
Linear Programming
GIAN Short Course on Optimization:

Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

1 Introduction to Linear Programming

2 Active-Set Method for Linear Programming
Obtaining an Initial Feasible Point for LPs

2 / 30

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

minimize
x

cT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

where E , I are equality and inequality constraints, and x ∈ Rn.

Name “linear program” dates back to when Dantzig used LPs
to solve planning problems for US Air Force.

Fundamental building block of nonlinear algorithms.

Fundamental building block of mixed-integer algorithms.

Efficient commercial and open-source solvers

3 / 30

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

minimize
x

cT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

Text book standard form of linear program:

minimize
x

cT x

subject to Ax = b
x ≥ 0

... note A in constraints, not AT

Our form makes it easier to explain certain methods ...

4 / 30

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

minimize
x

cT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

Solvers allow more flexible problem definitions:

Bounds on variables: l ≤ x ≤ u

Two-sided constraints: lc ≤ AT x ≤ uc

Solvers exploit special structure

Network constraints ⇒ can form inverse explicitly

5 / 30

The Busy College Student Problem
How should a college student spend his/her time?

Day is divided into regular tasks:
‘Study’, ‘Lecture’, ‘Tutorial’, ‘Sleep’, ‘Eat’, ‘Friends’, & ‘Beer’

Student derives benefit from each of these tasks

College and student’s parents place constraints on tasks

Student must decide how much time to spend on each task

Defining the Problem Vaiables

For set of tasks, T , define h(t)≥ 0 as hours spent on task t ∈ T

Building the Objective

Each task t ∈ T has Value(t) to student; goal is to maximize value

maximize
h

∑
t∈T

Value(t) · h(t)

6 / 30

The Busy College Student Problem

Constraints imposed by College regarding split of study times

Must spend at least as much time in lectures as in
study/tutorials

h(study) + h(tutorial) ≤ h(lecture)

Must study at least 8 hours per day

h(study) + h(tutorial) + h(lecture) ≥ 8

Must achieve minimum course credit (different for study,
tutorial, lectures:

h(study) +
3

2
h(tutorial) + 2h(lecture) ≥ 10

7 / 30

The Busy College Student Problem

Constraints imposed by the parents and universe:

Parents rules for a healthy life style

Spend at least 10 hours sleeping or eating

h(eat) + h(sleep) ≥ 10

Don’t overeat and get enough sleep:

h(sleep) ≥ 8h(eat)

Can only spend 24 hours in a day∑
t∈T

h(t) ≤ 24

8 / 30

Building the Student Model in AMPL

Create a txt file (e.g. called Student.mod) with ...
Define of the set of tasks, T : ‘Study’, ‘Lecture’, ‘Tutorial’, ‘Sleep’,
‘Eat’, ‘Friends’, & ‘Beer’

... set of Tasks student can perform

set Tasks := { ‘Study’, ‘Lecture’, ‘Tutorial’, ‘Sleep’,

‘Eat’, ‘Friends’, ‘Beer’ };

Define of the model parameters (value)

... parameters: value of each task

param Value{Tasks} >= 0, default 1;

... default value of 0 (indifferent), and requiring nonnegativity

Define the variables (hours per task)

... variables: hours per task

var h{Tasks} >= 0;

9 / 30

Building the Student Model in AMPL
Define the objective function:

maximize
h

∑
t∈T

Value(t) · h(t)

... maximize total value to student

maximize fun: sum{t in Tasks} Value[t] * h[t];

Add the constraints, e.g. only 24 hours in day:∑
t∈T

h(t) ≤ 24

subject to

... finite number of hours per day

hoursPerDay: sum{t in Tasks} h[t] <= 24;

10 / 30

Building the Student Model in AMPL

Add the parent’s rules for a healthy life style

Spend at least 10 hours sleeping or eating

h(eat) + h(sleep) ≥ 10

Don’t overeat and get enough sleep:

h(sleep) ≥ 8h(eat)

parentsRule1: h[‘Sleep’] + h[‘Eat’] >= 10;

parentsRule2: h[‘Sleep’] >= 8*h[‘Eat’];

NB: Only need one subject to in model file.

11 / 30

Building the Student Model in AMPL

Add the remaining constraints, and then define the data:

data;

param: Value := # ... international survey data

‘Study’ 3

‘Lecture’ 1

‘Tutorial’ 2

‘Sleep’ 2

‘Eat’ 6

‘Friends’ 10

‘Beer’ 8 ;

... or create a separate data file, e.g. Student001.dat.

12 / 30

Running the Student Model in AMPL

Now open AMPL, load the model, select a solver, and sole:

% ampl

ampl: reset; model Student.mod;

ampl: option solver ipopt;

ampl: solve;

ampl: display h, fun;

... where last command shows the solution

13 / 30

Outline

1 Introduction to Linear Programming

2 Active-Set Method for Linear Programming
Obtaining an Initial Feasible Point for LPs

14 / 30

Active-Set Method for Linear Programming

Introduce active-set method for linear programs (LPs)

minimize
x

cT x

subject to aTi x = bi i ∈ E
aTi x ≥ bi i ∈ I,

where

E , I are equality and inequality constraints

variables x ∈ Rn.

Relationship to Simplex Methods

Active-set methods are equivalent to Simplex method

More intuitive, and generalizes to quadratic programs

Dual active-set method is active-set applied to dual LP

15 / 30

Basic Facts About Linear Programming

minimize
x

cT x subject to AT
E x = bE AT

I x ≥ bI

Feasible set may be empty ... detect in phase-I methods ...

Feasible can be unbounded ⇒ LP may be unbounded
... detect this situation during the line-search

Feasible set is polyhedron; every vertex has n active
constraints ... more, if vertex is degenerate

If solution exists, then there exists a vertex solution

Active-Set Methods for LP

Moves from feasible vertex to another reducing cT x .

16 / 30

Active-Set Method for Linear Programming

Move from vertex to vertex, reducing objective

17 / 30

Active-Set Method for LP

Active-Set Methods for LP

Moves from feasible vertex to another reducing cT x .

Every iterate, x (k) is vertex of feasible set:

aTi x = bi , i ∈ W ⇔ AT
k x = bk ,

where

W ⊂ A(x) working set

If vertex is non-degenerate (exactly n active constraints), then
W = A(x)
Make this non-degeneracy assumption from now on
... solvers can handle degeneracy

Jacobian and right-hand-side

Ak := [ai]i∈W ∈ Rn×n and bTk := (bi)i∈W ∈ Rn

18 / 30

Active-Set Method for LP

Active-Set Methods for LP

Moves from feasible vertex to another reducing cT x .

Every iterate, x (k) is vertex of feasible set:

aTi x = bi , i ∈ W ⇔ AT
k x = bk ,

At x (k), the Lagrange multipliers are

y (k) = Akc .

Optimality Test for LP

y
(k)
i ≥ 0,∀i ∈ I ∩W ⇒ x (k) optimal.

19 / 30

Active-Set Method for LP

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing cT x .

Define feasible edges as

A−Tk := [si]i∈W ∈ Rn×n,

⇒ slope of objective along edge si is y
(k)
i = sTi c

If x (k) not optimal, then there exists y
(k)
q < 0

⇒ edge sq is feasible descend direction

Possibly choice for q is most negative multiplier,

yq := min
i∈I∩W

yi

... not good in practice ... take scaling into account!

20 / 30

Active-Set Method for LP

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing cT x .

Given x (k) not optimal and y
(k)
q < 0

... search along the edge sq ⇒ move away from constraint q
Drop constraint q from working set, W, move along line

x = x (k) + αsq

Consider effect on inactive constraints, i ∈ I : i 6∈ W:

ri := aTi x − bi = aTi x
(k) + αaTi sq − bi =: r

(k)
i + αaTi sq.

Inactive constraint only becomes active, if aTi sq < 0, after step α:

0 = ri = r
(k)
i + αaTi sq ⇔ α =

r
(k)
i

−aTi sq

21 / 30

Active-Set Method for LP

From vertex to vertex along common edge reducing cT x .

Given x (k) not optimal and y
(k)
q < 0

... search along the edge sq ⇒ move away from constraint q

22 / 30

Side-Track: Degeneracy in LP Active-Set

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing cT x .

Move from x (k) along edge x = x (k) + αsq with y
(k)
q < 0

Inactive constraint i ∈ I : i 6∈ W ...
... becomes active, if aTi sq < 0, after step α:

0 = ri = r
(k)
i + αaTi sq ⇔ α =

r
(k)
i

−aTi sq

Degeneracy in LP

If vertex x (k) degenerate, then ∃ more than n active constraints

... can cause α = 0, if ∃i : r
(k)
i = 0 ... may cycle

23 / 30

Active-Set Method for LP

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing cT x .

Given x (k) not optimal and y
(k)
q < 0

... search along the edge sq ⇒ move away from constraint q
Drop constraint q from working set, W, move along line

x = x (k) + αsq

Consider effect on inactive constraints, i ∈ I : i 6∈ W:

ri := aTi x − bi = aTi x
(k) + αaTi sq − bi =: r

(k)
i + αaTi sq.

Inactive constraint only becomes active, if aTi sq < 0, after step α:

0 = ri = r
(k)
i + αaTi sq ⇔ α =

r
(k)
i

−aTi sq

24 / 30

Active-Set Method for LP

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing cT x .

Drop constraint q from working set, W, move along x = x (k) +αsq

Inactive constraint becomes active, if aTi sq < 0, after step α:

0 = ri = r
(k)
i + αaTi sq ⇔ α = −r (k)i /aTi sq

Stay feasible wrt constraints ⇒ find 1st newly active constraint:

α = min
i∈I:i 6∈W,aTi sq<0

−r (k)i /aTi sq

If 6 ∃i ∈ I : i 6∈ W such that aTi sq < 0 ⇒ α =∞, LP unbounded

Otherwise, α <∞, constraint p becomes active
⇒ exchange p and q in working set, move new vertex, x (k+1)

25 / 30

Active-Set Method for Linear Programming

Given initial feasible vertex, x (0), working set W(0), set k = 0
repeat

Optimality Test: Let Ak := [ai]i∈W(k) compute y (k) = A−1k c

Find yq := min
{
yi : i ∈ W(k) ∩ I

}
if yq ≥ 0 then x (k) optimal solution ;
else

Ratio Test: sq be column of A−T corresp. to yq

α = mini∈I:i 6∈W,aTi sq<0
bi−aTi x

(k)

−aTi sq
=:

bp−aTp x(k)

−aTp sq
if aTi sq ≥ 0, ∀i ∈ I : i 6∈ W then LP is unbounded ;
else

Pivot: p and q in W(k+1) =W(k) − {q} ∪ {p} Set
x (k+1) = x (k) + αsq and k = k + 1

end

end

until x (k) is optimal or LP unbounded ;

26 / 30

Modern LP Solvers

Modern LP solvers more sophisticated

Anti-cycling rules to handle degeneracy

More sophisticated pivoting choice (leaving constraint)

Using inverse A−1 inefficient and numerically unstable.

Use factors of active-set matrix Ak = LkUk ,
where Lk is lower and Uk is upper triangular matrix
Update factors after removing aq and adding ap
Efficient & numerically stable

Dual active-set methods start from dual feasible point
... e.g. after changing RHS in branching ⇒ great for MIP

LP Solvers for Huge LPs

Active-set solvers inefficient or very large problems ...
... interior-point methods are alternative with good complexity

27 / 30

Getting Initial Feasible Point for LPs

If no initial feasible vertex, then solve auxiliary LP

Add surplus variables that measure infeasibility

Solve resulting LP for initial feasible vertex ...
... or proof that LP is infeasible

minimize
x ,s

∑
i∈E

(
s+i + s−i

)
+
∑
i∈I

si

subject to aTi x − bi = s+i − s−i i ∈ E
aTi x − bi ≥ −si i ∈ I
s+ ≥ 0, s− ≥ 0, s ≥ 0.

28 / 30

Getting Initial Feasible Point for LPs

minimize
x ,s

∑
i∈E

(
s+i + s−i

)
+
∑
i∈I

si

subject to aTi x − bi = s+i − s−i i ∈ E
aTi x − bi ≥ −si i ∈ I
s+ ≥ 0, s− ≥ 0, s ≥ 0.

For any x , initial feasible point for auxiliary LP is

si := min
(

0, bi − aTi x
)
,

s−i := min
(

0, bi − aTi x
)
, s+i := min

(
0,−bi + aTi x

)
,

If solution (s = 0, s+ = 0, s− = 0) then feasible, otherwise not.

29 / 30

Summary & Teaching Points

Simple model as LP

From description to mathematical formulation

Translated mathematical formulation into AMPL
... there exist open-source alternatives:

JuMP based on MIT’s Julia project
Zimpl is AMPL clone developed at ZIB in Berlin
Can be used with open-source solvers

Discussed active-set method for LP

Move from vertex to vertex, reducing objective
Phase I method for initial feasible point

30 / 30

	Introduction to Linear Programming
	Active-Set Method for Linear Programming
	Obtaining an Initial Feasible Point for LPs

