
A New Augmented Lagrangian Filter Method
DOE-ASCR PI Meeting 2013

Sven Leyffer

Thanks to Jonathan Eckstein, Philip Gill, Nick Gould, and Daniel Robinson

Mathematics & Computer Science Division
Argonne National Laboratory

August 6-8, 2013

Active Set Methods for Nonlinear Programming (NLP)

Nonlinear Program (NLP)

minimize
x

f (x) subject to c(x) = 0, x ≥ 0

where f , c twice continuously differentiable

Definition (Active Set)

Active set: A(x) = {i | xi = 0}

Inactive set: I(x) = {1, . . . , n} − A(x)

For known optimal active set A(x∗), just use Newton’s method

Goal: develop robust, fast, parallelizable active-set methods

2 / 27

Active Set Methods for Nonlinear Programming (NLP)

Motivation: mixed-integer nonlinear optimization: xi ∈ {0, 1}
solve NLP relaxation xi ∈ [0, 1]

branch on x̂i 6∈ {0, 1} ... two new NLPs: xi = 0 or xi = 1

solve sequence of closely related NLPs

Branch-and-bound solves millions of related NLPs ...

3 / 27

Active-Set vs. Interior-Point Solvers in MINLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Ratio to Fastest

MINOTAUR-filterSQP
MINOTAUR-IPOPT

MINOTAUR with FilterSQP vs IPOPT: CPU time

FilterSQP warm-starts much faster than IPOPT

similar results for BONMIN (IBM/CMU) solver

4 / 27

Outline

1 Scalable Active-Set Methods for Nonlinear Optimization

2 Augmented Lagrangian Filter Method

3 Outline of Convergence Proof

4 Outlook and Conclusions

5 / 27

Two-Phase Active-Set Framework for NLP

NLP: minimize
x

f (x) subject to c(x) = 0, x ≥ 0

repeat

1 Compute cheap first-order step x (k) + s, e.g. LP/QP solve

2 Predict active set from s: A(x (k) + s) & I(x (k) + s)

3 Compute second-order EQP step on active set:[
Hk Ak

AT
k

](
∆x
∆y

)
= ... Newton step

where Hk = ∇2L(k) and Ak =
[
∇c(k) : I (k)

]
active c/s

4 Enforce global convergence & set k ← k + 1

until optimal solution found

(Fletcher & de la Maza:89), (Gould & Robinson:10), (Fletcher:11)

Toward scalable nonlinear optimization
⇒ replace LP/QP ... avoid pivoting, i.e. rank-one matrix updates

6 / 27

Augmented Lagrangian Methods (LANCELOT)

Augmented Lagrangian:
Lρ := f (x) − yT c(x) + ρ

2‖c(x)‖2
2

With sequences ωk ↘ 0 and ηk ↘ 0

repeat

1 Find ωk optimal solution x̂ (k+1) of minimize
x≥0

Lρ(x , y (k))

2 if ‖c(x̂ (k+1))‖ ≤ ηk then
update multipliers: y (k+1) = y (k) − ρkc(x̂ (k+1))

else
increase penalty: ρk+1 = 2ρk

3 Choose new (ηk+1, ωk+1); set k ← k + 1

until (optimal solution found)

see e.g. (Conn, Gould & Toint:95) and (Friedlander, 2002)

7 / 27

Augmented Lagrangian Methods (LANCELOT)

Advantage of Augmented Lagrangian Methods

Scalable computational kernels

Disadvantages of Augmented Lagrangian Methods

1 First-order method in multipliers ⇒ slow convergence

2 Arbitrary forcing sequences (ωk , ηk) ... one fits all NLPs?

3 Slow penalty update ⇒ slow for infeasible NLPs

Improving augmented Lagrangian methods:

1 Add equality QP step for fast Newton-like convergence

2 Replace forcing sequence (ωk , ηk) by filter

3 Exploit structure for penalty estimates & use restoration phase

Goal: extend (Friedlander & L., 2008) from QP to NLP

8 / 27

Outline

1 Scalable Active-Set Methods for Nonlinear Optimization

2 Augmented Lagrangian Filter Method

3 Outline of Convergence Proof

4 Outlook and Conclusions

9 / 27

Augmented Lagrangian Filter

Filter F to replace forcing sequences (ωk , ηk)

Definition (Augmented Lagrangian Filter)

Filter F is a list of pairs (η(x), ω(x , y)) where

ω(x , y) := ‖min{x ,∇xL0(x , y)}‖ ... Lagrangian L0

η(x) := ‖c(x)‖ ... constraint violation

such that no pair dominates another

A point (x (k), y (k)) acceptable to filter F iff

η(x (k)) ≤ βηl or ω(x (k), y (k)) ≤ βωl − γη(x (k)), ∀l ∈ F

Typically: β = 0.99, γ = 0.01

Approximate minimization of Lρ(x , y (k)) until acceptable to filter

10 / 27

Augmented Lagrangian Filter

η

ω

ω(x , y) := ‖min{x ,∇xL0(x , y)}‖ and η(x) := ‖c(x)‖

Automatic upper bound: U = β/γωmax, because ω ≥ 0

11 / 27

Augmented Lagrangian Filter

ω

η

U

ω(x , y) := ‖min{x ,∇xL0(x , y)}‖ and η(x) := ‖c(x)‖
Automatic upper bound: U = β/γωmax, because ω ≥ 0

11 / 27

Augmented Lagrangian Filter Method

while (x (k), y (k)) not optimal do
j = 0; initialize x̂ (j) = x (k), ω̂j = ωk and η̂j = ηk
repeat

x̂ (j+1) ← approximate argminx≥0 Lρk (x , y (k)) from x̂ (j)

if restoration switching condition then
Increase penalty: ρk+1 = 2ρk & switch to restoration
... find acceptable (x (k+1), y (k+1)) and set k = k + 1

end

Provisionally update: ŷ (j+1) = y (k) − ρjc(x̂ (j+1))
Compute (η̂j+1, ω̂j+1) and set j = j + 1

until (η̂j , ω̂j) acceptable to Fk ;

Set (x (k+1), y (k+1)) = (x̂ (j), ŷ (j))

Get A(k+1) = {i : x
(k+1)
i = 0} & solve equality QP

if ηk+1 > 0 then add (ηk+1, ωk+1) to F ... set k = k + 1
end

12 / 27

Approximate Minimization of Augmented Lagrangian

Inner initialization: j = 0 and x̂ (0) = x (k)

For j = 0, 1, . . . terminate augmented Lagrangian minimization,

x̂ (j+1) ← approximate argmin
x≥0

Lρk (x , y (k))

when standard sufficient reduction holds:

∆Lρk := Lρk (x̂ (j), y (k))− Lρk (x̂ (j+1), y (k)) ≥ σω̂j ≥ 0

E.g. Cauchy step on augmented Lagrangian for fixed ρk and y (k)

More natural than requiring reduction in F.O. error ω̂j ↘ 0

13 / 27

Switching to Restoration

Goal: Infeasible NLPs ⇒ want to find minimize
x≥0

‖c(x)‖2
2 fast!

Switch to restoration, min ‖c(x)‖, if

1 η̂j ≥ βU ... infeasible, or

2 η̂j ≥ M min(1, ω̂τj), for τ ∈ [1, 2]
... infeasible Fritz-John point, or

3 ‖min(∇c(j)c(j), x̂ (j))‖ ≤ ε
and ‖c(j)‖ ≥ βηmin

... infeasible FO Point, where

ηmin := min
l∈Fk

{ηl} > 0

ω

ω

η

β

M

U

Lemma (Finite Return From Restoration)

ηl ≥ ηmin ∀l ∈ Fk ⇒ ∃ x (k+1) acceptable or restoration converges

14 / 27

Second-Order Steps & KKT Solves

x (k+1) ← minimize
x≥0

Lρ(x , y (k)) ... predicts A(x (k+1))

Accelerate convergence, by solving EQP with ∆xA = 0:[
H̃k+1 Ãk+1

ÃT
k+1

](
∆xI
∆y

)
=

(
−∇f (k+1)

I
−c(x (k+1))

)

where H̃k+1 is “reduced” Hessian wrt bounds (∆xA = 0)

Line-search: αk+1 ∈ {0} ∪ [αmin, 1] such that

(x (k+1), y (k+1)) = (x̂ (k+1), ŷ (k+1)) + αk+1(∆x (k+1),∆y (k+1))

Fk -acceptable
... αk+1 = 0 OK, because (x̂ (k+1), ŷ (k+1)) was acceptable

15 / 27

Outline

1 Scalable Active-Set Methods for Nonlinear Optimization

2 Augmented Lagrangian Filter Method

3 Outline of Convergence Proof

4 Outlook and Conclusions

16 / 27

Augmented Lagrangian Filter Method

while (x (k), y (k)) not optimal do
j = 0; initialize x̂ (j) = x (k), ω̂j = ωk and η̂j = ηk
repeat

x̂ (j+1) ← approximate argminx≥0 Lρk (x , y (k)) from x̂ (j)

if restoration switching condition then
Increase penalty: ρk+1 = 2ρk & switch to restoration
... find acceptable (x (k+1), y (k+1)) and set k = k + 1

end

Provisionally update: ŷ (j+1) = y (k) − ρjc(x̂ (j+1))
Compute (η̂j+1, ω̂j+1) and set j = j + 1

until (η̂j , ω̂j) acceptable to Fk ;

Set (x (k+1), y (k+1)) = (x̂ (j), ŷ (j))

Get A(k+1) = {i : x
(k+1)
i = 0} & solve equality QP

if ηk+1 > 0 then add (ηk+1, ωk+1) to F ... set k = k + 1
end

17 / 27

Overview of Convergence Proof

Assumptions

1 Functions f (x) and c(x) twice continuously differentiable

2 ‖c(x)‖ → ∞ whenever ‖x‖ → ∞ ... ignore EQP for analysis

Outline of Convergence Proof

1 Filter Fk ⇒ iterates, x (k) remain in compact set

2 Inner iteration is finite ⇒ ∃ convergent subsequence

3 Mechanism of filter ⇒ limit points are feasible
4 Show limit points are stationary in two cases:

1 Bounded penalty ... rely on filter
2 Unbounded penalty ... classical augmented Lagrangian

Remark

Do not assume compactness, or bounded multipliers!

18 / 27

Iterates Remain in Compact Set

Lemma (All Iterates Remain in Compact Set)

All major and minor iterates, x (k) and x̂ (j) are in a compact set, C .

Proof.

1 Upper bound on filter (U = β/γωmax)
⇒ ‖c(x (k))‖ ≤ U for all major iterates

2 Switching condition (η̂j ≤ βU)
⇒ ‖c(x̂ (j))‖ ≤ U for all minor iterates

3 Feasibility restoration minimizes ‖c(x)‖
⇒ ‖c(x (k))‖ bounded

⇒ ‖c((k))‖ ≤ U and ‖c(x̂ (j))‖ ≤ U

ω

η

U

c(x) twice continuously differentiable & ‖c(x)‖ → ∞ if ‖x‖ → ∞

⇒ x (k), x̂ (j) ∈ C , compact

19 / 27

Finiteness of Inner Iteration

Lemma (Finiteness of Inner Iteration)

The inner iteration is finite.

Proof. Assume inner iteration not finite ⇒ ∃x̂∗ = lim x̂ (j) ∈ C

1 Fixed penalty: ρk ≡ ρ <∞
2 Sufficient reduction of Lρ(x , y (k))

⇒ ∆Lρ ≥ σω̂j ; assume ω̂j ≥ ω̄ > 0

⇒ Lρ(x̂ (j), y (k)) unbounded

... but ‖c(x̂ (j))‖, ρ, and f (x) bounded

3 Contradiction ⇒ ω̂j → 0, and ω̂∗ = 0

4 Switching: η̂j < Mω̂j ⇒ η̂∗ ≤ Mω̂∗ η

ω

⇒ (η̂∗, ω̂∗) = (0, 0) and ∃ filter acceptable points near (0, 0)

20 / 27

Feasible Limit Points

Lemma (Feasible Limit Points)

In outer iteration, feasibility error ηk = ‖c(x (k))‖ → 0.

Proof. Two cases:

1 ηk = 0, ∀k ≥ K0 ... of course!

2 ηk > 0, subsequence ∀k ≥ K0

see (Chin & Fletcher, 2003)
... envelope ⇒ ηk → 0

... standard filter argument

η

ω

21 / 27

First-Order Optimality

Lemma (First-Order Stationarity)

First-order optimality ωk = ‖min{x (k),∇xL
(k)
0 }‖ → 0.

Proof. (1) ρk ≤ ρ̄ <∞ and (2) ρk unbounded: classical proof

Assume ωk ≥ ω̄ > 0 & seek contradiction
⇒ ∆Linρ̄ = Lρ̄(x (k), y (k))− Lρ̄(x (k+1), y (k)) ≥ σωk ≥ σω̄ > 0

First-order multiplier update, y (k+1) = y (k) − ρ̄c(x (k+1))

∆Loutρ̄ = Lρ̄(x (k), y (k))− Lρ̄(x (k+1), y (k+1))

= ∆Linρ̄ − ρ̄‖c(x (k+1))‖2
2

≥ σω̄ − ρ‖c(x (k+1))‖2
2

Feasible limit: c(x (k+1))→ 0⇒ ‖c(x (k+1))‖2
2 ≤ σ ω̄

2ρ , ∀k ≥ K̄

⇒ ∆Loutρ̄ ≥ σ ω̄2 , ∀k ≥ K̄ outer iteration sufficient reduction

22 / 27

First-Order Optimality (Proof cont.)

Sufficient reduction at outer iterations: ∆Loutρ̄ ≥ σ ω̄2
⇒ Lρ̄(x , y) = f (x)− yT c(x) + ρ

2‖c(x)‖2
2 unbounded

x (k) ∈ C compact ⇒ f (x) and ‖c(x)‖2
2 bounded

Show yT c(x) ≤ M bounded:

Feasibility Lemma ⇒ ηk = ‖c(x (k))‖ → 0
Filter acceptance: Monotone sub-sequences ηk ≤ βηk−1

FO multiplier update: y (k) = y (0) − ρ̄
∑

l c
(l)

⇒ y (k)T c(x (k)) =

(
y (0) − ρ̄

∑
l

c(l)

)T

c(k)

≤

(
1 + ρ̄

∑
l

ηl

)
ηk ≤ η0

(
βk + ρ̄

∑
l

βl+k

)
≤ M

Contradiction: Lρ̄(x , y) = f (x)− yT c(x) + ρ
2‖c(x)‖2

2 bounded
⇒ ωk → 0 ... first-order stationarity

23 / 27

Outline

1 Scalable Active-Set Methods for Nonlinear Optimization

2 Augmented Lagrangian Filter Method

3 Outline of Convergence Proof

4 Outlook and Conclusions

24 / 27

Key Computational Kernels

1 Filter stopping rule readily included in minimization of Lρ
∇Lρ(x̂ (j+1), y (k)) = ∇L0(x̂ (j+1), ŷ (j+1)) = ω̂j+1

2 Approximate minimization of augmented Lagrangian

projected gradient plus CG on subspace[
Hk + ρAkA

T
k

]
I,I ∆xI = −∇Lρ(x (k), y (k))

⇔
[
H̃k Ãk

ÃT
k −ρ−1I

](
∆xI
u

)
=

(
−∇Lρ(x (k), y (k))

0

)
3 KKT system solve[

H̃k Ãk

ÃT
k

](
∆xI
∆y

)
= ...

indefinite reduced Hessian ⇒ inertia control

⇒ exploit scalable matrix-free solvers based on Hk ,Ak

25 / 27

Active Set Identification for QP blockqp4 100

Encouraging preliminary results with QP solver:

Standard AugLag Filter AugLag

red: lower bound active; green: upper bound active

... filter allows faster changes to A-set

26 / 27

Conclusions & Open Questions

Augmented Lagrangian Filter:

augmented Lagrangian to identify optimal active set

filter replaces forcing sequences in augmented Lagrangian

second-order step (EQP) for fast convergence

penalty update based on eigenvalue estimates of KKT matrix

... outline of convergence proof to first-order points

Future Work & Open Questions

implementation, preconditioners, and numerical experiments

matrix-free parallel version using TAO & PETSc

Active-set identification & second-order convergence

adaptive precision control (Dostal, 2002)
⇔ filter with single entry: F = {(M‖c(xk)‖, 0)}

27 / 27

	Scalable Active-Set Methods for Nonlinear Optimization
	Augmented Lagrangian Filter Method
	Outline of Convergence Proof
	Outlook and Conclusions

