# Nonconvex Mixed-Integer Nonlinear Optimization Summer School on Optimization of Dynamical Systems 

Sven Leyffer and Jeff Linderoth

Argonne National Laboratory

September 3-7, 2018

## Outline

(1) Introduction to Global Optimization of Nonconvex MINLP
(2) Reformulation Linearization Technique
(3) Generic Relaxation Strategies
(4) Spatial Branch-and-Bound
(5) Tightening Bounds and Relaxations

## Challenges of Nonconvex MINLP

Mixed-Integer Nonlinear Program (MINLP)
$\underset{x}{\operatorname{minimiße}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$
... now drop assumption that $f(x)$ and $c(x)$ are convex

## Challenges of nonconvex MINLP

- Objective function $f(x)$ can have many local minimißers
- Continuous relaxation of constraint set $\{x \mid c(x) \leq 0, x \in X\}$ ... can be disjoint, may have no interior

Nonconvexity arise naturally, e.g. AC power-flow equations

$$
\begin{aligned}
F\left(U_{k}, U_{l}, \theta_{k}, \theta_{l}\right):= & b_{k l} U_{k} U_{l} \sin \left(\theta_{k}-\theta_{l}\right)+g_{k l} U_{k}^{2} \\
& -g_{k l} U_{k} U_{l} \cos \left(\theta_{k}-\theta_{l}\right)
\end{aligned}
$$

## Challenges of Nonconvex MINLP

$\underset{x}{\operatorname{minimiße}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

## Definition (Global Minimum)

A point $x^{*}$ is a global minimum of
$\underset{x}{\operatorname{minimiße}} f(x)$ subject to $x \in \mathcal{F}$
iff $f(x) \geq f\left(x^{*}\right)$ for all $x \in \mathcal{F}$


Remarks:

- NLP solvers are not guaranteed to find even local minima ... though they work remarkably well in practice!
- Finding a global min is difficult ... proving it is really hard


## General Approach to Nonconvex MINLP

$\underset{x}{\operatorname{minimiße}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$
Use old MIP trick: convex relaxation to get tractable NLP

- Relax integrality as before: $x_{i} \in \mathbb{R} \forall i \in I$
- Also need to relax $f(x)$ and constraints $c(x)$... new aspect



Need constraint enforcement to guarantee convergence

- Branching reduces area of relaxation
- Refinement tightens the relaxation over subdomain


## Example: Relaxing Graph of Bilinear Product

Consider simple nonconvex (bounded) expression:

$$
x_{k}=x_{i} x_{j}
$$

where $l_{i} \leq x_{i} \leq u_{i}$ and $l_{j} \leq x_{j} \leq u_{j}$ are bounded
Derive McCormick outer approximations from mixing bounds:
(1) $0 \leq\left(x_{i}-l_{i}\right)\left(x_{j}-l_{j}\right)$ implies $x_{k}=x_{i} x_{j} \geq l_{i} x_{j}+l_{j} x_{i}-l_{i} l_{j}$

## Example: Relaxing Graph of Bilinear Product

Consider simple nonconvex (bounded) expression:

$$
x_{k}=x_{i} x_{j}
$$

where $l_{i} \leq x_{i} \leq u_{i}$ and $l_{j} \leq x_{j} \leq u_{j}$ are bounded
Derive McCormick outer approximations from mixing bounds:
(1) $0 \leq\left(x_{i}-l_{i}\right)\left(x_{j}-l_{j}\right)$ implies $x_{k}=x_{i} x_{j} \geq l_{i} x_{j}+l_{j} x_{i}-l_{i} l_{j}$
(2) $0 \leq\left(x_{i}-u_{i}\right)\left(x_{j}-u_{j}\right)$ implies $x_{k}=x_{i} x_{j} \geq u_{i} x_{j}+u_{j} x_{i}-u_{i} u_{j}$
(3) $0 \geq\left(x_{i}-l_{i}\right)\left(x_{j}-u_{j}\right)$ implies $x_{k}=x_{i} x_{j} \leq l_{i} x_{j}+u_{j} x_{i}-l_{i} u_{j}$
(9) $0 \geq\left(x_{i}-u_{i}\right)\left(x_{j}-l_{j}\right)$ implies $x_{k}=x_{i} x_{j} \leq u_{i} x_{j}+l_{j} x_{i}-u_{i} l_{j}$
... tightest possible convex approximation of $x_{k}=x_{i} x_{j}$

## Special Case of Strong McCormick

$x_{i}, x_{j} \in\{0,1\}$ then $x_{k}=x_{i} x_{j} \in\{0,1\}$ if

$$
x_{k} \in[0,1] \quad \text { and } \quad x_{k} \geq x_{j}+x_{i}-1, x_{k} \leq x_{i}, x_{k} \leq x_{j}
$$

## The set M: Worth 1000 Words?

$$
x_{i j}=x_{i} x_{j}
$$



## The set M: Worth 1000 Words?

$$
x_{i j} \geq 0, \quad X_{i j} \geq x_{i}+x_{j}-1
$$



## The set M: Worth 1000 Words?

$$
x_{i j} \leq x_{i}, X_{i j} \leq x_{j}
$$



## Outline

(1) Introduction to Global Optimization of Nonconvex MINLP
(2) Reformulation Linearization Technique
(3) Generic Relaxation Strategies

4 Spatial Branch-and-Bound
(5) Tightening Bounds and Relaxations

## Generalization for Polynomial Functions

Reformulation-Linearization Technique (RLT) [Adams and Sherali, 1986]

- Generalizes McCormick underestimators to polynomials over $x \in \mathbb{R}^{n}$
- Introduce multi-index $\boldsymbol{i}$ for $0 \leq i_{j} \leq q$

$$
\boldsymbol{i}:=\left(i_{1}, \ldots, i_{n}\right)
$$

- Define monomials $x^{\boldsymbol{i}}:=x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$ and constants $a_{i} \in \mathbb{R}$

Then, $p(x)=\sum_{\boldsymbol{i} \in I} a_{\boldsymbol{i}} x^{\boldsymbol{i}}=\sum_{\boldsymbol{i} \in I} a_{\boldsymbol{i}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$

- Define tensors (sparse) for higher-order terms (dropping zeroes)

$$
x^{\boldsymbol{i}} \simeq X_{\boldsymbol{i}}=X_{i_{1} \ldots i_{n}}
$$

- Valid inequalities for higher-order by multiplying more bounds ... namely $i_{1}$ bounds on $x_{1}$ with $\ldots i_{n}$ bounds on $x_{n}$
$\Rightarrow$ Valid linear underestimator for any polynomial


## Example of RLT for General Polynomial Functions

Consider nonconvex polynomial optimization problem

$$
\begin{aligned}
& \underset{x}{\operatorname{minimiße}} f(x):=-x_{1}^{2} x_{2}^{2}+2 x_{1} x_{2}^{3}-x_{2}^{4} \\
& \text { subject to }-1 \leq x_{i} \leq 1 \text { for } i=1,2
\end{aligned}
$$

with three nonconvex terms ... use RLT ideas:
(1) New linear variables: $X_{1122} \simeq x_{1}^{2} x_{2}^{2}, X_{1222} \simeq x_{1} x_{2}^{3}, X_{2222} \simeq x_{2}^{4}$
(2) Multiply bounds to get polyhedral relaxation, e.g. for $X_{1122}$ :

Valid inequality:

$$
\begin{aligned}
& 0 \leq\left(1-x_{1}\right)^{2}\left(1-x_{2}\right)^{2} \\
& 0 \leq 1-2 x_{1}-2 x_{2}+4 X_{12}+X_{11}+X_{22}-2 X_{122}-2 X_{211}+X_{1122}
\end{aligned}
$$

$\Rightarrow$ need intermediate powers: $X_{12}, X_{11}, X_{22}, X_{122}, X_{211}$ etc

## General Nonconvex Quadratic Functions

## Strengthening RLT

(1) Exploiting binary variables ... similar for integers

- If $x_{i} \in\{0,1\}$ then $x_{i}^{2}=x_{i}$ for all feasible points
- Add linear constraints $X_{i i}=x_{i}$
(2) Multiply linear constraints to improve RLT relaxation
- Multiplying $x_{i} \geq 0$ and $b_{t}-\sum_{j=1}^{n} a_{t j} x_{j} \geq 0$ gives

$$
b_{t} x_{i}-\sum_{j=1}^{n} a_{t j} x_{i} x_{j} \geq 0
$$

- Again linearize $X_{i j}=x_{i} x_{j}$ to get inequality

$$
b_{t} x_{i}-\sum_{j=1}^{n} a_{t j} x_{i j} \geq 0
$$

... generalizes to products between linear constraints Snag: results in potentially huge LP relaxation!

## Outline

(1) Introduction to Global Optimization of Nonconvex MINLP
(2) Reformulation Linearization Technique
(3) Generic Relaxation Strategies

4 Spatial Branch-and-Bound
(5) Tightening Bounds and Relaxations

## Factorable Functions and MINLP

Consider MINLP with nonconvex, factorable $f(x)$ and $c(x)$ $\underset{x}{\operatorname{minimiße}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

## Definition (Factorable Function)

$g(x)$ is factorable iff expressed as sum of products of unary functions of a finite set $\mathcal{O}_{\text {unary }}=\{\sin , \cos , \exp , \log ,|\cdot|\}$ whose arguments are variables, constants, or other functions, which are factorable.

- Combination of functions from set of operators $\mathcal{O}=\{+, \times, /, \hat{,}, \sin , \cos , \exp , \log ,|\cdot|\}$.
- Excludes integrals $\int_{\xi=x_{0}}^{x} h(\xi) d \xi$ and black-box functions
- Represented as expression trees


## Expression Tree Example



Expression tree of $f\left(x_{1}, x_{2}\right)=x_{1} \log \left(x_{2}\right)+x_{2}^{3} \ldots$ also used in AD!

## Relaxations of Factorable Functions

MINLP with nonconvex, factorable $f(x)$ and $c(x)$ $\underset{x}{\operatorname{minimiße}} f(x) \quad$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

Combine expression trees of objective and constraints

- Root of each expression is $c_{1}(x), c_{2}(x), \ldots, c_{m}(x)$, or $f(x)$
- Associated bounds: $[-\infty, 0]$ for $c_{i}(x)$, and $[-\infty, \bar{\eta}]$ for $f(x)$
- Leaf nodes of all trees represent variables $x_{1}, x_{2}, \ldots, x_{n}$
$\Rightarrow$ gives directed acyclic graph (DAG)

Modeling languages (e.g. AMPL, GAMS) have DAG \& "API"

## Example of DAG of Optimization Problem



$$
\begin{array}{ll}
\min & x_{1}+x_{2}^{2} \\
\text { s.t. } & x_{1}+\sin x_{2} \leq 4, \quad x_{1} x_{2}+x_{2}^{3} \leq 5 \\
& x_{1} \in[-4,4] \cap \mathbb{Z}, x_{2} \in[0,10] \cap \mathbb{Z} .
\end{array}
$$

Three nodes without entering arcs for objective \& constraints

## Reformulation of Factorable MINLP

Reformulate factorable MINLP as

$$
\begin{cases}\underset{x}{\operatorname{minimiße}} & x_{n+q} \\ \text { subject to } & x_{k}=\vartheta_{k}(x) \\ & l_{i} \leq x_{i} \leq u_{i} \quad \\ & x \in X=n+1, n+2, \ldots, n+q \\ & x \in \mathbb{X}, \\ & x_{i} \in \mathbb{Z}, \forall i \in I,\end{cases}
$$

see e.g. [Smith and Pantelides, 1997]

- $q$ new auxiliary variables, $x_{n+1}, \ldots, x_{n+q}$
- $\vartheta_{k}$ is operator from $\mathcal{O}\{+, \times, /, \hat{,}, \sin , \cos , \exp , \log \}$
- Bounds on variables written explicitly


## Example of Reformulation of Factorable MINLP

$$
\begin{array}{ll}
\min & x_{1}+x_{2}^{2} \\
\text { s.t. } & x_{1}+\sin x_{2} \leq 4, \quad x_{1} x_{2}+x_{2}^{3} \leq 5 \\
& x_{1} \in[-4,4] \cap \mathbb{Z}, x_{2} \in[0,10] \cap \mathbb{Z} .
\end{array}
$$

Reformulation with uni-/bi-variate nonconvex terms

$$
\begin{array}{l|l|l|l}
\min & x_{9} & x_{9} \\
\text { s.t. } & x_{7}=x_{5}+x_{6}-5 & 0 \leq x_{2} \leq 10 & 0 \leq x_{6} \leq 1000 \\
x_{3}=\sin x_{2} \\
x_{4}=x_{1}+x_{3}-4 & x_{8}=x_{2}^{2} & -1 \leq x_{3} \leq 1 & -45 \leq x_{7} \leq 0 \\
x_{5}=x_{1} x_{2} & x_{9}=x_{1}+x_{8} & -9 \leq x_{4} \leq 0 & 0 \leq x_{8} \leq 100 \\
x_{6}=x_{2}^{3} & -4 \leq x_{1} \leq 4 & -40 \leq x_{5} \leq 40 & -4 \leq x_{9} \leq 104 \\
x_{1}, x_{2}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9} \in \mathbb{Z} .
\end{array}
$$

- Integrality inherited from function
- Bounds inherited from function ... decomposition non-unique!


## Reformulation of Factorable MINLP

## Theorem (Equivalence of Factorable Formulation)

MINLP and factorable MINLP are equivalent, i.e. optimal solutions to one can be transformed into optimal solution of the other.

Factorable form makes it easier to get convex relaxation:

- Nonconvex sets, $k=n+1, n+2, \ldots, n+q$

$$
\Theta_{k}=\left\{x \in \mathbb{R}^{n+q}: x_{k}=\vartheta_{k}(x), x \in X, I \leq x \leq u, x_{i} \in \mathbb{Z}, i \in I\right\}
$$

... nonconvex due to nonlinear equality

- Let $\breve{\Theta}_{k} \supset \Theta_{k}$ convex relaxation of $=\vartheta_{k}(x)$

$$
\left\{\begin{array}{l}
\underset{x}{\operatorname{minimize}} \\
x_{n+q} \\
\text { subject to } \\
x_{k} \in \breve{\Theta}_{k} \quad k=n+1, n+2, \ldots, n+q \\
\\
\\
\\
l_{i} \leq x_{i} \leq u_{i} i=1,2, \ldots, n+q \\
\\
x \in X .
\end{array}\right.
$$

... convex relaxation ... only look at simple sets!

## Reformulation of Factorable MINLP

General convex relaxation with polyhedral sets $\breve{\Theta}_{k}$ :

$$
\left\{\begin{array}{l}
\underset{x}{\operatorname{minimize}} \\
\text { subject to } \\
\text { s. } \\
\\
\\
\\
\\
l_{i} \leq \breve{\Theta}_{k} \leq x_{i} \leq u_{i} i=1,2, \ldots, n+q \\
\\
x \in X .
\end{array}\right.
$$

Polyhedral set $\breve{\Theta}_{k}$ defined by $a^{k} \in \mathbb{R}^{m_{k}}, B^{k} \in \mathbb{R}^{m_{k} \times(n+q)}$, and $d^{k} \in \mathbb{R}^{m_{k}}$ :

$$
\breve{\Theta}_{k}=\left\{x \in \mathbb{R}^{n+q}: a^{k} x_{k}+B^{k} x \geq d^{k}, x \in X, I \leq x \leq u\right\},
$$

Gives lower bounding LP relaxation for MINLP solvers:

$$
\begin{cases}\underset{\dot{x}}{\operatorname{minimize}} & x_{n+q} \\ \text { subject to } & a^{k} x_{k}+B^{k} x \geq d^{k} \\ & l_{i} \leq x_{i} \leq u_{i} \quad i=n+1, n+2, \ldots, n+q \\ & x \in X .\end{cases}
$$

Now just need to construct polyhedral sets ... e.g. McCormick

## Examples of Polyhedral Relaxations

Polyhedral relaxation, $\breve{\Theta}_{k}$, of $x_{k}=x_{i}^{2}$ with $x_{i}$ continuous/integer


... if $x_{i} \in \mathbb{Z}$ then add inequalities violated at $x_{i}^{\prime} \notin \mathbb{Z}$

## Outline

(1) Introduction to Global Optimization of Nonconvex MINLP
(2) Reformulation Linearization Technique
(3) Generic Relaxation Strategies
(4) Spatial Branch-and-Bound
(5) Tightening Bounds and Relaxations

## Spatial Branch-and-Bound (BnB)

To separate solution of relaxation use spatial BnB

- Implicit enumeration technique like integer BnB
- Recursively define partitions of feasible set into two sets
- Use reformulation outlined above
- Solve LP relaxations ( $\Rightarrow$ lower bounds)
... and nonconvex NLPs ( $\Rightarrow$ upper bound if feasible)

Classic references \& Solvers:

- [Tawarmalani and Sahinidis, 2002] BARON solver
- [Smith and Pantelides, 1997]
- [Belotti et al., 2009] Couenne solver ... open-source


## Spatial Branch-and-Bound (BnB)

Key ingredients of spatial BnB
(1) Procedure to compute lower bound for subproblem
(2) Procedure for partitioning feasible set of subproblem:
$\operatorname{NLP}\left(I^{-}, u^{-}\right)$and $\operatorname{NLP}\left(I^{+}, u^{+}\right)$
... generates tree almost like integer BnB
NLP node is subproblem: $\operatorname{NLP}(I, u)$

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & f(x), \\ \text { subject to } & c(x) \leq 0, \\ & x \in X \\ & l_{i} \leq x_{i} \leq u_{i} \forall i=1,2, \ldots, n \\ & x_{i} \in \mathbb{Z}, \forall i \in I\end{cases}
$$

... restriction of original MINLP

## Spatial Branch-and-Bound (BnB)

Lower bounding problem at $\operatorname{NLP}(I, u)$, e.g. $\operatorname{LP}(I, u)$

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & x_{n+q} \\ \text { subject to } a^{k} x_{k}+B^{k} x \geq d^{k} & k=n+1, n+2, \ldots, n+q \\ & l_{i} \leq x_{i} \leq u_{i} \\ & x \in X .\end{cases}
$$

If $\operatorname{LP}(I, u)$ infeasible, then prune node.
Otherwise, $\hat{x}$ optimal solution of $\operatorname{LP}(I, u)$ :

- If $\hat{x}$ feasible in $\operatorname{NLP}(I, u)$ (hence MINLP), then fathom node (new incumbent)
- If $\hat{x}$ not feasible in $\operatorname{NLP}(I, u)$ then ... branch ...
(1) $\hat{x}$ not integral, i.e., $\exists i \in I: \hat{x}_{i} \notin \mathbb{Z}$
(2) Nonconvex constraint is violated, i.e.

$$
\exists k \in\{n+1, n+2, \ldots, n+q\}: \hat{x}_{k} \neq \vartheta_{k}(\hat{x}) .
$$

## Illustration of Branching for Spatial Branch-and-Bound

Branching example $x_{k}=\vartheta_{k}\left(x_{i}\right)=\left(x_{i}\right)^{2}$ violated



## Outline

(1) Introduction to Global Optimization of Nonconvex MINLP
(2) Reformulation Linearization Technique
(3) Generic Relaxation Strategies

4 Spatial Branch-and-Bound
(5) Tightening Bounds and Relaxations

## Tightening Bounds and Relaxations

Bound tightening to reduce range of bounds $x_{i} \in\left[I_{i}, u_{i}\right]$

- Variable bounds are very important in Global Optimization
- Tighter Bounds $\Rightarrow$ tighter relaxations $\Rightarrow$ smaller trees

$$
\begin{aligned}
\operatorname{minimiße} & x_{3}+x_{1} x_{5}+x_{2} x_{5}+x_{3} x_{5} \\
\text { subject to } & x_{5}-x_{1} x_{4}=0 \\
& x_{6}-x_{2} x_{3}=0 \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=40 \\
& x_{5} x_{6} \geq 25 \\
& 1 \leq x_{k} \leq K \quad k=1,2,3,4
\end{aligned}
$$

## Tightening Bounds and Relaxations

Bound tightening to reduce range of bounds $x_{i} \in\left[I_{i}, u_{i}\right]$

- Variable bounds are very important in Global Optimization
- Tighter Bounds $\Rightarrow$ tighter relaxations $\Rightarrow$ smaller trees

$$
\begin{aligned}
\operatorname{minimiße} & x_{3}+x_{1} x_{5}+x_{2} x_{5}+x_{3} x_{5} \\
\text { subject to } & x_{5}-x_{1} x_{4}=0 \\
& x_{6}-x_{2} x_{3}=0 \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=40 \\
& x_{5} x_{6} \geq 25 \\
& 1 \leq x_{k} \leq K \quad k=1,2,3,4
\end{aligned}
$$

| $K$ | Nodes |
| :---: | :---: |
| 5 | 210 |
| 10 | 788 |
| 25 | 6834 |
| 100 | $>70000$ |

Two relaxation-based bound-tightening techniques:
(1) FBBT: feasibility-based bound tightening
(2) OBBT: optimality-based bound tightening

## FBBT: Feasibility-Based Bound Tightening

$\min _{x} x_{1}+x_{2}^{2}$ s.t. $x_{1}+\sin x_{2} \leq 4, x_{1} x_{2}+x_{2}^{3} \leq 5, x_{1} \in[-4,4], x_{2} \in[0,10]$


Assume solution $\hat{x}$ found with $f(\hat{x})=10$ :
(1) $10 \geq x_{9}:=x_{1}+x_{8}$ and $x_{1} \geq-4$ imply $x_{8} \leq 14<100$ tighter
(2) Propagate to $x_{8}=x_{2}^{2}$ implies $-\sqrt{14} \leq x_{2} \leq \sqrt{14}$ tightens $x_{2}$

Propagate bounds until improvement tails off ...

## FBBT: Feasibility-Based Bound Tightening

Properties of FBBT

- Efficient and fast implementation for large-scale MINLP
- Can exhibit poor convergence, e.g. for $\alpha>1$ consider: $\min x_{1}$ s.t. $\left.x_{1}=\alpha x_{2}, x_{2}=\alpha x_{1}, x_{1} \in[-1,1]\right\}$
- Solution is $(0,0)$
- FBBT does not terminate in finite number of steps
- Sequence of tighter bounds for $I=1,2, \ldots$ with $\left.\left\{\left[-\frac{1}{\alpha^{\prime}}, \frac{1}{\alpha^{\prime}}\right]\right\} \right\rvert\, \rightarrow(0,0)$
... hence combine with other techniques


## OBBT: Optimality-Based Bound Tightening

Solving min $/ \max x_{i}$ s.t. $x \in \mathcal{F}$ (nonconvex MINLP) not practical Instead, define (linear) relaxation
$\mathcal{F}(I, u)=\left\{\begin{array}{lll}x \in \mathbb{R}^{n+q}: & \begin{array}{l}a^{k} x_{k}+B^{k} x \geq d^{k} \\ \\ l_{i} \leq x_{i} \leq u_{i}\end{array} & i=n=1,2, \ldots, n+q \\ & x \in X\end{array}\right\}$
Now get bounds on $x_{i}$ for $i=1, \ldots, n$ by solving $2 n$ LPs:

$$
\begin{align*}
& I_{i}^{\prime}=\min \left\{x_{i}: x \in \mathcal{F}(I, u)\right\} \\
& u_{i}^{\prime}=\max \left\{x_{i}: x \in \mathcal{F}(I, u)\right\} \tag{1}
\end{align*}
$$

... only apply at root node, or small number of nodes

## Teaching Points: Nonconvex MINLPs

## Nonconvex MINLP

$\underset{x}{\operatorname{minimiße}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

- Functions $f(x), c(x)$ no longer convex ... many applications
- Many local minimißers and disconnected feasible set

Combine Relaxation and Branching

- Exploit factorable description of $f(x), c(x)$
- Construct (linear) relaxations of elements, e.g. McCormick of $x_{k}=x_{i} x_{j}$ by multiplying bounds
- Apply spatial branch-and-bound to tighten relaxations
- Tight bounds are critical $\Rightarrow$ apply
(1) Feasibility-based bound tightening ... computational graph
(2) Optimality-based bound tightening ... solve LPs

Adams, W. and Sherali, H. (1986).
A tight linearization and an algorithm for zero-one quadratic programming problems.
Management Science, 32(10):1274-1290.


Belotti, P., Lee, J., Liberti, L., Margot, F., and Wächter, A. (2009). Branching and bounds tightening techniques for non-convex MINLP.
Optimization Methods and Software, 24(4-5):597-634.


Smith, E. M. B. and Pantelides, C. C. (1997).
Global optimization of nonconvex MINLPs.
Computers \& Chemical Engineering, 21:S791-S796.
Tawarmalani, M. and Sahinidis, N. V. (2002).
Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications.
Kluwer Academic Publishers, Boston MA.

