
Nonconvex Mixed-Integer Nonlinear Optimization
Summer School on Optimization of Dynamical Systems

Sven Leyffer and Jeff Linderoth

Argonne National Laboratory

September 3-7, 2018



Outline

1 Introduction to Global Optimization of Nonconvex MINLP

2 Reformulation Linearization Technique

3 Generic Relaxation Strategies

4 Spatial Branch-and-Bound

5 Tightening Bounds and Relaxations

2 / 32



Challenges of Nonconvex MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimiße
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

... now drop assumption that f (x) and c(x) are convex

Challenges of nonconvex MINLP

Objective function f (x) can have many local minimißers

Continuous relaxation of constraint set
{
x |c(x) ≤ 0, x ∈ X

}
... can be disjoint, may have no interior

Nonconvexity arise naturally, e.g. AC power-flow equations

F (Uk ,Ul , θk , θl) := bklUkUl sin(θk − θl) + gklU
2
k

−gklUkUl cos(θk − θl)
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Challenges of Nonconvex MINLP

minimiße
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Definition (Global Minimum)

A point x∗ is a global minimum of

minimiße
x

f (x) subject to x ∈ F

iff f (x) ≥ f (x∗) for all x ∈ F

Remarks:

NLP solvers are not guaranteed to find even local minima
... though they work remarkably well in practice!

Finding a global min is difficult ... proving it is really hard
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General Approach to Nonconvex MINLP

minimiße
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Use old MIP trick: convex relaxation to get tractable NLP

Relax integrality as before: xi ∈ R ∀ i ∈ I

Also need to relax f (x) and constraints c(x) ... new aspect

Need constraint enforcement to guarantee convergence

Branching reduces area of relaxation

Refinement tightens the relaxation over subdomain
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Example: Relaxing Graph of Bilinear Product
Consider simple nonconvex (bounded) expression:

xk = xixj

where li ≤ xi ≤ ui and lj ≤ xj ≤ uj are bounded
Derive McCormick outer approximations from mixing bounds:

1 0 ≤ (xi − li )(xj − lj) implies xk = xixj ≥ lixj + ljxi − li lj

2 0 ≤ (xi − ui )(xj − uj) implies xk = xixj ≥ uixj + ujxi − uiuj
3 0 ≥ (xi − li )(xj − uj) implies xk = xixj ≤ lixj + ujxi − liuj
4 0 ≥ (xi − ui )(xj − lj) implies xk = xixj ≤ uixj + ljxi − ui lj

... tightest possible convex approximation of xk = xixj

Special Case of Strong McCormick

xi , xj ∈ {0, 1} then xk = xixj ∈ {0, 1} if

xk ∈ [0, 1] and xk ≥ xj + xi − 1, xk ≤ xi , xk ≤ xj
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The set M : Worth 1000 Words?
Xij = xixj
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The set M : Worth 1000 Words?
Xij ≥ 0, Xij ≥ xi + xj − 1
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The set M : Worth 1000 Words?
Xij ≤ xi ,Xij ≤ xj
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Generalization for Polynomial Functions
Reformulation-Linearization Technique (RLT) [Adams and Sherali, 1986]

Generalizes McCormick underestimators to polynomials over
x ∈ Rn

Introduce multi-index i for 0 ≤ ij ≤ q

i := (i1, . . . , in),

Define monomials x i := x i11 · x
i2
2 · · · x inn and constants ai ∈ R

Then, p(x) =
∑
i∈I

ai x
i =

∑
i∈I

ai x
i1
1 · · · x

in
n

Define tensors (sparse) for higher-order terms (dropping
zeroes)

x i ' Xi = Xi1...in

Valid inequalities for higher-order by multiplying more bounds
... namely i1 bounds on x1 with ... in bounds on xn

⇒ Valid linear underestimator for any polynomial
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Example of RLT for General Polynomial Functions

Consider nonconvex polynomial optimization problem

minimiße
x

f (x) := −x21x22 + 2x1x
3
2 − x42

subject to −1 ≤ xi ≤ 1 for i = 1, 2

with three nonconvex terms ... use RLT ideas:

1 New linear variables: X1122 ' x21x
2
2 ,X1222 ' x1x

3
2 ,X2222 ' x42

2 Multiply bounds to get polyhedral relaxation, e.g. for X1122:

Valid inequality:

0 ≤ (1− x1)2(1− x2)2

0 ≤ 1− 2x1 − 2x2 + 4X12 + X11 + X22 − 2X122 − 2X211 + X1122

⇒ need intermediate powers: X12,X11,X22,X122,X211 etc
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General Nonconvex Quadratic Functions

Strengthening RLT
1 Exploiting binary variables ... similar for integers

If xi ∈ {0, 1} then x2i = xi for all feasible points
Add linear constraints Xii = xi

2 Multiply linear constraints to improve RLT relaxation

Multiplying xi ≥ 0 and bt −
∑n

j=1 atjxj ≥ 0 gives

btxi −
n∑

j=1

atjxixj ≥ 0

Again linearize Xij = xixj to get inequality

btxi −
n∑

j=1

atjXij ≥ 0

... generalizes to products between linear constraints
Snag: results in potentially huge LP relaxation!
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Factorable Functions and MINLP

Consider MINLP with nonconvex, factorable f (x) and c(x)

minimiße
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Definition (Factorable Function)

g(x) is factorable iff expressed as sum of products of unary
functions of a finite set Ounary = {sin, cos, exp, log, | · |} whose
arguments are variables, constants, or other functions, which are
factorable.

Combination of functions from set of operators
O = {+,×, /,̂ , sin, cos, exp, log, | · |}.
Excludes integrals

∫ x
ξ=x0

h(ξ)dξ and black-box functions

Represented as expression trees
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Expression Tree Example

log

^

31

2

2x x

x

*

+

Expression tree of f (x1, x2) = x1 log(x2) + x32 ... also used in AD!
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Relaxations of Factorable Functions

MINLP with nonconvex, factorable f (x) and c(x)

minimiße
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Combine expression trees of objective and constraints

Root of each expression is c1(x), c2(x), . . . , cm(x), or f (x)

Associated bounds: [−∞, 0] for ci (x), and [−∞, η̄] for f (x)

Leaf nodes of all trees represent variables x1, x2, . . . , xn

⇒ gives directed acyclic graph (DAG)

Modeling languages (e.g. AMPL, GAMS) have DAG & “API”
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Example of DAG of Optimization Problem

min x1 + x22
s.t. x1 + sin x2 ≤ 4, x1x2 + x32 ≤ 5

x1 ∈ [−4, 4] ∩ Z, x2 ∈ [0, 10] ∩ Z.

Three nodes without entering arcs for objective & constraints
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Reformulation of Factorable MINLP

Reformulate factorable MINLP as

minimiße
x

xn+q

subject to xk = ϑk(x) k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X ,
xi ∈ Z, ∀i ∈ I ,

see e.g. [Smith and Pantelides, 1997]

q new auxiliary variables, xn+1, . . . , xn+q

ϑk is operator from O{+,×, /,̂ , sin, cos, exp, log}
Bounds on variables written explicitly
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Example of Reformulation of Factorable MINLP

min x1 + x22
s.t. x1 + sin x2 ≤ 4, x1x2 + x32 ≤ 5

x1 ∈ [−4, 4] ∩ Z, x2 ∈ [0, 10] ∩ Z.

Reformulation with uni-/bi-variate nonconvex terms

min x9
s.t. x3 = sin x2 x7 = x5 + x6 − 5 0 ≤ x2 ≤ 10 0 ≤ x6 ≤ 1000

x4 = x1 + x3 − 4 x8 = x22 −1 ≤ x3 ≤ 1 −45 ≤ x7 ≤ 0
x5 = x1x2 x9 = x1 + x8 −9 ≤ x4 ≤ 0 0 ≤ x8 ≤ 100
x6 = x32 −4 ≤ x1 ≤ 4 −40 ≤ x5 ≤ 40 −4 ≤ x9 ≤ 104
x1, x2, x5, x6, x7, x8, x9 ∈ Z.

Integrality inherited from function

Bounds inherited from function ... decomposition non-unique!
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Reformulation of Factorable MINLP

Theorem (Equivalence of Factorable Formulation)

MINLP and factorable MINLP are equivalent, i.e. optimal solutions
to one can be transformed into optimal solution of the other.

Factorable form makes it easier to get convex relaxation:

Nonconvex sets, k = n + 1, n + 2, . . . , n + q

Θk = {x ∈ Rn+q : xk = ϑk(x), x ∈ X , l ≤ x ≤ u, xi ∈ Z, i ∈ I}

... nonconvex due to nonlinear equality

Let Θ̆k ⊃ Θk convex relaxation of = ϑk(x)
minimize

x
xn+q

subject to xk ∈ Θ̆k k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X .

... convex relaxation ... only look at simple sets!
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Reformulation of Factorable MINLP
General convex relaxation with polyhedral sets Θ̆k :

minimize
x

xn+q

subject to x ∈ Θ̆k k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X .

Polyhedral set Θ̆k defined by ak ∈ Rmk , Bk ∈ Rmk×(n+q), and
dk ∈ Rmk :

Θ̆k = {x ∈ Rn+q : akxk + Bkx ≥ dk , x ∈ X , l ≤ x ≤ u},

Gives lower bounding LP relaxation for MINLP solvers:
minimize

x
xn+q

subject to akxk + Bkx ≥ dk k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X .

Now just need to construct polyhedral sets ... e.g. McCormick
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Examples of Polyhedral Relaxations

Polyhedral relaxation, Θ̆k , of xk = x2i with xi continuous/integer

k

i

i

x

x

uli

i

li
ui

kx

x

... if xi ∈ Z then add inequalities violated at x ′i 6∈ Z
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Spatial Branch-and-Bound (BnB)

To separate solution of relaxation use spatial BnB

Implicit enumeration technique like integer BnB

Recursively define partitions of feasible set into two sets

Use reformulation outlined above

Solve LP relaxations (⇒ lower bounds)
... and nonconvex NLPs (⇒ upper bound if feasible)

Classic references & Solvers:

[Tawarmalani and Sahinidis, 2002] BARON solver

[Smith and Pantelides, 1997]

[Belotti et al., 2009] Couenne solver ... open-source
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Spatial Branch-and-Bound (BnB)

Key ingredients of spatial BnB

1 Procedure to compute lower bound for subproblem

2 Procedure for partitioning feasible set of subproblem:
NLP(l−, u−) and NLP(l+, u+)

... generates tree almost like integer BnB

NLP node is subproblem: NLP(l , u)

minimize
x

f (x),

subject to c(x) ≤ 0,
x ∈ X
li ≤ xi ≤ ui ∀i = 1, 2, . . . , n
xi ∈ Z, ∀i ∈ I

... restriction of original MINLP
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Spatial Branch-and-Bound (BnB)
Lower bounding problem at NLP(l , u), e.g. LP(l , u)

minimize
x

xn+q

subject to akxk + Bkx ≥ dk k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X .

If LP(l , u) infeasible, then prune node.

Otherwise, x̂ optimal solution of LP(l , u):

If x̂ feasible in NLP(l , u) (hence MINLP), then fathom node
(new incumbent)

If x̂ not feasible in NLP(l , u) then ... branch ...
1 x̂ not integral, i.e., ∃i ∈ I : x̂i /∈ Z
2 Nonconvex constraint is violated, i.e.

∃k ∈ {n + 1, n + 2, . . . , n + q} : x̂k 6= ϑk(x̂).
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Illustration of Branching for Spatial Branch-and-Bound

Branching example xk = ϑk(xi ) = (xi )
2 violated

x

^^
ji

j

i

ii ul

(x ,x )

x

(x ,x )

x

x

^^
ji

j

i

ii b ul
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Tightening Bounds and Relaxations

Bound tightening to reduce range of bounds xi ∈ [li , ui ]

Variable bounds are very important in Global Optimization

Tighter Bounds ⇒ tighter relaxations ⇒ smaller trees

minimißex x3 + x1x5 + x2x5 + x3x5
subject to x5 − x1x4 = 0

x6 − x2x3 = 0
x21 + x22 + x23 + x24 = 40
x5x6 ≥ 25
1 ≤ xk ≤ K k = 1, 2, 3, 4

K Nodes
5 210

10 788
25 6834

100 > 70000

Two relaxation-based bound-tightening techniques:

1 FBBT: feasibility-based bound tightening

2 OBBT: optimality-based bound tightening
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FBBT: Feasibility-Based Bound Tightening

min
x

x1+x22 s.t. x1+sin x2 ≤ 4, x1x2+x32 ≤ 5, x1 ∈ [−4, 4], x2 ∈ [0, 10]

Assume solution x̂ found with f (x̂) = 10:

1 10 ≥ x9 := x1 + x8 and x1 ≥ −4 imply x8 ≤ 14 < 100 tighter

2 Propagate to x8 = x22 implies −
√

14 ≤ x2 ≤
√

14 tightens x2

Propagate bounds until improvement tails off ...
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FBBT: Feasibility-Based Bound Tightening

Properties of FBBT

Efficient and fast implementation for large-scale MINLP

Can exhibit poor convergence, e.g. for α > 1 consider:
min x1 s.t. x1 = αx2, x2 = αx1, x1 ∈ [−1, 1]}

Solution is (0, 0)
FBBT does not terminate in finite number of steps
Sequence of tighter bounds for l = 1, 2, . . . with
{[− 1

αl ,
1
αl ]}l → (0, 0)

... hence combine with other techniques
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OBBT: Optimality-Based Bound Tightening

Solving min /max xi s.t. x ∈ F (nonconvex MINLP) not practical
Instead, define (linear) relaxation

F(l , u) =

x ∈ Rn+q :
akxk + Bkx ≥ dk k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X

 .

Now get bounds on xi for i = 1, . . . , n by solving 2n LPs:

l ′i = min{xi : x ∈ F(l , u)}
(1)

u′i = max{xi : x ∈ F(l , u)}

... only apply at root node, or small number of nodes

31 / 32



Teaching Points: Nonconvex MINLPs

Nonconvex MINLP

minimiße
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Functions f (x), c(x) no longer convex ... many applications

Many local minimißers and disconnected feasible set

Combine Relaxation and Branching

Exploit factorable description of f (x), c(x)

Construct (linear) relaxations of elements,
e.g. McCormick of xk = xixj by multiplying bounds

Apply spatial branch-and-bound to tighten relaxations

Tight bounds are critical ⇒ apply
1 Feasibility-based bound tightening ... computational graph
2 Optimality-based bound tightening ... solve LPs
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Branching and bounds tightening techniques for non-convex MINLP.
Optimization Methods and Software, 24(4-5):597–634.

Smith, E. M. B. and Pantelides, C. C. (1997).
Global optimization of nonconvex MINLPs.
Computers & Chemical Engineering, 21:S791–S796.

Tawarmalani, M. and Sahinidis, N. V. (2002).
Convexification and Global Optimization in Continuous and Mixed-Integer
Nonlinear Programming: Theory, Algorithms, Software, and Applications.
Kluwer Academic Publishers, Boston MA.

32 / 32


	Introduction to Global Optimization of Nonconvex MINLP
	Reformulation Linearization Technique
	Generic Relaxation Strategies
	Spatial Branch-and-Bound
	Tightening Bounds and Relaxations

