs

Quadratic Programming Problem (QP)

Active-Set Method for QPs

- Create sequence of (feasible) iterates $x^{(k)}$
- Fix active constraints, $\mathcal{W} \subset \mathcal{A}(x^{(k)})$
 - Solve equality-constrained QP
 - Either prove optimality, or find descend direction
- Update active set.

... first consider QPs with equality constraints only

Wlog assume solution, x^* , exists (other cases easily detected)

minimize
$$\frac{1}{2}x^TGx + g^Tx$$

subject to $A^Tx = b$,

where

- Columns of matrix $A \in \mathbb{R}^{n \times m}$ are a_i for $i \in \mathcal{E}$
- Assume m ≤ n and A has full rank
 ⇒ which implies that unique multipliers exist
- QPs have meaningful solutions even for equality-constraints
 - If $G \succeq 0$ positive semi-definite $\Rightarrow x^*$ global solution
 - If $G \succ 0$ positive definite $\Rightarrow x^*$ is unique

A full rank \Rightarrow partition x and A:

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix},$$

where $x_1 \in \mathbb{R}^m$, $A_1 \in \mathbb{R}^{m \times m}$ nonsingular

Then
$$A^T x = b \Leftrightarrow A_1^T x_1 + A_2^T x_2 = b$$

A full rank $\Rightarrow A_1^{-T}$ exists ... eliminate x_1 :

$$x_1 = A_1^{-T} (b - A_2 x_2)$$

$$\underset{x}{\text{minimize}} \ \frac{1}{2} x^T G x + g^T x \quad \text{subject to } A^T x = b$$

Partition: $x = (x_1, x_2)$, similarly for A etc: A_1^{-1} exists

- In practice, factorize A₁ ... check rank!
- Check whether Ax = b inconsistent \Rightarrow QP no solution

Partitioning Hessian, G and gradient g

$$g = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} \quad G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix},$$

 \Rightarrow eliminate $x_1 = A_1^{-T} (b - A_2 x_2)$, get reduced unconstrained QP:

$$\underset{x_2}{\mathsf{minimize}} \ \ \tfrac{1}{2} x_2^T \tilde{\mathsf{G}} x_2 + \tilde{\mathsf{g}}^T x_2,$$

For expressions for \tilde{G} and \tilde{g} , see Exercises!

Reduced QP minimize
$$\frac{1}{2}x_2^T \tilde{G}x_2 + \tilde{g}^T x_2$$
,

has unique solution, if reduced Hessian, $\tilde{G}\succ 0$, is positive definite

Solve reduced QP by solving the linear system $\tilde{G}x_{x}=-\tilde{g}$

- Apply Cholesky factors, or LDL^T factors
- Reduced Hessian factors can be updated in active-set scheme
- \bullet Factorization reveals whether problem unbounded: If \tilde{G} has negative eigenvalues, then reduced QP unbounded.

Get x_1 and multipliers by substituting/solving

$$x_1 = A_1^{-T} (b - A_2 x_2)$$
 and $A_1 y = g_1$

Generalize elimination technique later!

General Quadratic Programs

General Quadratic Program (QP)

Active-Set Method for QPs

- Builds on solving equality-constrained QPs (EQPs)
- Start from initial feasible, $x^{(k)}$, with working set, $\mathcal{W}^{(k)}$
- ullet Regard inequality constraints $\mathcal{W}^{(k)}$ temporarily as equations
- Solve corresponding EQP, one of two outcomes:
 - Prove $x^{(k)}$ is optimal
 - Find descend direction, and change active set

General Quadratic Programs

General Quadratic Program (QP)

Can have 0 to n active constraints in, $\mathcal{W}^{(k)}$: EQP($\mathcal{W}^{(k)}$):

minimize
$$\frac{1}{2}x^TGx + g^Tx$$

subject to $a_i^Tx = b_i$ $i \in \mathcal{W}^{(k)}$,

... solve with any method available for EQPs

Two Key Questions

- When is solution of EQP($\mathcal{W}^{(k)}$) optimal for general QP?
- ② If $EQP(W^{(k)})$ not optimal, where's a descend direction?

Active-Set General QPs

Let solution EQP($\mathcal{W}^{(k)}$) by $\hat{x}^{(k)}$

Solution of EQP($W^{(k)}$) is optimal for general QP, iff

• If $\hat{x}^{(k)}$ satisfies inactive inequality constraints:

$$a_i^T \hat{x}^{(k)} \ge b_i \quad i \in \mathcal{I}$$
 feasibility test

Multipliers have "right" sign:

$$y_i^{(k)} \geq 0, \ \forall i \in \mathcal{I} \cap \mathcal{W}^{(k)}$$
 optimality test

Active-Set General QPs

Let solution EQP($\mathcal{W}^{(k)}$) by $\hat{x}^{(k)}$

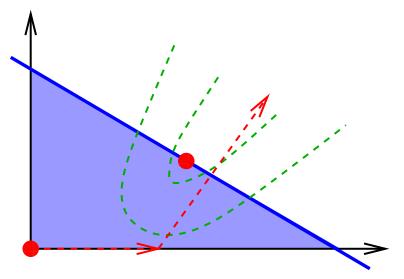
If solution of EQP($W^{(k)}$) is not optimal for general QP, then either

- $\exists q: y_q < 0$, e.g. $y_q := \min\{y_i: i \in \mathcal{I} \cap \mathcal{W}^{(k)}\}$
 - \bullet Can move away from constraint q, reducing objective
 - Get search direction, s, by solving new EQP for $\mathcal{W}^{(k+1)} := \mathcal{W}^{(k)} \{q\}.$

or ...

• Inactive constraint becomes feasible ... ratio test

```
Given initial feasible, x^{(0)}, and working set, \mathcal{W}^{(0)}, set k=0.
repeat
     if x^{(k)} does not solve the EQP for \mathcal{W}^{(k)} then
           Solve the EQP(\mathcal{W}^{(k)}), get \hat{x} and set s^{(k)} := \hat{x} - x^{(k)}
            Ratio Test: \alpha = \min_{i \in \mathcal{I}: i \notin \mathcal{W}^{(k)}, a_i^T s_n < 0} \left\{ 1, b_i - a_i^T x^{(k)} / (-a_i^T s_q) \right\}
           if \alpha < 1 then
                Update \mathcal{W}: Add p (min above) to \mathcal{W}^{(k+1)} = \mathcal{W}^{(k)} \cup \{p\}
           Set x^{(k+1)} = x^{(k)} + \alpha s^{(k)} and k = k+1
     else
           Optimality Test: Find y_a := \min \{ y_i : i \in \mathcal{W}^{(k)} \cap \mathcal{I} \}
           if y_a \ge 0 then x^{(k)} optimal solution;
           else
                 Update W: Remove q from W^{(k+1)} = W^{(k)} - \{a\}
           end
until x^{(k)} is optimal or QP unbounded;
```



Iterates are solutions to EQPs, or ratio test.

Can implement algorithm in stable/efficient way

- Update LU factors of A_1
- Update LDL^T factors of reduced Hessian
 ... can include term for one negative eigenvalue

Get initial feasible point using LP phase I approach

Algorithm is primal active-set method (iterates remain feasible)

Dual active-set method can be derived

- Maintains dual feasibility, i.e. multipliers satisfy $y_i^{(k)} \ge 0$
- Move toward primal feasibility
- Equivalent to applying primal active-set method to dual QP \Rightarrow requires G^{-1} to exist!
- Fast re-optimization ... good for MIQP solvers

Outline

- 1 Introduction to Quadratic Programming
 - Applications of QP in Portfolio Selection
 - Applications of QP in Machine Learning
- 2 Active-Set Method for Quadratic Programming
 - Equality-Constrained QPs
 - General Quadratic Programs
- Methods for Solving EQPs
 - Generalized Elimination for EQPs
 - Lagrangian Methods for EQPs

Consider general EQP

minimize
$$\frac{1}{2}x^TGx + g^Tx$$

subject to $A^Tx = b$

Assumption

Assume $A \in \mathbb{R}^{n \times m}$, with $m \leq n$ has full rank

- If n = m, then solution of EQP is $x = A^{-1}b$
- Interested in case m < n

A full rank implies that

$$\exists [Y:Z]$$
 nonsingular $Y^TA = I_m, Z^TA = 0$

... Y^T is left generalized inverse of A, Z is basis of null-space

Consider general EQP

minimize
$$\frac{1}{2}x^TGx + g^Tx$$

subject to $A^Tx = b$

A full rank implies that

$$\exists [Y:Z]$$
 nonsingular $Y^TA = I_m, Z^TA = 0$

... Y^T is left generalized inverse of A, Z is basis of null-space

 \Rightarrow all solution of $A^Tx = b$ are

$$x = Yb + Z\delta$$

... any point in feasible set can be expressed in this way.

Consider general EQP

minimize
$$\frac{1}{2}x^TGx + g^Tx$$

subject to $A^Tx = b$

 \Rightarrow all solution of $A^Tx = b$ are

$$x = Yb + Z\delta$$

Use equation to "eliminate" x, get reduced QP:

$$\underset{\delta}{\operatorname{minimize}} \ \ \tfrac{1}{2} \delta^T \left(Z^T \mathit{GZ} \right) \delta + \left(g + \mathit{GYb} \right)^T \mathit{Z} \delta$$

If reduced Hessian $Z^TGZ \succ 0$ pos. def., then unique solution:

$$\nabla_{\delta} = 0 \iff \left(Z^T G Z \right) \delta = -Z^T \left(g + G Y b \right)$$

Consider general EQP

minimize
$$\frac{1}{2}x^TGx + g^Tx$$

subject to $A^Tx = b$

Once we have δ^* , get

$$x^* = Yb + Z\delta^*$$

Find multipliers from

$$Gx^* + g = Ay^* \Leftrightarrow y^* = Y^T (Gx^* + g)$$

because $Y^T A = I_m$, left generalized inverse

Consider general EQP

minimize
$$\frac{1}{2}x^TGx + g^Tx$$

subject to $A^Tx = b$

A full rank implies that

$$\exists [Y:Z]$$
 nonsingular $Y^TA = I_m, Z^TA = 0$

That's all very cute ...

... but how on Earth am I supposed to find ,Z???

- Orthonormal QR factors of A
- @ General elimination: border [A: V] invertible

Orthogonal Elimination for EQPs

(EQP)
$$\begin{array}{c} \underset{x}{\text{minimize}} \quad \frac{1}{2}x^T G x + g^T x \\ \text{subject to } A^T x = b \end{array}$$

Define QR factors of A (exist, because A has full rank)

$$A = Q \begin{bmatrix} R \\ 0 \end{bmatrix}, \quad Q = [Q_1 : Q_2]$$

where $Q_1 \in \mathbb{R}^{m \times m}$ and R upper triangular Setting $Z = Q_2$, and $Y = Q_1 R^{-T}$, we observe

$$Y^{T}A = R^{-1}Q_{1}^{T}[Q_{1}:Q_{2}]\begin{bmatrix} R \\ 0 \end{bmatrix} = R^{-1}I_{m}R = I_{m}$$

because Q_1 orthonomal, and

$$Z^T A = Q_2^T [Q_1 : Q_2] \begin{bmatrix} R \\ 0 \end{bmatrix} = [0 : I] \begin{bmatrix} R \\ 0 \end{bmatrix} = 0$$

... so factors have desired format, and are numerically stable!

(EQP)
$$\text{minimize } \frac{1}{2}x^TGx + g^Tx$$
subject to $A^Tx = b$

Border A by matrix V such that [A:V] nonsingular (exists!)

Define Y, Z as

$$\begin{bmatrix} A : V \end{bmatrix}^{-1} = \begin{bmatrix} Y^T \\ Z^T \end{bmatrix}$$

Then, it follows that

$$I_n = \begin{bmatrix} Y^T \\ Z^T \end{bmatrix} \begin{bmatrix} A : V \end{bmatrix} = \begin{bmatrix} \frac{Y^T A}{Z^T A} Z^T V \end{bmatrix}$$

 $\Rightarrow Y^T A = I$ and $Z^T A = 0$ as desired.

In practice, use "previously" active columns to form $V \Rightarrow \text{using LU factors}$, sparse updates, efficient

(EQP)
$$\begin{array}{c} \underset{x}{\text{minimize}} & \frac{1}{2}x^TGx + g^Tx \\ \text{subject to } A^Tx = b \end{array}$$

Define Y, Z as

$$\begin{bmatrix} A : V \end{bmatrix}^{-1} = \begin{bmatrix} Y^T \\ Z^T \end{bmatrix}$$

Border A with special matrix V ... to get first approach

$$\begin{bmatrix} A_1 | 0 \\ \overline{A_2} | I \end{bmatrix}^{-1} = \begin{bmatrix} A_1^{-1} | 0 \\ \overline{-A_2 A_1^{-1}} | I \end{bmatrix} = \begin{bmatrix} Y^T \\ Z^T \end{bmatrix}$$

Then $x = Yb + Z\delta$ becomes

$$x = \begin{bmatrix} A_1^{-T} \\ 0 \end{bmatrix} b + \begin{bmatrix} -A_1^{-T} A_2^{-T} \\ I \end{bmatrix} \delta$$

... and $\delta=x_2$... from our original partition method!

Lagrangian Method for EQPs

(EQP)
$$\begin{array}{c} \text{minimize} & \frac{1}{2}x^TGx + g^Tx \\ \text{subject to } A^Tx = b \end{array}$$

Lagrangian:
$$\mathcal{L}(x,y) = \frac{1}{2}x^TGx + g^Tx - y^T(A^Tx - b)$$

First-order optimality gives: $\nabla_x \mathcal{L} = 0$ and $\nabla_y \mathcal{L} = 0$:

$$\begin{bmatrix} G & -A \\ -A^T & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

... symmetric system, use factorization that reveals inertia

Summary and Teaching Points

Quadratic Programs

- Many applications in finance, data analysis
- Building block for algorithms for nonlinear optimization

Active-Set Method for QPs

- Generalizes active-set methods for LPs
- Moves from EQP to another ... exploring active sets
- Method of choice for MIQPs (next week)

