Argonne°

NATIONAL LABORATORY

Linear Programming

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

@ U5 oEpARTHENT OF

Outline

@ Introduction to Linear Programming

© Active-Set Method for Linear Programming
@ Obtaining an Initial Feasible Point for LPs

a 2/30

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

minimize cTx
X
subjectto a/x=b; i€&

a,-TXZb,' ierZ,

where £, 7 are equality and inequality constraints, and x € R".

@ Name “linear program” dates back to when Dantzig used LPs
to solve planning problems for US Air Force.

@ Fundamental building block of nonlinear algorithms.
@ Fundamental building block of mixed-integer algorithms.

o Efficient commercial and open-source solvers

3/30

.
Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)
minimize ¢’ x
X
subject to al-Tx =b i€&
a,-Tx >b; i€l

Text book standard form of linear program:

minimize cTx
X
subjectto Ax=b
x>0

. note A in constraints, not AT

Our form makes it easier to explain certain methods ...

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

minimize cTx
X

subjectto alx=b; €&

i

a,-szb,- i eZ,

Solvers allow more flexible problem definitions:
@ Bounds on variables: | < x < u

e Two-sided constraints: I < ATx < u,

Solvers exploit special structure

@ Network constraints = can form inverse explicitly

5/30

The Busy College Student Problem
How should a college student spend his/her time?
@ Day is divided into regular tasks:
‘Study’, ‘Lecture’, ‘Tutorial’, ‘Sleep’, ‘Eat’, ‘Friends’, & ‘Beer’
@ Student derives benefit from each of these tasks
@ College and student’s parents place constraints on tasks

@ Student must decide how much time to spend on each task

Defining the Problem Vaiables
For set of tasks, 7, define h(t)> 0 as hours spent on task t € T

v

Building the Objective

Each task t € 7 has Value(t) to student; goal is to maximize value

maximize ZVaIue(t) -h(t)
teT

6

30

The Busy College Student Problem

Constraints imposed by College regarding split of study times

@ Must spend at least as much time in lectures as in
study/tutorials

h(study) + h(tutorial) < h(lecture)
@ Must study at least 8 hours per day
h(study) + h(tutorial) 4+ h(lecture) > 8

@ Must achieve minimum course credit (different for study,
tutorial, lectures:

h(study) + gh(tutorial) + 2h(lecture) > 10

The Busy College Student Problem

Constraints imposed by the parents and universe:

@ Parents rules for a healthy life style
e Spend at least 10 hours sleeping or eating

h(eat) + h(sleep) > 10
e Don't overeat and get enough sleep:
h(sleep) > 8h(eat)

@ Can only spend 24 hours in a day

> h(t) <24

teT

Building the Student Model in AMPL

Create a txt file (e.g. called Student.mod) with ...
Define of the set of tasks, 7: ‘Study’, ‘Lecture’, ‘Tutorial’, ‘Sleep’,
‘Eat’, ‘Friends’, & ‘Beer’

... set of Tasks student can perform
set Tasks := { ‘Study’, ‘Lecture’, ‘Tutorial’, ‘Sleep’,
‘Eat’, ‘Friends’, ‘Beer’ };

Define of the model parameters (value)

... parameters: value of each task
param Value{Tasks} >= 0, default 1;

... default value of 0 (indifferent), and requiring nonnegativity
Define the variables (hours per task)

... variables: hours per task
var h{Tasks} >= 0;

Building the Student Model in AMPL

Define the objective function:

maximize ZVaIue(t) - h(t)
teT

... maximize total value to student
maximize fun: sum{t in Tasks} Value[t] * h[t];

Add the constraints, e.g. only 24 hours in day:

> h(t) <24

teT

subject to
... finite number of hours per day
hoursPerDay: sum{t in Tasks} h[t] <= 24;

a 10/30

.
Building the Student Model in AMPL

Add the parent’s rules for a healthy life style

@ Spend at least 10 hours sleeping or eating
h(eat) + h(sleep) > 10
@ Don't overeat and get enough sleep:
h(sleep) > 8h(eat)

parentsRulel: h[‘Sleep’] + h[‘Eat’] >= 10;
parentsRule2: h[‘Sleep’] >= 8*h[‘Eat’];

NB: Only need one subject to in model file.

a 11/30

Building the Student Model in AMPL

Add the remaining constraints, and then define the data:

data;

param: Value := # ... international survey data
‘Study’
‘Lecture’
‘Tutorial’
‘Sleep’

‘Eat’

‘Friends’ 1
‘Beer’

OO ONNFW

. or create a separate data file, e.g. Student001.dat.

12/30

Running the Student Model in AMPL

Now open AMPL, load the model, select a solver, and sole:

% ampl

ampl: reset; model Student.mod;
ampl: option solver ipopt;
ampl: solve;

ampl: display h, fun;

. where last command shows the solution

a 13/30

Outline

© Active-Set Method for Linear Programming
@ Obtaining an Initial Feasible Point for LPs

GI‘/V' 14/30

Active-Set Method for Linear Programming

Introduce active-set method for linear programs (LPs)

minimize ¢’ x
X

subject toa/ x =b; i€&
a,-TXZb,- i€l

where
o &,T are equality and inequality constraints

@ variables x € R".

Relationship to Simplex Methods
@ Active-set methods are equivalent to Simplex method
@ More intuitive, and generalizes to quadratic programs

@ Dual active-set method is active-set applied to dual LP

15/30

Basic Facts About Linear Programming

minimize ¢’ x subject to Agx = bge A%—X > br
X

Feasible can be unbounded = LP may be unbounded
... detect this situation during the line-search

@ Feasible set is polyhedron; every vertex has n active
constraints ... more, if vertex is degenerate

@ If solution exists, then there exists a vertex solution

Active-Set Methods for LP

Moves from feasible vertex to another reducing ¢’ x.

Feasible set may be empty ... detect in phase-I methods ...

16

30

.\ ___
Active-Set Method for Linear Programming

A

—

Move from vertex to vertex, reducing objective

%
A% m 17/30

Active-Set Method for LP
Active-Set Methods for LP

Moves from feasible vertex to another reducing ¢’ x.

Every iterate, x(K) is vertex of feasible set:

T

alx=b, iewW & Alx=by,

where
e W C A(x) working set
o If vertex is non-degenerate (exactly n active constraints), then
W = A(x)
e Make this non-degeneracy assumption from now on
.. solvers can handle degeneracy

@ Jacobian and right-hand-side

A= [ailicy ER™™ and b] = (b;);cy € R”

18 /30

Active-Set Method for LP

Moves from feasible vertex to another reducing ¢’ x. '

Every iterate, x(K) is vertex of feasible set:

alx=b, ieWw & Alx=by,

At x(K)| the Lagrange multipliers are

y(k) = Agc.

y,-(k) >0vieInNnWw = x(k) optimal.

?,
A_ 19/30

Active-Set Method for LP

Move from vertex to vertex along a common edge reducing ¢ x.

Active-Set Methods for LP }

Define feasible edges as

= slope of objective along edge s; is yl.(k) = s,-Tc

If x(K) not optimal, then there exists yék) <0
= edge s, is feasible descend direction

Possibly choice for g is most negative multiplier,

= min y;
Ya = oot

. not good in practice ... take scaling into account!
a 20/30

Active-Set Method for LP
Active-Set Methods for LP J

Move from vertex to vertex along a common edge reducing ¢ x.

Given x(%) not optimal and yc(,k) <0
. search along the edge s, = move away from constraint g

Drop constraint g from working set, YW, move along line
x = x4 QSq

Consider effect on inactive constraints, i € Z: i & W:

k
roi= a,-TX — b; = a,-TX(k) + aaqu — b =: r,-() + aa,-qu.

i
Inactive constraint only becomes active, if a,-qu < 0, after step a:

(k) o
O=ri=r +aa,-qu & a=—=
—a!s
i ~q

21/30

Active-Set Method for LP

@ From vertex to vertex along common edge reducing ¢’ x.

o Given x(k) not optimal and y()
.. search along the edge s, = move away from constraint g

A

_L
A% 22/30

Side-Track: Degeneracy in LP Active-Set

Active-Set Methods for LP J

Move from vertex to vertex along a common edge reducing ¢ x.

Move from x(¥) along edge x = x(k) + asq with yc(,k) <0

Inactive constraint i € Z: i ¢ W ...
... becomes active, if a] s, < 0, after step a:

k
0=fi=r,-()-|-oza,-qu & o« £

Degeneracy in LP

If vertex x(k) degenerate, then 3 more than n active constraints
_q0 i3 A0
.cancause =0, if di: r;”/ =0 ... may cycle

23/30

Active-Set Method for LP
Active-Set Methods for LP J

Move from vertex to vertex along a common edge reducing ¢ x.

Given x(%) not optimal and yc(,k) <0
. search along the edge s, = move away from constraint g

Drop constraint g from working set, YW, move along line
x = x4 QSq

Consider effect on inactive constraints, i € Z: i & W:

k
roi= a,-TX — b; = a,-TX(k) + aaqu — b =: r,-() + aa,-qu.

i
Inactive constraint only becomes active, if a,-qu < 0, after step a:

(k) o
O=ri=r +aa,-qu & a=—=
—a!s
i ~q

24 /30

Active-Set Method for LP

Move from vertex to vertex along a common edge reducing ¢ x.

Active-Set Methods for LP J

Drop constraint g from working set, YW, move along x = x(K) 4 sy

Inactive constraint becomes active, if a] s; < 0, after step a:

k k
O:r,-:r,-()—i—aa,-qu & a:—ri()/a,-qu

Stay feasible wrt constraints = find 1% newly active constraint:

. k
a= min —r,.()/a,-qu
i€T:igW,a] 54<0

If Ai€Z:i¢W such that a,.qu < 0= a =00, LP unbounded

Otherwise, o < oo, constraint p becomes active
= exchange p and q in working set, move new vertex, x(k*1)
o 25/30

Active-Set Method for Linear Programming

Given initial feasible vertex, X(O), working set W(O), set k=0
repeat
Optimality Test: Let Ay := [a,],ew compute y(K) = A;lc
Find y, := min {y, e Wik ﬂI}
if y, > 0 then x(¥) optimal solution ;
else
Ratio Test: s, be column of A=T corresp. to y,
a=min;_,. T bi—al X _. bo— 2 X9
I€L:igW,a; 5q4<0 —a,-TSq —astq
if /s >0,VieZ:igW then LP isunbounded ;
else
Pivot: p and g in WD = Wk — fg1 U {p} Set
xUH1) = x(K) a5, and k = k + 1
end
end

until x(%) s optimal or LP unbounded:;

26

30

Modern LP Solvers

Modern LP solvers more sophisticated
@ Anti-cycling rules to handle degeneracy
@ More sophisticated pivoting choice (leaving constraint)

@ Using inverse A~! inefficient and numerically unstable.
e Use factors of active-set matrix A, = L, Uy,
where Ly is lower and Uy is upper triangular matrix
o Update factors after removing aq and adding a,
o Efficient & numerically stable
@ Dual active-set methods start from dual feasible point
. e.g. after changing RHS in branching = great for MIP

LP Solvers for Huge LPs

Active-set solvers inefficient or very large problems ...
. interior-point methods are alternative with good complexity

27 /30

.
Getting Initial Feasible Point for LPs

If no initial feasible vertex, then solve auxiliary LP
@ Add surplus variables that measure infeasibility

@ Solve resulting LP for initial feasible vertex ...
. or proof that LP is infeasible

.. . _l’_ — .
m|n)!?|ze Z (5,- +s;) + Zs,
ie€ i€T
subject toa/ x — b =s" —s= €&
a,-Tx—b,-z—s,- el

st >0,s >0, s>0.

a 28/30

Getting Initial Feasible Point for LPs

minxirpize Z (st +s7)+ Zs,-

icg iez
subjecttoa,-Tx—b,-:siJr—si_ i€k
a,-Tx—b,-z—s,- el

st>0,s >0, s>0.
For any x, initial feasible point for auxiliary LP is
Sj *=min <0, bj — a,-Tx> ,

s, = min (O, b; — a,-TX> , S :=min (0, —b;j + 3;TX>)

P

If solution (s = 0,sT = 0,s~ = 0) then feasible, otherwise not.

29/30

Summary & Teaching Points

Simple model as LP
@ From description to mathematical formulation

@ Translated mathematical formulation into AMPL
... there exist open-source alternatives:

e JuMP based on MIT's Julia project
e Zimpl is AMPL clone developed at ZIB in Berlin
e Can be used with open-source solvers

@ Discussed active-set method for LP
e Move from vertex to vertex, reducing objective
o Phase | method for initial feasible point

30/30

	Introduction to Linear Programming
	Active-Set Method for Linear Programming
	Obtaining an Initial Feasible Point for LPs

