

Bound Constrained Optimization

GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

- Introduction
- Optimality Conditions for Bound-Constraints
- Bound-Constrained Quadratic Optimization
 - Projected-Gradient Step
 - Subspace Optimization
 - Algorithm for Bound-Constrained Quadratic Optimization
- 4 Bound-Constrained Nonlinear Optimization

Introduction to Bound Constraints

Motivation for Bound-Constrained Optimization

- Practical problems involve variables that must satisfy bounds e.g. pressure, temperature, ...
- General optimization requires bound-constrained subproblems e.g. trust-region subproblem

Bound-Constrained Optimization

$$\underset{x \in \mathbb{R}^n}{\mathsf{minimize}} \ f(x) \quad \mathsf{subject to} \ l \leq x \leq u$$

where $f: \mathbb{R}^n \to \mathbb{R}$ twice continuously differentiable, and bounds $I, u \in \mathbb{R}^n$ can be infinite.

- Review optimality conditions ... preview KKT conditions
- Introduce gradient-projection methods for large-scale problems

Outline

- 1 Introduction
- Optimality Conditions for Bound-Constraints
- 3 Bound-Constrained Quadratic Optimization
 - Projected-Gradient Step
 - Subspace Optimization
 - Algorithm for Bound-Constrained Quadratic Optimization
- 4 Bound-Constrained Nonlinear Optimization

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \quad \text{subject to } l \leq x \leq u$$

Look at components x_i to derive optimality conditions (3 cases)

Case I: $I_i < x_i < u_i$ Inactive bounds

Unconstrained Case:

Recall stationarity: $\frac{\partial f}{\partial x_i} = 0$... i.e. zero gradient in x_i

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \quad \text{subject to } l \leq x \leq u$$

Look at components x_i to derive optimality conditions (3 cases)

Case II: $I_i = x_i$ Lower bound active

Slope of f in direction e_i should be ≥ 0 ... otherwise reduce f by moving away from l_i

Lower Bound: $\frac{\partial f}{\partial x_i} \ge 0$ and $x_i = I_i$

... e_i is i^{th} unit vector

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \quad \text{subject to } I \leq x \leq u$$

Look at components x_i to derive optimality conditions (3 cases)

Case III: $x_i = u_i$ Upper bound active

Slope of f in direction $-e_i$ should be ≥ 0 ... otherwise reduce f by moving away from u_i

Upper Bound: $\frac{\partial f}{\partial x_i} \leq 0$ and $x_i = u_i$

... e_i is i^{th} unit vector.

Optimality conditions are related to sign condition on multipliers in KKT conditions (tomorrow's lecture)

Theorem (Optimality Conditions for Bound Constraints)

Let f(x) be continuously differentiable. If x^* local minimizer of

Projection Operator for Bound Constraints

Projection operator, $P_{[I,u]}(x)$, projects x into box, [I,u]:

$$[P_{[I,u]}(x)]_i := \begin{cases} I_i, & \text{if } x_i \leq I_i \\ x_i, & \text{if } I_i < x_i < u_i \\ u_i, & \text{if } x_i \geq u_i. \end{cases}$$

We can restate first-order conditions equivalently as follows.

Corollary (First-Order Conditions for Bound Constraints)

Let f(x) be continuously differentiable. If x^* local minimizer, then

$$x^* = P_{[I,u]}(x^* - \nabla f(x^*)).$$

Proof. See Exercise this afternoon.

Active Sets

Active sets play important role in general constrained optimization.

Definition (Active Set)

Set of *active constraints*: constraints that hold with equality at \hat{x} :

$$A(\hat{x}) := \{i : I_i = \hat{x}_i\} \cup \{-i : u_i = \hat{x}_i\},$$

Convention: positive i for lower, negative i for upper bounds

- Sign convention is not needed, if at most one bound finite
- Sign convention mimics sign of gradient at stationary point

Next derive active-set algorithm for quadratics, then generalize it.

Outline

- 1 Introduction
- 2 Optimality Conditions for Bound-Constraints
- 3 Bound-Constrained Quadratic Optimization
 - Projected-Gradient Step
 - Subspace Optimization
 - Algorithm for Bound-Constrained Quadratic Optimization
- 4 Bound-Constrained Nonlinear Optimization

Bound-Constrained Quadratic Optimization

Bound constrained quadratic program (QP)

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ q(x) = b^T x + \frac{1}{2} x^T G x \quad \text{subject to } I \le x \le u$$

where $b \in \mathbb{R}^n$, and $G \in \mathbb{R}^{n \times n}$ is symmetric

- Do not assume G positive definite ... seek local minimum
- Instead assume all bounds finite, $l > -\infty$ and $u < \infty$
- \Rightarrow stationary point exists ... unbounded case handled easily.

Main Idea Algorithm

- Take projected-gradient step to identify (optimal) face
- Perform local optimization on face of hyper cube

Projected-gradient along steepest descend ⇒ convergence

Projected-Gradient Step

Bound constrained quadratic program (QP)

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ q(x) = b^T x + \frac{1}{2} x^T G x \quad \text{subject to } I \le x \le u$$

Given feasible point, x, with $l \le x \le u$, and gradient, g = Gx + b, ... consider piecewise linear path parameterized in t:

$$x(t) := P_{[I,u]}(x - tg),$$

Goal: Find first minimizers of q(x) along this path \Leftrightarrow find first minimizer of q(x(t))

- ullet Construct analytic description of piecewise linear path, x(t)
- Find first minimizer along this path

Projected Gradient Path

 \hat{t}_i : value of t when component i reaches bound in direction -g:

$$\hat{t}_i = \begin{cases} (x_i - u_i)/g_i \text{ if } g_i < 0, \text{ and } u_i < \infty \\ (x_i - l_i)/g_i \text{ if } g_i > 0, \text{ and } l_i > -\infty \\ \infty & \text{otherwise.} \end{cases}$$

P[x-tg]

NB: if
$$g_i = 0$$
, then x_i unchanged, i.e. $\hat{t}_i = \infty$

To describe path x(t), must identify breakpoints along x(t):

$$x_i(t) = \begin{cases} x_i - tg_i & \text{if } t \leq \hat{t}_i \\ x_i - \hat{t}_i g_i & \text{if } t \geq \hat{t}_i, \end{cases}$$

i.e. once component is its bound at \hat{t}_i it does not change Identify breakpoints of x(t) by ordering the \hat{t}_i increasingly \Rightarrow get sequence, $0 < t_1 < t_2 < t_3 \dots$

Intervals $[0, t_1], [t_1, t_2], [t_2, t_3], \ldots$ correspond to segments of x(t)

Expression of the j^{th} segment, $[t_{j-1}, t_j]$

$$x(t) = x(t_{j-1}) + \delta s^{(j-1)},$$

where stepsize δ and direction $s^{(j-1)}$ are:

$$\delta = t - t_{j-1}, \quad \delta \in [0, t_j - t_{j-1}],$$

$$s_i^{(j-1)} = \begin{cases} -g_i & \text{if } t_{j-1} \leq \hat{t}_i \\ 0 & \text{otherwise.} \end{cases}$$

Obtain explicit expression for q(x) in segment $t \in [t_{j-1}, t_j]$:

$$q(x(t)) = b^{T} (x(t_{j-1}) + \delta s^{j-1}) + \frac{1}{2} (x(t_{j-1}) + \delta s^{j-1})^{T} G (x(t_{j-1}) + \delta s^{j-1}),$$

which is a 1D quadratic in δ and can be written as

$$q(\delta) = q(x(t)) = f_{j-1} + f'_{j-1}\delta + \frac{1}{2}\delta^2 f''_{j-1}, \text{ for } \delta \in [0, t_j - t_{j-1}],$$

with coefficients given by

$$f_{j-1} = b^{T} x(t_{j-1}) + \frac{1}{2} x(t_{j-1})^{T} Gx(t_{j-1})$$

$$f'_{j-1} = b^{T} s^{(j-1)} + x(t_{j-1})^{T} Gs^{(j-1)}$$

$$f''_{j-1} = s^{(j-1)^{T}} Gs^{(j-1)}.$$

To find minimum of $q(x(t))=q(\delta)$ in $[0,t_j-t_{j-1}]$ differentiate ... minimizer then depends on the signs of f'_{j-1} and f''_{j-1}

Finding Minimum on Projected Gradient Path

Nine cases for min of $q(x(t)) = q(\delta)$ in $[0, t_j - t_{j-1}]$ Gradient

Nine cases for minimization of $q(\delta) = f'_{j-1}\delta + \frac{1}{2}\delta^2 f''_{j-1}$

	$f_{j-1}' < 0$	$f_{j-1}'=0$	$f'_{j-1} > 0$
$f_{j-1}'' < 0$	$\delta = t_j - t_{j-1}$	$\delta = t_j - t_{j-1}$	$\delta = 0$
$\tilde{f}_{j-1}^{\prime\prime}=0$		$\delta = t_j - t_{j-1}$	$\delta = 0$
$f_{j-1}^{\prime\prime}>0$	$\delta = \min\left(rac{-f_{j-1}'}{f_{j-1}''}, t_j - t_{j-1} ight)$	$\delta = 0$	$\delta = 0$

Optimal δ either on boundary or in interior.

Algorithm for First Minimizer of q(x(t))

- **1** Examine intervals $[0, t_1], [t_1, t_2], [t_2, t_3], \dots$
- $oldsymbol{\circ}$ Stop in interval j , where the optimum, $\delta^* < t_j t_{j-1}$

Optimum is $t^* = t_{j-1} + \delta^*$, and the Cauchy point is $x_C = x(t^*)$

First Minimizer Along Projected Gradient Path

Given initial point, x, and direction, g.

Compute breakpoints \hat{t}_i , and set j = 1.

Get $t_0 := 0 < t_1 < t_2 < \dots$ ordering \hat{t}_i , remove duplicates/zeros.

repeat

Compute f'_{i-1}, f''_{i-1} , and find δ^* from above table.

$$\begin{array}{ll} \textbf{if} \ \delta^* < t_j - t_{j-1} \ \textbf{then} \\ | \ \ \mathsf{Set} \ t^* = t_{j-1} + \delta^* \ \mathsf{found}. \\ \textbf{end} \\ \mathsf{Set} \ j = j+1. \end{array}$$

until t^* found;

Return t^* and $x(t^*)$.

Subspace Optimization

Bound constrained QP

minimize
$$q(x) = b^T x + \frac{1}{2} x^T G x$$
 subject to $l \le x \le u$

First minimizer along projected-gradient path:

$$\underset{t}{\text{minimize}} \ q(x(t)), \quad \text{where} \quad x(t) := P_{[l,u]}\left(x-tg\right),$$

gives Cauchy point, x_c & candidate active set ... explore subspace

Cauchy Point Active Set, $A(x_C)$, Subproblem

Extend conjugate-gradient algorithm \Rightarrow good for large problems

Quadratic Projected-Gradient Projection Algorithm

Bound constrained QP

minimize
$$q(x) = b^T x + \frac{1}{2} x^T G x$$
 subject to $l \le x \le u$

Quadratic Projected-Gradient Projection Algorithm

Given $l \le x^{(0)} \le u$, set k = 0.

repeat

Define the path $x^{(k)}(t) := P_{[I,u]}(x^{(k)} - tg^{(k)}).$

Get Cauchy point, $x_C^{(k)}$: find first minimizer $q(x^{(k)}(t))$

Active set, $A(x_C^{(k)})$, set up subspace optimization problem.

Approximately solve subspace optimization for $l \leq x^{(k+1)} \leq u$.

Set k = k + 1.

until $x^{(k)}$ is (local) optimum;

Quadratic Projected-Gradient Projection Algorithm

- Algorithm requires feasible starting point, $I \le x^{(0)} \le u$
 - If starting point, \hat{x} infeasible, then project: $x^{(0)} = P_{[I,u]}(\hat{x})$
- Use conjugate-gradient method to solve subproblem approx.
 - Stop, when we reach bound
 - Check for negative curvature ... go to bound

Theorem (Finite Active-Set Identification)

Assume solution, x^* , is strictly complementary, i.e.

$$x_i^* = I_i \Rightarrow \frac{\partial f}{\partial x_i}(x^*) > 0$$
 and $x_i^* = u_i \Rightarrow \frac{\partial f}{\partial x_i}(x^*) < 0$

then identify optimal active set, $A(x^*)$, after finite number of projected gradient steps

... hence terminate finitely for a quadratic

Outline

- 1 Introduction
- Optimality Conditions for Bound-Constraints
- 3 Bound-Constrained Quadratic Optimization
 - Projected-Gradient Step
 - Subspace Optimization
 - Algorithm for Bound-Constrained Quadratic Optimization
- 4 Bound-Constrained Nonlinear Optimization

Bound-Constrained Nonlinear Optimization

Now consider bound-constrained optimization:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \quad \text{subject to } l \leq x \leq u$$

where $f: \mathbb{R}^n \to \mathbb{R}$ twice continuously differentiable, and bounds $I, u \in \mathbb{R}^n$ can be infinite.

How can we generalize projected-gradient to nonlinear f(x)?

- Use Cauchy-point (steepest descend) idea to get convergence.
- Perform subspace optimization of a quadratic model ... measure progress with respect to f(x)
- Embed in trust-region or line-search framework
 ... here show TR framework

Bound-Constrained Nonlinear Optimization

Intersection of ℓ_{∞} trust-region with bounds is simple:

$$I_i^{(k)} = \max\left(I_i, x_i^{(k)} - \Delta_k\right)$$

$$u_i^{(k)} = \min\left(u_i, x_i^{(k)} + \Delta_k\right)$$

In following, assume that bounds l, u are already $l^{(k)}, u^{(k)}$

General Projected-Gradient Algorithm

Start by describing how we obtain a new point:

Algorithm $s = \text{StepComputation}(x^{(k)})$

- **1** Define path $x^{(k)}(t) := P_{[l,u]}(x^{(k)} t\hat{g}^{(k)}).$
- ② Form quadratic model, $q_k(s)$, of f(x) around $x^{(k)}$.
- **3** Get Cauchy point, $x_C^{(k)}$: first minimizer of $q_k(s^{(k)}(t))$
- Get active set, $\mathcal{A}(x_C^{(k)})$, set up subspace optimization.
- **1** Approx. minimize $q_k(s)$ over inactive variables such that $l \leq x^{(k)} + s \leq u$.

General Projected-Gradient Algorithm

```
Given I < x^{(0)} < u, set \Delta_0 = 1, and k = 0.
repeat
     Obtain step s: I < x^{(k)} + s < u with Cauchy property.
    Compute r_k = \frac{f^{(k)} - f(x^{(k)} + s^{(k)})}{f^{(k)} - a_k(s^{(k)})} = \frac{\text{act. reductn.}}{\text{pred. reductn.}}
     if r_k > \eta_v very successful step then
         Accept x^{(k+1)} := x^{(k)} + s^{(k)}, increase \Delta_{k+1} := \gamma_i \Delta_k.
     else if r_k > \eta_V successful step then
          Accept x^{(k+1)} := x^{(k)} + s^{(k)}, set \Delta_{k+1} := \Delta_k.
     else if r_k < \eta_v unsuccessful step then
          Reject step x^{(k+1)} := x^{(k)}, reduce \Delta_{k+1} := \gamma_d \Delta_k.
     end
     Set k = k + 1.
until x^{(k)} is (local) optimum:
```

Illustration of Projected-Gradient Algorithm

Conclusions & Summary

Presented bound constrained optimization

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \quad \text{subject to } l \leq x \leq u$$

Introduces concept of active sets

Derived projected gradient method with subspace optimization

- Computes min along piecewise linear path: Cauchy point
- Uses conjugate gradients to minimize in subspace

