

Convex Mixed-Integer Nonlinear Optimization II Summer School on Optimization of Dynamical Systems

Sven Leyffer and Jeff Linderoth

Argonne National Laboratory

September 3-7, 2018

2 Single-Tree Methods

3 Separability and Constraint Disaggregation

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to } c(x) \leq 0 \\ & x \in \mathcal{X} \\ & x_i \in \mathbb{Z} \text{ for all } i \in \mathcal{I} \end{array}$$

Basic Assumptions for Convex MINLPA1 \mathcal{X} is a bounded polyhedral set.A2 f and c twice continuously differentiable convexA3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later) A3 is technical (MFCQ would have been sufficient)

Outline

1 Problem Definition and Assumptions

2 Single-Tree Methods

3 Separability and Constraint Disaggregation

Recall: Methods for MINLP

Branch-and-Bound

 \dots tree-search method

... alternate MILP & NLP

solve MILP relaxation

generate new hyperplanes

... now build hybrid method!

Aim: avoid solving expensive MILPs

• Start solving master MILP ... using MILP branch-and-cut

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If x_l^(j) integral, then interrupt MILP; solve NLP(x_l^(j)) get x^(j)

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If x_l^(j) integral, then interrupt MILP; solve NLP(x_l^(j)) get x^(j)
- Linearize f, c about x^(j)
 ⇒ add linearization to tree

Aim: avoid solving expensive MILPs

- Start solving master MILP ... using MILP branch-and-cut
- If x_l^(j) integral, then interrupt MILP; solve NLP(x_l^(j)) get x^(j)
- Linearize f, c about x^(j)
 ⇒ add linearization to tree
- Continue MILP tree-search

Aim: avoid solving expensive MILPs

• Start solving master MILP ... using MILP branch-and-cut f(y)

- If x_l^(j) integral, then interrupt MILP; solve NLP(x_l^(j)) get x^(j)
- Linearize f, c about x^(j)
 ⇒ add linearization to tree
- Continue MILP tree-search
- \dots until lower bound \geq upper bound

Software:

FilMINT: FilterSQP + MINTO [L & Linderoth] BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA

$\ensuremath{\mathsf{LP}}\xspace/\ensuremath{\mathsf{NLP}}\xspace$ Branch and Bound

 $\mathsf{LP}/\mathsf{NLP}\text{-}\mathsf{based} \ \mathsf{branch}\text{-}\mathsf{and}\text{-}\mathsf{bound}$

- Branch-and-cut algorithm with cuts from NLP solves
- Create MILP relaxation of MINLP

- Search MILP-tree \Rightarrow faster re-solves
- Interrupt MILP tree-search to create new linearizations

$\ensuremath{\mathsf{LP}}\xspace/\ensuremath{\mathsf{NLP}}\xspace$ Branch and Bound

LP/NLP-based branch-and-bound

- Branch-and-cut algorithm with cuts from NLP solves
- Create MILP relaxation of MINLP & refine linearizations

- Search MILP-tree \Rightarrow faster re-solves
- Interrupt MILP tree-search to create new linearizations

Algorithmic refinements, e.g. [Abhishek et al., 2010]

- Advanced MILP search and cut management techniques
 ... remove "old" OA cuts from LP relaxation ⇒ faster LP
- Generate cuts at non-integer points: ECP cuts are cheap ... generate cuts early (near root) of tree
- Strong branching, adaptive node selection & cut management
 - Fewer nodes, if we add more cuts (e.g. ECP cuts)
 - More cuts make LP harder to solve
 ⇒ remove outdated/inactive cuts from LP relaxation
 - ... balance OA accuracy with LP solvability
- Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]

Benders and ECP versions are also possible.

Worst Case Example of Outer Approximation [Hijazi et al., 2010] construct infeasible MINLP:

minimize 0
subject to
$$\sum_{i=1}^{n} \left(y_i - \frac{1}{2}\right)^2 \le \frac{n-1}{4}$$
$$y \in \{0,1\}^n$$

Intersection of ball of radius
$$\frac{\sqrt{n-1}}{2}$$
 with unit hypercube.

Lemma

OA cannot cut more than one vertex of the hypercube MILP master problem feasible for any $k < 2^n$ OA cuts

Theorem

OA visits all 2ⁿ vertices

Worst-Case Example for Linearizationm-Based Methods

- No OA constraint can cut 2 vertices of the hypercube.
 - If an inequality cuts two vertices, it cuts the segment joining them. This can not be: the ball has a non-empty intersection with any such segment.

A "basic" implementation of a linearization-based method for solving this problem enumerates at least 2^n nodes

How Bad Is It?

		CPLEX 12.4	SCIP 2.1	Bonmin (Hyb)
п	2 ⁿ	nodes	nodes	nodes
10	1024	2047	720	11156
15	32,768	65535	31993	947014
20	1,048,576	2,097,151	1,216,354	

- One "trick": The problem is simple for CPLEX/SCIP if variables are 0-1.
- If x ∈ {0,1}, then replace x_i² by x_i and the contradiction n/4 < (n − 1)/4 follows immediately.

Outline

1 Problem Definition and Assumptions

2 Single-Tree Methods

3 Separability and Constraint Disaggregation

Nonlinear disaggregation [Tawarmalani and Sahinidis, 2005]

$$S:=\left\{x\in\mathbb{R}^n:c(x)=h(\underline{g(x)})\leq 0\right\},$$

 $g : \mathbb{R}^n \to \mathbb{R}^p$ smooth convex; $h : \mathbb{R}^p \to \mathbb{R}$ smooth, convex, and nondecreasing $\Rightarrow c(x)$ smooth convex

Disaggregated formulation: introduce $y = g(x) \in \mathbb{R}^p$

$$S_d := \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^p : h(y) \le 0, \ y \ge g(x)\}$$

Lemma

S is projection of S_d onto x.

Consider

$$S:=\left\{x\in\mathbb{R}^n:c(x)=h(\underline{g(x)})\leq 0\right\},$$

and

$$S_d := \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^p : h(y) \le 0, \ y \ge g(x)\}.$$

Theorem

Any outer approximation of S_d is stronger than OA of S

Given $\mathcal{X}^k := \left\{ x^{(1)}, \dots, x^{(k)} \right\}$ construct OA for S, S_d :

$$S^{oa} := \left\{ x : c^{(l)} + \nabla c^{(l)^{T}} (x - x^{(l)}) \le 0, \ \forall x^{(l)} \in \mathcal{X}^{k} \right\}$$

$$S^{oa}_{d} := \left\{ (x, y) : h^{(l)} + \nabla h^{(l)^{T}} (y - g(x^{(l)})) \le 0, \\ y \ge g^{(l)} + \nabla g^{(l)^{T}} (x - x^{(l)}), \ \forall x^{(l)} \in \mathcal{X}^{k} \right\},$$

[Tawarmalani and Sahinidis, 2005] show S_d^{oa} stronger than S^{oa}

[Hijazi et al., 2010] study

$$\left\{x:c(x):=\sum_{j=1}^{q}h_{j}(a_{j}^{T}x+b_{j})\leq 0\right\}$$

where $h_j : \mathbb{R} \to \mathbb{R}$ are smooth and convex

Disaggregated formulation: introduce $y \in \mathbb{R}^q$

$$\left\{(x,y): \sum_{j=1}^{q} y_j \leq 0, \text{ and } y_j \geq h_j(a_j^T x + b_j)\right\}$$

can be shown to be tighter

Recall: Worst Case Example of Outer Approximation

Apply disaggregation to [Hijazi et al., 2010] example:

minimize 0
subject to
$$\sum_{\substack{i=1\\x \in \{0,1\}^n}}^n \left(x_i - \frac{1}{2}\right)^2 \le \frac{n-1}{4}$$

Intersection of ball of radius $\frac{\sqrt{n-1}}{2}$ with unit hypercube.

Disaggregate
$$\sum (x_i - \frac{1}{2})^2 \le \frac{n-1}{4}$$
 as
 $\sum_{i=1}^n y_i \le 0$ and $\left(x_i - \frac{1}{2}\right)^2 \le y_i$

16 / 28

[Hijazi et al., 2010] disaggregation on worst-case example of OA

- Linearize around $x^{(1)} \in \{0,1\}^n$ and complement $x^{(2)} := e x^{(1)}$, where $e = (1, \dots, 1)$
- OA of disaggregated constraint is

$$\sum_{i=1}^{n} y_i$$
, and $x_i - \frac{3}{4} \le y_i$, and $\frac{1}{4} - x_i \le y_i$,

• Using $x_i \in \{0, 1\}$ implies $z_i \ge 0$, implies $\sum z_i \ge \frac{n}{4} > \frac{n-1}{4}$ \Rightarrow OA-MILP master of $x^{(1)}$ and $x^{(2)}$ is infeasible. ... terminate in two iterations

Extension: Group-Partial Separability

Definition (Group Partially Separability [Conn et al., 1992]) A nonlinear function f(x) is group partially separable, iff

$$f(x) = \sum_{j=1}^{q} g_j \left(a_j^{\mathsf{T}} x + b_j + \sum_{i \in \mathcal{E}_j} f_i(x_{[i]}) \right)$$

where $f_i : \mathbb{R}^{n_i} \to \mathbb{R}$ depends on subvector $x_{[i]}$ of x where $n_i \ll n$, and $g_j : \mathbb{R} \to \mathbb{R}$ are univariate functions.

- Extends partial separability $(\sum_i f_i(x_{[i]}))$ and sparsity
- Structured quasi-Newton updates for large-scale optimization
- Most complex functional form for which Hessian of augmented Lagrangian can be computed from element Hessians ∇² f_i(x_[i])

Outline

1 Problem Definition and Assumptions

- 2 Single-Tree Methods
- 3 Separability and Constraint Disaggregation

Perspective Formulations

MINLPs use binary indicator variables, x_b , to model nonpositivity of $x_c \in \mathbb{R}$

Model as variable upper bound

$$0 \leq x_c \leq u_c x_b, \quad x_b \in \{0,1\}$$

$$\Rightarrow$$
 if $x_c > 0$, then $x_b = 1$

Perspective reformulation applies, if x_b also in convex $c(x) \leq 0$

- Significantly improve reformulation
- Pioneered by [Frangioni and Gentile, 2006];
 - ... strengthen relaxation using perspective cuts

Example of Perspective Formulation

Consider MINLP set with three variables:

$$S = \Big\{ (x_1, x_2, x_3) \in \mathbb{R}^2 \times \{0, 1\} : x_2 \ge x_1^2, \ ux_3 \ge x_1 \ge 0 \Big\}.$$

Can show that $S = S^0 \cup S^1$, where

$$\begin{split} S^0 &= \left\{ (0, x_2, 0) \in \mathbb{R}^3 \ : \ x_2 \geq 0 \right\}, \\ S^1 &= \left\{ (x_1, x_2, 1) \in \mathbb{R}^3 \ : \ x_2 \geq x_1^2, \ u \geq x_1 \geq 0 \right\}. \end{split}$$

Example of Perspective Formulation

Geometry of convex hull of *S*:

Lines connecting origin $(x_3 = 0)$ to parabola $x_2 = x_1^2$ at $x_3 = 1$

Define convex hull of S as conv(S)

 $:= \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_2 x_3 \geq x_1^2, \ u x_3 \geq x_1 \geq 0, 1 \geq x_3 \geq 0, x_2 \geq 0 \right\}$

where $x_2x_3 \ge x_1^2$ is defined in terms of perspective function

$$\mathcal{P}_f(x,z) := \begin{cases} 0 & \text{if } z = 0, \\ zf(x/z) & \text{if } z > 0. \end{cases}$$

Epigraph of $\mathcal{P}_f(x, z)$: cone pointed at origin with lower shape f(x) $x_b \in \{0, 1\}$ indicator forces $x_c = 0$, or $c(x_c) \le 0$ if $x_b = 1$ write

 $x_b c(x_c/x_b)$... is tighter convex formulation

Generalization of Perspective Cuts

[Günlük and Linderoth, 2012] consider more general problem

$$(P) \quad \min_{(x,z,\eta)\in\mathbb{R}^n\times\{0,1\}\times\mathbb{R}}\Big\{\eta\mid \eta\geq f(x)+cz, Ax\leq bz\Big\}.$$

where

• $X = \{x \mid Ax \le b\}$ is bounded

2 f(x) is convex and finite on X, and f(0) = 0

Theorem (Perspective Cut)

For any $\bar{x} \in X$ and subgradient $s \in \partial f(\bar{x})$, the inequality

$$\eta \ge f(\bar{x}) + c + s^T(x - \bar{x}) + (c + f(\bar{x}) - s^T \bar{x}))(z - 1)$$

is valid cut for (P)

Stronger Relaxations [Günlük and Linderoth, 2012]

- z_R: Value of NLP relaxation
- *z_{GLW}*: Value of NLP relaxation after GLW cuts
- *z_P*: Value of perspective relaxation
- z*: Optimal solution value

M	NÌ	ZR	ZGLW	ZP	<i>z</i> *
10	30	140.6	326.4	346.5	348.7
15	50	141.3	312.2	380.0	384.1
20	65	122.5	248.7	288.9	289.3
25	80	121.3	260.1	314.8	315.8
30	100	128.0	327.0	391.7	393.2

Separable Quadratic Facility Location Problems

 \Rightarrow Tighter relaxation gives faster solves!

Mini-Quiz on Nonlinear Perspective of the Perspective

Perspective of our uncapacitated facility location problem:

 $\begin{array}{ll} \underset{x,y,z}{\text{minimize}} & z+y\\ \text{subject to } (x/z)^2 - (y/z) \leq 0 & 0 \leq x \leq z, \ z \in \{0,1\}, \ y \geq 0 \end{array}$

which clearly is not defined at z = 0.

Why not multiply through by z^2 ?

$$\begin{array}{ll} \underset{x,y,z}{\text{minimize}} & z+y\\ \text{subject to } x^2-zy \leq 0 & 0 \leq x \leq z, \; z \in \{0,1\}, \; y \geq 0 \end{array}$$

... isn't this a much nicer NLP?

Numerical Experience with the Bad the Perspective

Bad perspective of uncapacitated facility location problem:

$$\begin{array}{ll} \underset{x,y,z}{\text{minimize}} & z+y\\ \text{subject to } x^2-zy \leq 0 & 0 \leq x \leq z, \; z \in \{0,1\}, \; y \geq 0 \end{array}$$

Major	Minor	TrustRad	RegParam	StepNorm	Constrnts	Objective	Optimal	Phase	Step
0	0	10	10	0	0.5	1.01	0	2	
1	1	10	10	0.625	0	0.385	0	2	SQP
2	1	10	10	0.188	0	0.1875	0	2	SQP
[]								
28	1	10	10	2.79e-09	0	2.794e-09	0	2	SQP
29	1	10	10	1.4e-09	0	1.397e-09	0	2	SQP
30	1	10	10	6.98e-10	0	6.985e-10	2	2	SQP
ASTROS Version 2.0.2 (20100913): Solution Summary									

Linear rate of convergence ... similar for MINOS, FilterSQP, ...

Mini-Quiz on Nonlinear Perspective of the Perspective

Perspective of our uncapacitated facility location problem:

 $\begin{array}{ll} \underset{x,y,z}{\text{minimize}} & z+y\\ \text{subject to } (x/z)^2 - (y/z) \leq 0 & 0 \leq x \leq z, \ z \in \{0,1\}, \ y \geq 0 \end{array}$

which clearly is not defined at z = 0 ...

... yet ... this may be OK, after all:

- Show that the perspective of QFL is well-defined at z = 0.
- **2** Can you compute the gradients, $\nabla c(x, y, z)$, are they defined?
- **3** What about $\nabla^2 c$?

Summary and Teaching Points

Classes of Cuts

- Perspective cuts
- Disjunctive cuts (not discussed)

A polyhedral branch-and-cut approach to global optimization. *Mathematical Programming*, 103(2):225–249.