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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Basic Assumptions for Convex MINLP

A1 X is a bounded polyhedral set.

A2 f and c twice continuously differentiable convex

A3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later)
A3 is technical (MFCQ would have been sufficient)
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Recall: Methods for MINLP
Branch-and-Bound

... tree-search method

dominated

by UBD

integer

feasible

UBD

infeasible

x =0 x =1
ii

Outer Approximation

... alternate MILP & NLP

... now build hybrid method!
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LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Start solving master MILP ...
using MILP branch-and-cut

If x
(j)
I integral, then interrupt

MILP; solve NLP(x
(j)
I ) get x (j)

Linearize f , c about x (j)

⇒ add linearization to tree

Continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA
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LP/NLP Branch and Bound

LP/NLP-based branch-and-bound

Branch-and-cut algorithm with cuts from NLP solves

Create MILP relaxation of MINLP

& refine linearizations

��
��
��
��

0 ≥ c(x) 0 ≥ c(k) +∇c(k)T (x − x (k))

Search MILP-tree ⇒ faster re-solves

Interrupt MILP tree-search to create new linearizations
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LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]

Advanced MILP search and cut management techniques
... remove “old” OA cuts from LP relaxation ⇒ faster LP

Generate cuts at non-integer points: ECP cuts are cheap
... generate cuts early (near root) of tree

Strong branching, adaptive node selection & cut management

Fewer nodes, if we add more cuts (e.g. ECP cuts)
More cuts make LP harder to solve
⇒ remove outdated/inactive cuts from LP relaxation

... balance OA accuracy with LP solvability

Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]

Benders and ECP versions are also possible.
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Worst Case Example of Outer Approximation
[Hijazi et al., 2010] construct infeasible MINLP:

minimize
y

0

subject to
n∑

i=1

(
yi −

1

2

)2

≤ n − 1

4

y ∈ {0, 1}n

Intersection of ball of radius
√
n−1
2

with unit hypercube.

Lemma

OA cannot cut more than one vertex of the hypercube
MILP master problem feasible for any k < 2n OA cuts

Theorem

OA visits all 2n vertices
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Worst-Case Example for Linearizationm-Based Methods

No OA constraint can cut 2
vertices of the hypercube.

If an inequality cuts two vertices,
it cuts the segment joining them.
This can not be: the ball has a
non-empty intersection with any
such segment.

A “basic” implementation of a linearization-based method for
solving this problem enumerates at least 2n nodes
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How Bad Is It?

CPLEX 12.4 SCIP 2.1 Bonmin (Hyb)
n 2n nodes nodes nodes

10 1024 2047 720 11156
15 32,768 65535 31993 947014
20 1,048,576 2,097,151 1,216,354

One “trick”: The problem is simple for CPLEX/SCIP if
variables are 0-1.

If x ∈ {0, 1}, then replace x2
i by xi and the contradiction

n/4 < (n − 1)/4 follows immediately.
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Separability and Constraint Disaggregation

Nonlinear disaggregation [Tawarmalani and Sahinidis, 2005]

S := {x ∈ Rn : c(x) = h(g(x)) ≤ 0} ,

g : Rn → Rp smooth convex;
h : Rp → R smooth, convex, and nondecreasing
⇒ c(x) smooth convex

Disaggregated formulation: introduce y = g(x) ∈ Rp

Sd :=
{

(x , y) ∈ Rn × Rp : h(y) ≤ 0, y ≥ g(x)
}
.

Lemma

S is projection of Sd onto x.
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Separability and Constraint Disaggregation

Consider
S := {x ∈ Rn : c(x) = h(g(x)) ≤ 0} ,

and
Sd :=

{
(x , y) ∈ Rn × Rp : h(y) ≤ 0, y ≥ g(x)

}
.

Theorem

Any outer approximation of Sd is stronger than OA of S

Given X k :=
{
x (1), . . . , x (k)

}
construct OA for S , Sd :

Soa :=
{
x : c(l) +∇c(l)T (x − x (l)) ≤ 0, ∀x (l) ∈ X k

}
Soa
d :=

{
(x , y) : h(l) +∇h(l)T (y − g(x (l))) ≤ 0,

y ≥ g (l) +∇g (l)T (x − x (l)), ∀x (l) ∈ X k
}
,

[Tawarmalani and Sahinidis, 2005] show Soa
d stronger than Soa
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Separability and Constraint Disaggregation

[Hijazi et al., 2010] studyx : c(x) :=

q∑
j=1

hj(a
T
j x + bj) ≤ 0


where hj : R→ R are smooth and convex

Disaggregated formulation: introduce y ∈ Rq(x , y) :

q∑
j=1

yj ≤ 0, and yj ≥ hj(a
T
j x + bj)


can be shown to be tighter
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Recall: Worst Case Example of Outer Approximation

Apply disaggregation to [Hijazi et al., 2010] example:

minimize
y

0

subject to
n∑

i=1

(
xi −

1

2

)2

≤ n − 1

4

x ∈ {0, 1}n

Intersection of ball of radius
√
n−1
2

with unit hypercube.

Disaggregate
∑(

xi − 1
2

)2 ≤ n−1
4 as

n∑
i=1

yi ≤ 0 and

(
xi −

1

2

)2

≤ yi
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Separability and Constraint Disaggregation

[Hijazi et al., 2010] disaggregation on worst-case example of OA

Linearize around x (1) ∈ {0, 1}n and complement
x (2) := e − x (1), where e = (1, . . . , 1)

OA of disaggregated constraint is

n∑
i=1

yi , and xi − 3
4 ≤ yi , and 1

4 − xi ≤ yi ,

Using xi ∈ {0, 1} implies zi ≥ 0, implies
∑

zi ≥ n
4 >

n−1
4

⇒ OA-MILP master of x (1) and x (2) is infeasible.
... terminate in two iterations
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Extension: Group-Partial Separability

Definition (Group Partially Separability [Conn et al., 1992])

A nonlinear function f (x) is group partially separable, iff

f (x) =

q∑
j=1

gj

aTj x + bj +
∑
i∈Ej

fi (x[i ])


where fi : Rni → R depends on subvector x[i ] of x where ni � n,
and gj : R→ R are univariate functions.

Extends partial separability (
∑

i fi (x[i ])) and sparsity

Structured quasi-Newton updates for large-scale optimization

Most complex functional form for which Hessian of augmented
Lagrangian can be computed from element Hessians ∇2fi (x[i ])
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Perspective Formulations

MINLPs use binary indicator variables, xb, to model nonpositivity
of xc ∈ R

Model as variable upper bound

0 ≤ xc ≤ ucxb, xb ∈ {0, 1}

⇒ if xc > 0, then xb = 1

Perspective reformulation applies, if xb also in convex c(x) ≤ 0

Significantly improve reformulation

Pioneered by [Frangioni and Gentile, 2006];
... strengthen relaxation using perspective cuts
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Example of Perspective Formulation
Consider MINLP set with three variables:

S =
{

(x1, x2, x3) ∈ R2 × {0, 1} : x2 ≥ x2
1 , ux3 ≥ x1 ≥ 0

}
.

Can show that S = S0 ∪ S1, where

S0 =
{

(0, x2, 0) ∈ R3 : x2 ≥ 0
}
,

S1 =
{

(x1, x2, 1) ∈ R3 : x2 ≥ x2
1 , u ≥ x1 ≥ 0

}
.

x1

x2

x3 = 1

x3

x2 ≥ x2
1
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Example of Perspective Formulation

Geometry of convex hull of S :
Lines connecting origin (x3 = 0) to parabola x2 = x2

1 at x3 = 1

Define convex hull of S as conv(S)

:=
{

(x1, x2, x3) ∈ R3 : x2x3 ≥ x2
1 , ux3 ≥ x1 ≥ 0, 1 ≥ x3 ≥ 0, x2 ≥ 0

}
where x2x3 ≥ x2

1 is defined in terms of perspective function

Pf (x , z) :=

{
0 if z = 0,
zf (x/z) if z > 0.

Epigraph of Pf (x , z): cone pointed at origin with lower shape f (x)

xb ∈ {0, 1} indicator forces xc = 0, or c(xc) ≤ 0 if xb = 1 write

xbc(xc/xb) ...is tighter convex formulation
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Generalization of Perspective Cuts

[Günlük and Linderoth, 2012] consider more general problem

(P) min
(x ,z,η)∈Rn×{0,1}×R

{
η | η ≥ f (x) + cz ,Ax ≤ bz

}
.

where

1 X = {x | Ax ≤ b} is bounded

2 f (x) is convex and finite on X , and f (0) = 0

Theorem (Perspective Cut)

For any x̄ ∈ X and subgradient s ∈ ∂f (x̄), the inequality

η ≥ f (x̄) + c + sT (x − x̄) + (c + f (x̄)− sT x̄))(z − 1)

is valid cut for (P)
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Stronger Relaxations [Günlük and Linderoth, 2012]

zR : Value of NLP relaxation

zGLW : Value of NLP relaxation after GLW cuts

zP : Value of perspective relaxation

z∗: Optimal solution value

Separable Quadratic Facility Location Problems
|M| |N| zR zGLW zP z∗

10 30 140.6 326.4 346.5 348.7
15 50 141.3 312.2 380.0 384.1
20 65 122.5 248.7 288.9 289.3
25 80 121.3 260.1 314.8 315.8
30 100 128.0 327.0 391.7 393.2

⇒ Tighter relaxation gives faster solves!
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Mini-Quiz on Nonlinear Perspective of the Perspective

Perspective of our uncapacitated facility location problem:

minimize
x ,y ,z

z + y

subject to (x/z)2 − (y/z) ≤ 0 0 ≤ x ≤ z , z ∈ {0, 1}, y ≥ 0

which clearly is not defined at z = 0.

Why not multiply through by z2?

minimize
x ,y ,z

z + y

subject to x2 − zy ≤ 0 0 ≤ x ≤ z , z ∈ {0, 1}, y ≥ 0

... isn’t this a much nicer NLP?
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Numerical Experience with the Bad the Perspective

Bad perspective of uncapacitated facility location problem:

minimize
x ,y ,z

z + y

subject to x2 − zy ≤ 0 0 ≤ x ≤ z , z ∈ {0, 1}, y ≥ 0

Major Minor TrustRad RegParam StepNorm Constrnts Objective Optimal Phase Step

------------------------------------------------------------------------------

0 0 10 10 0 0.5 1.01 0 2

1 1 10 10 0.625 0 0.385 0 2 SQP

2 1 10 10 0.188 0 0.1875 0 2 SQP

[ ... ]

28 1 10 10 2.79e-09 0 2.794e-09 0 2 SQP

29 1 10 10 1.4e-09 0 1.397e-09 0 2 SQP

30 1 10 10 6.98e-10 0 6.985e-10 2 2 SQP

ASTROS Version 2.0.2 (20100913): Solution Summary

===============================================

Major iters = 30 ; Minor iters = 30 ;

KKT-residual = 0.4286 ; Complementarity = 1.996e-10 ;

Final step-norm = 6.985e-10 ; Final TR-radius = 10 ;

---------------------------------------------------------------

ASTROS Version 2.0.2 (20100913): Step got too small

Linear rate of convergence ... similar for MINOS, FilterSQP, ...
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Mini-Quiz on Nonlinear Perspective of the Perspective

Perspective of our uncapacitated facility location problem:

minimize
x ,y ,z

z + y

subject to (x/z)2 − (y/z) ≤ 0 0 ≤ x ≤ z , z ∈ {0, 1}, y ≥ 0

which clearly is not defined at z = 0 ...

... yet ... this may be OK, after all:

1 Show that the perspective of QFL is well-defined at z = 0.

2 Can you compute the gradients, ∇c(x , y , z), are they defined?

3 What about ∇2c?
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Summary and Teaching Points

Classes of Cuts

1 Perspective cuts

2 Disjunctive cuts
(not discussed)

x1

x2

x3 = 1

x3

x2 ≥ x2
1
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