Bound Constrained Optimization
 GIAN Short Course on Optimization:
 Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Introduction
(2) Optimality Conditions for Bound-Constraints
(3) Bound-Constrained Quadratic Optimization

- Projected-Gradient Step
- Subspace Optimization
- Algorithm for Bound-Constrained Quadratic Optimization

4 Bound-Constrained Nonlinear Optimization

Introduction to Bound Constraints

Motivation for Bound-Constrained Optimization

- Practical problems involve variables that must satisfy bounds e.g. pressure, temperature, ...
- General optimization requires bound-constrained subproblems e.g. trust-region subproblem

Bound-Constrained Optimization

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } I \leq x \leq u
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice continuously differentiable, and bounds $I, u \in \mathbb{R}^{n}$ can be infinite.

- Review optimality conditions ... preview KKT conditions
- Introduce gradient-projection methods for large-scale problems

Outline

(1) Introduction
(2) Optimality Conditions for Bound-Constraints
(3) Bound-Constrained Quadratic Optimization

- Projected-Gradient Step
- Subspace Optimization
- Algorithm for Bound-Constrained Quadratic Optimization

4 Bound-Constrained Nonlinear Optimization

Optimality Conditions for Bound-Constraints

Consider

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } I \leq x \leq u
$$

Look at components x_{i} to derive optimality conditions (3 cases)
Case I: $I_{i}<x_{i}<u_{i}$ Inactive bounds

Unconstrained Case:
Recall stationarity: $\frac{\partial f}{\partial x_{i}}=0$
... i.e. zero gradient in x_{i}

Optimality Conditions for Bound-Constraints

Consider

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } I \leq x \leq u
$$

Look at components x_{i} to derive optimality conditions (3 cases)
Case II: $I_{i}=x_{i}$ Lower bound active

Slope of f in direction e_{i} should be ≥ 0
... otherwise reduce f by moving away from I_{i}
Lower Bound: $\frac{\partial f}{\partial x_{i}} \geq 0$ and $x_{i}=I_{i}$
... e_{i} is $i^{\text {th }}$ unit vector

Optimality Conditions for Bound-Constraints

Consider

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } I \leq x \leq u
$$

Look at components x_{i} to derive optimality conditions (3 cases)
Case III: $x_{i}=u_{i}$ Upper bound active

Slope of f in direction $-e_{i}$ should be ≥ 0
... otherwise reduce f by moving away from u_{i}
Upper Bound: $\frac{\partial f}{\partial x_{i}} \leq 0$ and $x_{i}=u_{i}$
$\ldots e_{i}$ is $i^{\text {th }}$ unit vector.

Optimality Conditions for Bound-Constraints

Optimality conditions are related to sign condition on multipliers in KKT conditions (tomorrow's lecture)

Theorem (Optimality Conditions for Bound Constraints)

Let $f(x)$ be continuously differentiable. If x^{*} local minimizer of

$$
\begin{aligned}
& \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \\
& \text { subject to } l \leq x \leq u
\end{aligned} \quad \text { then } \quad \frac{\partial f}{\partial x_{i}}\left(x^{*}\right) \begin{cases}\geq 0, & \text { if } x_{i}^{*}=l_{i} \\
=0, & \text { if } I_{i}<x_{i}^{*}<u_{i} \\
\leq 0, & \text { if } x_{i}^{*}=u_{i}\end{cases}
$$

Projection Operator for Bound Constraints

Projection operator, $P_{[I, u]}(x)$, projects x into box, $[I, u]$:

$$
\left[P_{[l, u]}(x)\right]_{i}:= \begin{cases}l_{i}, & \text { if } x_{i} \leq l_{i} \\ x_{i}, & \text { if } l_{i}<x_{i}<u_{i} \\ u_{i}, & \text { if } x_{i} \geq u_{i}\end{cases}
$$

We can restate first-order conditions equivalently as follows.

Corollary (First-Order Conditions for Bound Constraints)

Let $f(x)$ be continuously differentiable. If x^{*} local minimizer, then

$$
x^{*}=P_{[1, u]}\left(x^{*}-\nabla f\left(x^{*}\right)\right) .
$$

Proof. See Exercise this afternoon.

Active Sets

Active sets play important role in general constrained optimization.

Definition (Active Set)

Set of active constraints: constraints that hold with equality at \hat{x} :

$$
\mathcal{A}(\hat{x}):=\left\{i: I_{i}=\hat{x}_{i}\right\} \cup\left\{-i: u_{i}=\hat{x}_{i}\right\},
$$

Convention: positive i for lower, negative i for upper bounds

- Sign convention is not needed, if at most one bound finite
- Sign convention mimics sign of gradient at stationary point

Next derive active-set algorithm for quadratics, then generalize it.

Outline

(1) Introduction
(2) Optimality Conditions for Bound-Constraints
(3) Bound-Constrained Quadratic Optimization

- Projected-Gradient Step
- Subspace Optimization
- Algorithm for Bound-Constrained Quadratic Optimization

4 Bound-Constrained Nonlinear Optimization

Bound-Constrained Quadratic Optimization

Bound constrained quadratic program (QP)

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} q(x)=b^{T} x+\frac{1}{2} x^{T} G x \quad \text { subject to } I \leq x \leq u
$$

where $b \in \mathbb{R}^{n}$, and $G \in \mathbb{R}^{n \times n}$ is symmetric

- Do not assume G positive definite ... seek local minimum
- Instead assume all bounds finite, I $>-\infty$ and $u<\infty$
\Rightarrow stationary point exists ... unbounded case handled easily.

Main Idea Algorithm

- Take projected-gradient step to identify (optimal) face
- Perform local optimization on face of hyper cube

Projected-gradient along steepest descend \Rightarrow convergence

Projected-Gradient Step

Bound constrained quadratic program (QP)

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} q(x)=b^{T} x+\frac{1}{2} x^{T} G x \quad \text { subject to } I \leq x \leq u
$$

Given feasible point, x , with $I \leq x \leq u$, and gradient, $g=G x+b$, ... consider piecewise linear path parameterized in t :

$$
x(t):=P_{[1, u]}(x-t g),
$$

Goal: Find first minimizers of $q(x)$ along this path \Leftrightarrow find first minimizer of $q(x(t))$

- Construct analytic description of piecewise linear path, $x(t)$
- Find first minimizer along this path

Projected Gradient Path

Construction of Projected Gradient Path

\hat{t}_{i} : value of t when component i reaches bound in direction $-g$:

$$
\hat{t}_{i}= \begin{cases}\left(x_{i}-u_{i}\right) / g_{i} & \text { if } g_{i}<0, \text { and } u_{i}<\infty \\ \left(x_{i}-l_{i}\right) / g_{i} & \text { if } g_{i}>0, \text { and } l_{i}>-\infty \\ \infty & \text { otherwise } .\end{cases}
$$

NB: if $g_{i}=0$, then x_{i} unchanged, i.e. $\hat{t}_{i}=\infty$

To describe path $x(t)$, must identify breakpoints along $x(t)$:

$$
x_{i}(t)=\left\{\begin{array}{l}
x_{i}-t g_{i} \text { if } t \leq \hat{t}_{i} \\
x_{i}-\hat{t}_{i} g_{i} \text { if } t \geq \hat{t}_{i},
\end{array}\right.
$$

i.e. once component is its bound at \hat{t}_{i} it does not change Identify breakpoints of $x(t)$ by ordering the \hat{t}_{i} increasingly \Rightarrow get sequence, $0<t_{1}<t_{2}<t_{3} \ldots$

Construction of Projected Gradient Path

Intervals $\left[0, t_{1}\right],\left[t_{1}, t_{2}\right],\left[t_{2}, t_{3}\right], \ldots$ correspond to segments of $x(t)$

Expression of the $j^{t h}$ segment, $\left[t_{j-1}, t_{j}\right]$

$$
x(t)=x\left(t_{j-1}\right)+\delta s^{(j-1)}
$$

where stepsize δ and direction $s^{(j-1)}$ are:

$$
\begin{gathered}
\delta=t-t_{j-1}, \quad \delta \in\left[0, t_{j}-t_{j-1}\right], \\
s_{i}^{(j-1)}= \begin{cases}-g_{i} & \text { if } t_{j-1} \leq \hat{t}_{i} \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

Construction of Projected Gradient Path

Obtain explicit expression for $q(x)$ in segment $t \in\left[t_{j-1}, t_{j}\right]$:

$$
\begin{aligned}
q(x(t))= & b^{T}\left(x\left(t_{j-1}\right)+\delta s^{j-1}\right) \\
& +\frac{1}{2}\left(x\left(t_{j-1}\right)+\delta s^{j-1}\right)^{T} G\left(x\left(t_{j-1}\right)+\delta s^{j-1}\right),
\end{aligned}
$$

which is a 1D quadratic in δ and can be written as

$$
q(\delta)=q(x(t))=f_{j-1}+f_{j-1}^{\prime} \delta+\frac{1}{2} \delta^{2} f_{j-1}^{\prime \prime}, \quad \text { for } \delta \in\left[0, t_{j}-t_{j-1}\right]
$$

with coefficients given by

$$
\begin{aligned}
f_{j-1} & =b^{T} x\left(t_{j-1}\right)+\frac{1}{2} x\left(t_{j-1}\right)^{T} G x\left(t_{j-1}\right) \\
f_{j-1}^{\prime} & =b^{T} s^{(j-1)}+x\left(t_{j-1}\right)^{T} G s^{(j-1)} \\
f_{j-1}^{\prime \prime} & =s^{(j-1)^{T}} G s^{(j-1)}
\end{aligned}
$$

To find minimum of $q(x(t))=q(\delta)$ in $\left[0, t_{j}-t_{j-1}\right]$ differentiate
\ldots minimizer then depends on the signs of f_{j-1}^{\prime} and $f_{j-1}^{\prime \prime}$

Finding Minimum on Projected Gradient Path
Nine cases for \min of $q(x(t))=q(\delta)$ in $\left[0, t_{j}-t_{j-1}\right]$ Gradient

Construction of Projected Gradient Path

Nine cases for minimization of $q(\delta)=f_{j-1}^{\prime} \delta+\frac{1}{2} \delta^{2} f_{j-1}^{\prime \prime}$

	$f_{j-1}^{\prime}<0$	$f_{j-1}^{\prime}=0$	$f_{j-1}^{\prime}>0$
$f_{j-1}^{\prime \prime}<0$	$\delta=t_{j}-t_{j-1}$	$\delta=t_{j}-t_{j-1}$	$\delta=0$
$f_{j-1}^{\prime \prime}=0$	$\delta=t_{j}-t_{j-1}$	$\delta=t_{j}-t_{j-1}$	$\delta=0$
$f_{j-1}^{\prime \prime}>0$	$\delta=\min \left(\frac{-f_{j-1}^{\prime}}{f_{j-1}^{\prime \prime}}, t_{j}-t_{j-1}\right)$	$\delta=0$	$\delta=0$

Optimal δ either on boundary or in interior. Algorithm for First Minimizer of $q(x(t))$
(1) Examine intervals $\left[0, t_{1}\right],\left[t_{1}, t_{2}\right],\left[t_{2}, t_{3}\right], \ldots$
(2) Stop in interval j, where the optimum, $\delta^{*}<t_{j}-t_{j-1}$

Optimum is $t^{*}=t_{j-1}+\delta^{*}$, and the Cauchy point is $x_{C}=x\left(t^{*}\right)$

First Minimizer Along Projected Gradient Path

Given initial point, x, and direction, g.
Compute breakpoints \hat{t}_{i}, and set $j=1$.
Get $t_{0}:=0<t_{1}<t_{2}<\ldots$ ordering \hat{t}_{i}, remove duplicates/zeros. repeat

Compute $f_{j-1}^{\prime}, f_{j-1}^{\prime \prime}$, and find δ^{*} from above table.
if $\delta^{*}<t_{j}-t_{j-1}$ then
Set $t^{*}=t_{j-1}+\delta^{*}$ found.
end
Set $j=j+1$.
until t^{*} found;
Return t^{*} and $x\left(t^{*}\right)$.

Subspace Optimization

Bound constrained QP

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} q(x)=b^{T} x+\frac{1}{2} x^{T} G x \quad \text { subject to } I \leq x \leq u
$$

First minimizer along projected-gradient path:

$$
\underset{t}{\operatorname{minimize}} q(x(t)), \quad \text { where } \quad x(t):=P_{[I, u]}(x-t g),
$$

gives Cauchy point, x_{c} \& candidate active set ... explore subspace

Cauchy Point Active Set, $\mathcal{A}\left(x_{C}\right)$, Subproblem

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \\
& \text { subject to } x_{i}=l_{i}, \forall i \in \mathcal{A}\left(x_{C}\right) \quad x_{i}=u_{i}, \forall-i \in \mathcal{A}\left(x_{C}\right) \\
& \\
& \quad l_{i} \leq x_{i} \leq u_{i}, \forall \pm i \notin \mathcal{A}\left(x_{C}\right) .
\end{aligned}
$$

Extend conjugate-gradient algorithm \Rightarrow good for large problems

Quadratic Projected-Gradient Projection Algorithm

Bound constrained QP

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} q(x)=b^{T} x+\frac{1}{2} x^{T} G x \quad \text { subject to } I \leq x \leq u
$$

Quadratic Projected-Gradient Projection Algorithm Given $I \leq x^{(0)} \leq u$, set $k=0$.
repeat
Define the path $x^{(k)}(t):=P_{[1, \mu]}\left(x^{(k)}-\operatorname{tg}^{(k)}\right)$.
Get Cauchy point, $x_{C}^{(k)}$: find first minimizer $q\left(x^{(k)}(t)\right)$ Active set, $\mathcal{A}\left(x_{C}^{(k)}\right)$, set up subspace optimization problem.
Approximately solve subspace optimization for $I \leq x^{(k+1)} \leq u$. Set $k=k+1$.
until $x^{(k)}$ is (local) optimum;

Quadratic Projected-Gradient Projection Algorithm

- Algorithm requires feasible starting point, $I \leq x^{(0)} \leq u$
- If starting point, \hat{x} infeasible, then project: $x^{(0)}=P_{[l, u]}(\hat{x})$
- Use conjugate-gradient method to solve subproblem approx.
- Stop, when we reach bound
- Check for negative curvature ... go to bound

Theorem (Finite Active-Set Identification)

Assume solution, x^{*}, is strictly complementary, i.e.

$$
x_{i}^{*}=I_{i} \Rightarrow \frac{\partial f}{\partial x_{i}}\left(x^{*}\right)>0 \quad \text { and } \quad x_{i}^{*}=u_{i} \Rightarrow \frac{\partial f}{\partial x_{i}}\left(x^{*}\right)<0
$$

then identify optimal active set, $\mathcal{A}\left(x^{*}\right)$, after finite number of projected gradient steps
... hence terminate finitely for a quadratic

Outline

(1) Introduction
(2) Optimality Conditions for Bound-Constraints
(3) Bound-Constrained Quadratic Optimization

- Projected-Gradient Step
- Subspace Optimization
- Algorithm for Bound-Constrained Quadratic Optimization

4 Bound-Constrained Nonlinear Optimization

Bound-Constrained Nonlinear Optimization

Now consider bound-constrained optimization:

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } I \leq x \leq u
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice continuously differentiable, and bounds $I, u \in \mathbb{R}^{n}$ can be infinite.

How can we generalize projected-gradient to nonlinear $f(x)$?

- Use Cauchy-point (steepest descend) idea to get convergence.
- Perform subspace optimization of a quadratic model
... measure progress with respect to $f(x)$
- Embed in trust-region or line-search framework
... here show TR framework

Bound-Constrained Nonlinear Optimization

Intersection of ℓ_{∞} trust-region with bounds is simple:

$$
\begin{aligned}
& I_{i}^{(k)}=\max \left(I_{i}, x_{i}^{(k)}-\Delta_{k}\right) \\
& u_{i}^{(k)}=\min \left(u_{i}, x_{i}^{(k)}+\Delta_{k}\right)
\end{aligned}
$$

In following, assume that bounds I, u are already $I^{(k)}, u^{(k)}$

General Projected-Gradient Algorithm

Start by describing how we obtain a new point:

Algorithm $s=\operatorname{StepComputation}\left(x^{(k)}\right)$
(1) Define path $x^{(k)}(t):=P_{[I, u]}\left(x^{(k)}-t \hat{g}^{(k)}\right)$.
(2) Form quadratic model, $q_{k}(s)$, of $f(x)$ around $x^{(k)}$.
(3) Get Cauchy point, $x_{C}^{(k)}$: first minimizer of $q_{k}\left(s^{(k)}(t)\right)$
(9) Get active set, $\mathcal{A}\left(x_{C}^{(k)}\right)$, set up subspace optimization.
(5) Approx. minimize $q_{k}(s)$ over inactive variables such that $l \leq x^{(k)}+s \leq u$.

General Projected-Gradient Algorithm

Given $I \leq x^{(0)} \leq u$, set $\Delta_{0}=1$, and $k=0$.

repeat

Obtain step s: $I \leq x^{(k)}+s \leq u$ with Cauchy property.
Compute $r_{k}=\frac{f^{(k)}-f\left(x^{(k)}+s^{(k)}\right)}{f^{(k)}-q_{k}\left(s^{(k)}\right)}=\frac{\text { act. reductn. }}{\text { pred. reductn. }}$.
if $r_{k} \geq \eta_{v}$ very successful step then
Accept $x^{(k+1)}:=x^{(k)}+s^{(k)}$, increase $\Delta_{k+1}:=\gamma_{i} \Delta_{k}$.
else if $r_{k} \geq \eta_{v}$ successful step then
Accept $x^{(k+1)}:=x^{(k)}+s^{(k)}$, set $\Delta_{k+1}:=\Delta_{k}$.
else if $r_{k}<\eta_{v}$ unsuccessful step then
Reject step $x^{(k+1)}:=x^{(k)}$, reduce $\Delta_{k+1}:=\gamma_{d} \Delta_{k}$.
end
Set $k=k+1$.
until $x^{(k)}$ is (local) optimum;

Illustration of Projected-Gradient Algorithm

Conclusions \& Summary

Presented bound constrained optimization

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } I \leq x \leq u
$$

Introduces concept of active sets

Derived projected gradient method with subspace optimization

- Computes min along piecewise linear path: Cauchy point
- Uses conjugate gradients to minimize in subspace

