Convex Mixed-Integer Nonlinear Optimization II Summer School on Optimization of Dynamical Systems

Sven Leyffer and Jeff Linderoth

Argonne National Laboratory

September 3-7, 2018

Outline

(1) Problem Definition and Assumptions
(2) Single-Tree Methods
(3) Separability and Constraint Disaggregation

4 Cutting Planes for MINLP

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& x_{i} \in \mathbb{Z} \text { for all } i \in \mathcal{I}
\end{aligned}
$$

Basic Assumptions for Convex MINLP

A1 \mathcal{X} is a bounded polyhedral set.
A2 f and c twice continuously differentiable convex A3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later)
A3 is technical (MFCQ would have been sufficient)

Outline

(1) Problem Definition and Assumptions
(2) Single-Tree Methods

3 Separability and Constraint Disaggregation

4 Cutting Planes for MINLP

Recall: Methods for MINLP

Branch-and-Bound

... tree-search method

Outer Approximation

... alternate MILP \& NLP initial NLP

... now build hybrid method!

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If $x_{j}^{(j)}$ integral, then interrupt MILP; solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If $x_{j}^{(j)}$ integral, then interrupt MILP; solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$
- Linearize f, c about $x^{(j)}$
\Rightarrow add linearization to tree

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If $x_{j}^{(j)}$ integral, then interrupt MILP; solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$
- Linearize f, c about $x^{(j)}$
\Rightarrow add linearization to tree
- Continue MILP tree-search

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If $x_{j}^{(j)}$ integral, then interrupt MILP; solve $\operatorname{NLP}\left(x_{l}^{(j)}\right)$ get $x^{(j)}$
- Linearize f, c about $x^{(j)}$ \Rightarrow add linearization to tree
- Continue MILP tree-search
... until lower bound \geq upper bound

Software:

LP/NLP Branch and Bound

LP/NLP-based branch-and-bound

- Branch-and-cut algorithm with cuts from NLP solves
- Create MILP relaxation of MINLP

$$
0 \geq c(x)
$$

$0 \geq c^{(k)}+\nabla c^{(k)^{T}}\left(x-x^{(k)}\right)$

- Search MILP-tree \Rightarrow faster re-solves
- Interrupt MILP tree-search to create new linearizations

LP/NLP Branch and Bound

LP/NLP-based branch-and-bound

- Branch-and-cut algorithm with cuts from NLP solves
- Create MILP relaxation of MINLP \& refine linearizations

$0 \geq c^{(k)}+\nabla c^{(k)^{T}}\left(x-x^{(k)}\right)$
- Search MILP-tree \Rightarrow faster re-solves
- Interrupt MILP tree-search to create new linearizations

LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]

- Advanced MILP search and cut management techniques ... remove "old" OA cuts from LP relaxation \Rightarrow faster LP
- Generate cuts at non-integer points: ECP cuts are cheap ... generate cuts early (near root) of tree
- Strong branching, adaptive node selection \& cut management
- Fewer nodes, if we add more cuts (e.g. ECP cuts)
- More cuts make LP harder to solve
\Rightarrow remove outdated/inactive cuts from LP relaxation
... balance OA accuracy with LP solvability
- Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]
Benders and ECP versions are also possible.

Worst Case Example of Outer Approximation

 [Hijazi et al., 2010] construct infeasible MINLP:minimize 0
subject to $\sum_{i=1}^{n}\left(y_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}$

$$
y \in\{0,1\}^{n}
$$

Intersection of ball of radius $\frac{\sqrt{n-1}}{2}$ with unit hypercube.

Lemma

OA cannot cut more than one vertex of the hypercube MILP master problem feasible for any $k<2^{n}$ OA cuts

Theorem

OA visits all 2^{n} vertices

Worst-Case Example for Linearizationm-Based Methods

- No OA constraint can cut 2 vertices of the hypercube.
- If an inequality cuts two vertices, it cuts the segment joining them. This can not be: the ball has a non-empty intersection with any such segment.

A "basic" implementation of a linearization-based method for solving this problem enumerates at least 2^{n} nodes

How Bad Is It?

n		CPLEX 12.4	SCIP 2.1	Bonmin (Hyb)
n	2^{n}	nodes	nodes	nodes
10	1024	2047	720	11156
15	32,768	65535	31993	947014
20	$1,048,576$	$2,097,151$	$1,216,354$	

- One "trick": The problem is simple for CPLEX/SCIP if variables are 0-1.
- If $x \in\{0,1\}$, then replace x_{i}^{2} by x_{i} and the contradiction $n / 4<(n-1) / 4$ follows immediately.

Outline

(1) Problem Definition and Assumptions

2 Single-Tree Methods
(3) Separability and Constraint Disaggregation

4 Cutting Planes for MINLP

Separability and Constraint Disaggregation

Nonlinear disaggregation [Tawarmalani and Sahinidis, 2005]

$$
S:=\left\{x \in \mathbb{R}^{n}: c(x)=h(g(x)) \leq 0\right\}
$$

$g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ smooth convex;
$h: \mathbb{R}^{p} \rightarrow \mathbb{R}$ smooth, convex, and nondecreasing
$\Rightarrow c(x)$ smooth convex

Disaggregated formulation: introduce $y=g(x) \in \mathbb{R}^{p}$

$$
S_{d}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p}: h(y) \leq 0, y \geq g(x)\right\} .
$$

Lemma

S is projection of S_{d} onto x.

Separability and Constraint Disaggregation

Consider

$$
S:=\left\{x \in \mathbb{R}^{n}: c(x)=h(g(x)) \leq 0\right\}
$$

and

$$
S_{d}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p}: h(y) \leq 0, y \geq g(x)\right\}
$$

Theorem

Any outer approximation of S_{d} is stronger than $O A$ of S
Given $\mathcal{X}^{k}:=\left\{x^{(1)}, \ldots, x^{(k)}\right\}$ construct OA for S, S_{d} :

$$
\begin{gathered}
S^{\text {oa }:=} \begin{array}{c}
\left\{x: c^{(I)}+\nabla c^{(I)^{T}}\left(x-x^{(I)}\right) \leq 0, \forall x^{(I)} \in \mathcal{X}^{k}\right\} \\
S_{d}^{o a}:=\left\{(x, y): h^{(I)}+\nabla h^{(I)^{T}}\left(y-g\left(x^{(I)}\right)\right) \leq 0\right. \\
\left.y \geq g^{(I)}+\nabla g^{(I)^{T}}\left(x-x^{(I)}\right), \forall x^{(I)} \in \mathcal{X}^{k}\right\}
\end{array} .
\end{gathered}
$$

[Tawarmalani and Sahinidis, 2005] show $S_{d}^{o a}$ stronger than $S^{o a}$

Separability and Constraint Disaggregation

[Hijazi et al., 2010] study

$$
\left\{x: c(x):=\sum_{j=1}^{q} h_{j}\left(a_{j}^{\top} x+b_{j}\right) \leq 0\right\}
$$

where $h_{j}: \mathbb{R} \rightarrow \mathbb{R}$ are smooth and convex
Disaggregated formulation: introduce $y \in \mathbb{R}^{q}$

$$
\left\{(x, y): \sum_{j=1}^{q} y_{j} \leq 0, \text { and } y_{j} \geq h_{j}\left(a_{j}^{T} x+b_{j}\right)\right\}
$$

can be shown to be tighter

Recall: Worst Case Example of Outer Approximation

Apply disaggregation to [Hijazi et al., 2010] example:
minimize 0

Intersection of ball of radius $\frac{\sqrt{n-1}}{2}$ with unit hypercube.

Disaggregate $\sum\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}$ as

$$
\sum_{i=1}^{n} y_{i} \leq 0 \quad \text { and } \quad\left(x_{i}-\frac{1}{2}\right)^{2} \leq y_{i}
$$

Separability and Constraint Disaggregation

[Hijazi et al., 2010] disaggregation on worst-case example of OA

- Linearize around $x^{(1)} \in\{0,1\}^{n}$ and complement $x^{(2)}:=e-x^{(1)}$, where $e=(1, \ldots, 1)$
- OA of disaggregated constraint is

$$
\sum_{i=1}^{n} y_{i}, \quad \text { and } \quad x_{i}-\frac{3}{4} \leq y_{i}, \quad \text { and } \frac{1}{4}-x_{i} \leq y_{i}
$$

- Using $x_{i} \in\{0,1\}$ implies $z_{i} \geq 0$, implies $\sum z_{i} \geq \frac{n}{4}>\frac{n-1}{4}$
\Rightarrow OA-MILP master of $x^{(1)}$ and $x^{(2)}$ is infeasible.
... terminate in two iterations

Extension: Group-Partial Separability

Definition (Group Partially Separability [Conn et al., 1992])

A nonlinear function $f(x)$ is group partially separable, iff

$$
f(x)=\sum_{j=1}^{q} g_{j}\left(a_{j}^{T} x+b_{j}+\sum_{i \in \mathcal{E}_{j}} f_{i}\left(x_{[i]}\right)\right)
$$

where $f_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}$ depends on subvector $x_{[i]}$ of x where $n_{i} \ll n$, and $g_{j}: \mathbb{R} \rightarrow \mathbb{R}$ are univariate functions.

- Extends partial separability $\left(\sum_{i} f_{i}\left(x_{[i]}\right)\right)$ and sparsity
- Structured quasi-Newton updates for large-scale optimization
- Most complex functional form for which Hessian of augmented Lagrangian can be computed from element Hessians $\nabla^{2} f_{i}\left(x_{[i]}\right)$

Outline

(1) Problem Definition and Assumptions

2 Single-Tree Methods

3 Separability and Constraint Disaggregation

4 Cutting Planes for MINLP

Perspective Formulations

MINLPs use binary indicator variables, x_{b}, to model nonpositivity of $x_{c} \in \mathbb{R}$

Model as variable upper bound

$$
0 \leq x_{c} \leq u_{c} x_{b}, \quad x_{b} \in\{0,1\}
$$

\Rightarrow if $x_{c}>0$, then $x_{b}=1$

Perspective reformulation applies, if x_{b} also in convex $c(x) \leq 0$

- Significantly improve reformulation
- Pioneered by [Frangioni and Gentile, 2006];
... strengthen relaxation using perspective cuts

Example of Perspective Formulation

Consider MINLP set with three variables:

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{2} \times\{0,1\}: x_{2} \geq x_{1}^{2}, \quad u x_{3} \geq x_{1} \geq 0\right\}
$$

Can show that $S=S^{0} \cup S^{1}$, where

$$
\begin{aligned}
& S^{0}=\left\{\left(0, x_{2}, 0\right) \in \mathbb{R}^{3}: x_{2} \geq 0\right\} \\
& S^{1}=\left\{\left(x_{1}, x_{2}, 1\right) \in \mathbb{R}^{3}: x_{2} \geq x_{1}^{2}, u \geq x_{1} \geq 0\right\}
\end{aligned}
$$

Example of Perspective Formulation

Geometry of convex hull of S :
Lines connecting origin $\left(x_{3}=0\right)$ to parabola $x_{2}=x_{1}^{2}$ at $x_{3}=1$
Define convex hull of S as $\operatorname{conv}(S)$
$:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{2} x_{3} \geq x_{1}^{2}, u x_{3} \geq x_{1} \geq 0,1 \geq x_{3} \geq 0, x_{2} \geq 0\right\}$
where $x_{2} x_{3} \geq x_{1}^{2}$ is defined in terms of perspective function

$$
\mathcal{P}_{f}(x, z):= \begin{cases}0 & \text { if } z=0 \\ z f(x / z) & \text { if } z>0\end{cases}
$$

Epigraph of $\mathcal{P}_{f}(x, z)$: cone pointed at origin with lower shape $f(x)$
$x_{b} \in\{0,1\}$ indicator forces $x_{c}=0$, or $c\left(x_{c}\right) \leq 0$ if $x_{b}=1$ write

$$
x_{b} c\left(x_{c} / x_{b}\right) \quad \ldots \text { is tighter convex formulation }
$$

Generalization of Perspective Cuts

[Günlük and Linderoth, 2012] consider more general problem

$$
\text { (P) } \min _{(x, z, \eta) \in \mathbb{R}^{n} \times\{0,1\} \times \mathbb{R}}\{\eta \mid \eta \geq f(x)+c z, A x \leq b z\} \text {. }
$$

where
(1) $X=\{x \mid A x \leq b\}$ is bounded
(2) $f(x)$ is convex and finite on X, and $f(0)=0$

Theorem (Perspective Cut)

For any $\bar{x} \in X$ and subgradient $s \in \partial f(\bar{x})$, the inequality

$$
\left.\eta \geq f(\bar{x})+c+s^{T}(x-\bar{x})+\left(c+f(\bar{x})-s^{T} \bar{x}\right)\right)(z-1)
$$

is valid cut for (P)

Stronger Relaxations [Günlük and Linderoth, 2012]

- z_{R} : Value of NLP relaxation
- $z_{G L W}$: Value of NLP relaxation after GLW cuts
- z_{P} : Value of perspective relaxation
- z^{*} : Optimal solution value

Separable Quadratic Facility Location Problems

$\|M\|$	$\|N\|$	z_{R}	$z_{G L W}$	z_{P}	z^{*}
10	30	140.6	326.4	346.5	348.7
15	50	141.3	312.2	380.0	384.1
20	65	122.5	248.7	288.9	289.3
25	80	121.3	260.1	314.8	315.8
30	100	128.0	327.0	391.7	393.2

\Rightarrow Tighter relaxation gives faster solves!

Mini-Quiz on Nonlinear Perspective of the Perspective

Perspective of our uncapacitated facility location problem:

$$
\begin{aligned}
& \underset{x, y, z}{\operatorname{minimize}} z+y \\
& \text { subject to }(x / z)^{2}-(y / z) \leq 0 \quad 0 \leq x \leq z, z \in\{0,1\}, y \geq 0
\end{aligned}
$$

which clearly is not defined at $z=0$.

Why not multiply through by z^{2} ?

$$
\begin{aligned}
& \underset{x, y, z}{\operatorname{minimize}} z+y \\
& \text { subject to } x^{2}-z y \leq 0 \quad 0 \leq x \leq z, z \in\{0,1\}, y \geq 0
\end{aligned}
$$

... isn't this a much nicer NLP?

Numerical Experience with the Bad the Perspective

Bad perspective of uncapacitated facility location problem:

$$
\begin{aligned}
& \underset{x, y, z}{\operatorname{minimize}} z+y \\
& \text { subject to } x^{2}-z y \leq 0 \quad 0 \leq x \leq z, z \in\{0,1\}, y \geq 0
\end{aligned}
$$

0	0	10	10	0	0.5	1.01	0	2	
1	1	10	10	0.625	0	0.385	0	2	SQP
2	1	10	10	0.188	0	0.1875	0	2	SQP
[. . .]									
28	1	10	10	$2.79 \mathrm{e}-09$	0	$2.794 \mathrm{e}-09$	0	2	SQP
29	1	10	10	$1.4 \mathrm{e}-09$	0	$1.397 \mathrm{e}-09$	0	2	SQP
30	1	10	10	$6.98 \mathrm{e}-10$	0	$6.985 \mathrm{e}-10$	2	2	SQP

ASTROS Version 2.0.2 (20100913): Solution Summary


```
\begin{tabular}{lrrrr} 
Major iters & \(=\) & \(30 ;\) Minor iters & \(=\) & \(30 ;\) \\
KKT-residual & \(=\) & \(0.4286 ;\) Complementarity & \(=\) & \(1.996 \mathrm{e}-10\); \\
Final step-norm & \(=\) & \(6.985 \mathrm{e}-10 ;\) Final TR-radius & \(=\) & \(10 ;\)
\end{tabular}
```

ASTROS Version 2.0.2 (20100913): Step got too small

Linear rate of convergence ... similar for MINOS, FilterSQP, ...

Mini-Quiz on Nonlinear Perspective of the Perspective

Perspective of our uncapacitated facility location problem:

$$
\begin{aligned}
& \underset{x, y, z}{\operatorname{minimize}} z+y \\
& \text { subject to }(x / z)^{2}-(y / z) \leq 0 \quad 0 \leq x \leq z, z \in\{0,1\}, y \geq 0
\end{aligned}
$$

which clearly is not defined at $z=0 \ldots$
... yet ... this may be OK, after all:
(1) Show that the perspective of QFL is well-defined at $z=0$.
(2) Can you compute the gradients, $\nabla c(x, y, z)$, are they defined?
(3) What about $\nabla^{2} c$?

Summary and Teaching Points

Classes of Cuts
(1) Perspective cuts
(2) Disjunctive cuts (not discussed)

Abhishek, K., Leyffer, S., and Linderoth, J. T. (2010).
FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs.
INFORMS Journal on Computing, 22:555-567.
DOI:10.1287/ijoc.1090.0373.
R Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A. (2008).

An algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5(2):186-204.
Conn, A. R., Gould, N. I. M., and Toint, P. L. (1992).
LANCELOT: A Fortran package for large-scale nonlinear optimization (Release A).

Springer Verlag, Heidelberg.

Frangioni, A. and Gentile, C. (2006).
Perspective cuts for a class of convex 0-1 mixed integer programs.
Mathematical Programming, 106:225-236.

Günlük, O. and Linderoth, J. T. (2012).
Perspective reformulation and applications.
In IMA Volumes, volume 154, pages 61-92.

Hijazi, H., Bonami, P., and Ouorou, A. (2010).
An outer-inner approximation for separable MINLPs.
Technical report, LIF, Faculté des Sciences de Luminy, Université de Marseille.
Tawarmalani, M. and Sahinidis, N. V. (2005).

A polyhedral branch-and-cut approach to global optimization.
Mathematical Programming, 103(2):225-249.

