

Linear Programming GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

Introduction to Linear Programming

2 Active-Set Method for Linear Programming • Obtaining an Initial Feasible Point for LPs

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{T}x\\ \text{subject to} & a_{i}^{T}x = b_{i} \quad i \in \mathcal{E}\\ & a_{i}^{T}x \geq b_{i} \quad i \in \mathcal{I}, \end{array}$$

where \mathcal{E}, \mathcal{I} are equality and inequality constraints, and $x \in \mathbb{R}^n$.

- Name "linear program" dates back to when Dantzig used LPs to solve planning problems for US Air Force.
- Fundamental building block of nonlinear algorithms.
- Fundamental building block of mixed-integer algorithms.
- Efficient commercial and open-source solvers

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{T}x\\ \text{subject to} & a_{i}^{T}x = b_{i} \quad i \in \mathcal{E}\\ & a_{i}^{T}x \geq b_{i} \quad i \in \mathcal{I}, \end{array}$$

Text book standard form of linear program:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{T}x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$$

... note A in constraints, not A^T

Our form makes it easier to explain certain methods ...

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{T}x\\ \text{subject to} & a_{i}^{T}x = b_{i} \quad i \in \mathcal{E}\\ & a_{i}^{T}x \geq b_{i} \quad i \in \mathcal{I}, \end{array}$$

Solvers allow more flexible problem definitions:

- Bounds on variables: $l \le x \le u$
- Two-sided constraints: $I_c \leq A^T x \leq u_c$

Solvers exploit special structure

• Network constraints \Rightarrow can form inverse explicitly

The Busy College Student Problem

How should a college student spend his/her time?

- Day is divided into regular tasks: 'Study', 'Lecture', 'Tutorial', 'Sleep', 'Eat', 'Friends', & 'Beer'
- Student derives benefit from each of these tasks
- College and student's parents place constraints on tasks
- Student must decide how much time to spend on each task

Defining the Problem Vaiables

For set of tasks, \mathcal{T} , define $h(t) \ge 0$ as hours spent on task $t \in \mathcal{T}$

Building the Objective

Each task $t \in \mathcal{T}$ has Value(t) to student; goal is to maximize value

$$\max_{\mathbf{h}} \max \sum_{\mathbf{h} \in \mathcal{T}}$$

$$\sum_{t \in \mathcal{T}} \mathsf{Value}(t) \cdot \mathsf{h}(t)$$

The Busy College Student Problem

Constraints imposed by College regarding split of study times

• Must spend at least as much time in lectures as in study/tutorials

 $h(study) + h(tutorial) \le h(lecture)$

• Must study at least 8 hours per day

 $h(study) + h(tutorial) + h(lecture) \ge 8$

• Must achieve minimum course credit (different for study, tutorial, lectures:

$$h(study) + \frac{3}{2}h(tutorial) + 2h(lecture) \ge 10$$

The Busy College Student Problem

Constraints imposed by the parents and universe:

- Parents rules for a healthy life style
 - Spend at least 10 hours sleeping or eating

 $h(eat) + h(sleep) \ge 10$

• Don't overeat and get enough sleep:

 $h(sleep) \ge 8h(eat)$

• Can only spend 24 hours in a day

 $\sum_{t\in\mathcal{T}}\mathsf{h}(t)\leq 24$

Building the Student Model in AMPL

Create a txt file (e.g. called Student.mod) with ... Define of the set of tasks, \mathcal{T} : 'Study', 'Lecture', 'Tutorial', 'Sleep', 'Eat', 'Friends', & 'Beer'

Define of the model parameters (value)

... parameters: value of each task
param Value{Tasks} >= 0, default 1;

... default value of 0 (indifferent), and requiring nonnegativity Define the variables (hours per task)

```
# ... variables: hours per task
var h{Tasks} >= 0;
```

Building the Student Model in AMPL Define the objective function:

$$\begin{array}{ll} \underset{\mathsf{h}}{\mathsf{maximize}} & \sum_{t \in \mathcal{T}} \mathsf{Value}(t) \cdot \mathsf{h}(t) \end{array}$$

... maximize total value to student
maximize fun: sum{t in Tasks} Value[t] * h[t];

Add the constraints, e.g. only 24 hours in day:

 $\sum_{t\in\mathcal{T}}\mathsf{h}(t)\leq 24$

subject to
... finite number of hours per day
hoursPerDay: sum{t in Tasks} h[t] <= 24;</pre>

Building the Student Model in AMPL

Add the parent's rules for a healthy life style

• Spend at least 10 hours sleeping or eating

 $h(eat) + h(sleep) \ge 10$

• Don't overeat and get enough sleep:

 $h(sleep) \ge 8h(eat)$

```
parentsRule1: h['Sleep'] + h['Eat'] >= 10;
parentsRule2: h['Sleep'] >= 8*h['Eat'];
```

NB: Only need one subject to in model file.

Building the Student Model in AMPL

Add the remaining constraints, and then define the data:

data;

param: Value	:=	#	 international	survey	data
'Study'	3				
'Lecture'	1				
'Tutorial'	2				
'Sleep'	2				
'Eat'	6				
'Friends'	10				
'Beer'	8	;			

... or create a separate data file, e.g. Student001.dat.

Running the Student Model in AMPL

Now open AMPL, load the model, select a solver, and sole:

% ampl ampl: reset; model Student.mod; ampl: option solver ipopt; ampl: solve; ampl: display h, fun;

... where last command shows the solution

Outline

Active-Set Method for Linear Programming
 Obtaining an Initial Feasible Point for LPs

Active-Set Method for Linear Programming

Introduce active-set method for linear programs (LPs)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^T x\\ \text{subject to } a_i^T x = b_i & i \in \mathcal{E}\\ & a_i^T x \geq b_i & i \in \mathcal{I}, \end{array}$$

where

- $\bullet \ \mathcal{E}, \mathcal{I}$ are equality and inequality constraints
- variables $x \in \mathbb{R}^n$.

Relationship to Simplex Methods

- Active-set methods are equivalent to Simplex method
- More intuitive, and generalizes to quadratic programs
- Dual active-set method is active-set applied to dual LP

Basic Facts About Linear Programming

$$\underset{x}{\text{minimize } c^{\mathsf{T}}x } \text{ subject to } A_{\mathcal{E}}^{\mathsf{T}}x = b_{\mathcal{E}} \quad A_{\mathcal{I}}^{\mathsf{T}}x \geq b_{\mathcal{I}}$$

- Feasible set may be empty ... detect in phase-I methods ...
- Feasible can be unbounded ⇒ LP may be unbounded
 ... detect this situation during the line-search
- Feasible set is polyhedron; every vertex has *n* active constraints ... more, if vertex is degenerate
- If solution exists, then there exists a vertex solution

Active-Set Methods for LP

Moves from feasible vertex to another reducing $c^T x$.

Active-Set Method for Linear Programming

Move from vertex to vertex, reducing objective

Active-Set Methods for LP

Moves from feasible vertex to another reducing $c^T x$.

Every iterate, $x^{(k)}$ is vertex of feasible set:

$$a_i^T x = b_i, \quad i \in \mathcal{W} \quad \Leftrightarrow \quad A_k^T x = b_k,$$

where

• $\mathcal{W} \subset \mathcal{A}(x)$ working set

- If vertex is non-degenerate (exactly *n* active constraints), then $\mathcal{W} = \mathcal{A}(x)$
- Make this non-degeneracy assumption from now on ... solvers can handle degeneracy
- Jacobian and right-hand-side

$$A_k := [a_i]_{i \in \mathcal{W}} \in \mathbb{R}^{n imes n}$$
 and $b_k^T := (b_i)_{i \in \mathcal{W}} \in \mathbb{R}^n$

Active-Set Methods for LP

Moves from feasible vertex to another reducing $c^T x$.

Every iterate, $x^{(k)}$ is vertex of feasible set:

$$a_i^T x = b_i, \quad i \in \mathcal{W} \quad \Leftrightarrow \quad A_k^T x = b_k,$$

At $x^{(k)}$, the Lagrange multipliers are

$$y^{(k)} = A_k c.$$

Optimality Test for LP

$$y_i^{(k)} \ge 0, \forall i \in \mathcal{I} \cap \mathcal{W} \quad \Rightarrow \ x^{(k)} \text{ optimal.}$$

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^T x$.

Define feasible edges as

$$A_k^{-T} := [s_i]_{i \in \mathcal{W}} \in \mathbb{R}^{n \times n},$$

⇒ slope of objective along edge s_i is $y_i^{(k)} = s_i^T c$ If $x^{(k)}$ not optimal, then there exists $y_q^{(k)} < 0$ ⇒ edge s_q is feasible descend direction

Possibly choice for q is most negative multiplier,

$$y_q := \min_{i \in \mathcal{I} \cap \mathcal{W}} y_i$$

... not good in practice ... take scaling into account!

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^T x$.

Given
$$x^{(k)}$$
 not optimal and $y_q^{(k)} < 0$

... search along the edge $s_q \Rightarrow$ move away from constraint qDrop constraint q from working set, W, move along line

$$x = x^{(k)} + \alpha s_q$$

Consider effect on inactive constraints, $i \in \mathcal{I} : i \notin \mathcal{W}$:

$$r_i := a_i^T x - b_i = a_i^T x^{(k)} + \alpha a_i^T s_q - b_i =: r_i^{(k)} + \alpha a_i^T s_q.$$

Inactive constraint only becomes active, if $a_i^T s_q < 0$, after step α :

$$0 = r_i = r_i^{(k)} + \alpha a_i^T s_q \quad \Leftrightarrow \quad \alpha = \frac{r_i^{(k)}}{-a_i^T s_q}$$

- From vertex to vertex along common edge reducing $c^T x$.
- Given $x^{(k)}$ not optimal and $y_q^{(k)} < 0$
 - ... search along the edge $s_q \Rightarrow$ move away from constraint q

Side-Track: Degeneracy in LP Active-Set

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^T x$.

Move from $x^{(k)}$ along edge $x = x^{(k)} + \alpha s_q$ with $y_q^{(k)} < 0$

Inactive constraint $i \in \mathcal{I} : i \notin \mathcal{W} \dots$... becomes active, if $a_i^T s_q < 0$, after step α :

$$0 = r_i = r_i^{(k)} + \alpha a_i^T s_q \quad \Leftrightarrow \quad \alpha = \frac{r_i^{(k)}}{-a_i^T s_q}$$

Degeneracy in LP

If vertex $x^{(k)}$ degenerate, then \exists more than *n* active constraints ... can cause $\alpha = 0$, if $\exists i : r_i^{(k)} = 0 \dots$ may cycle

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^T x$.

Given
$$x^{(k)}$$
 not optimal and $y_q^{(k)} < 0$

... search along the edge $s_q \Rightarrow$ move away from constraint qDrop constraint q from working set, W, move along line

$$x = x^{(k)} + \alpha s_q$$

Consider effect on inactive constraints, $i \in \mathcal{I} : i \notin \mathcal{W}$:

$$r_i := a_i^T x - b_i = a_i^T x^{(k)} + \alpha a_i^T s_q - b_i =: r_i^{(k)} + \alpha a_i^T s_q.$$

Inactive constraint only becomes active, if $a_i^T s_q < 0$, after step α :

$$0 = r_i = r_i^{(k)} + \alpha a_i^T s_q \quad \Leftrightarrow \quad \alpha = \frac{r_i^{(k)}}{-a_i^T s_q}$$

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^T x$.

Drop constraint q from working set, W, move along $x = x^{(k)} + \alpha s_q$ Inactive constraint becomes active, if $a_i^T s_q < 0$, after step α :

$$0 = r_i = r_i^{(k)} + \alpha a_i^T s_q \quad \Leftrightarrow \quad \alpha = -r_i^{(k)} / a_i^T s_q$$

Stay feasible wrt constraints \Rightarrow find 1^{st} newly active constraint:

$$\alpha = \min_{i \in \mathcal{I}: i \notin \mathcal{W}, a_i^T s_q < 0} - r_i^{(k)} / a_i^T s_q$$

If $\exists i \in \mathcal{I} : i \notin \mathcal{W}$ such that $a_i^T s_q < 0 \Rightarrow \alpha = \infty$, LP unbounded Otherwise, $\alpha < \infty$, constraint p becomes active \Rightarrow exchange p and q in working set, move new vertex, $x^{(k+1)}$

Active-Set Method for Linear Programming

Given initial feasible vertex, $x^{(0)}$, working set $\mathcal{W}^{(0)}$, set k = 0 repeat

Optimality Test: Let $A_k := [a_i]_{i \in \mathcal{W}^{(k)}}$ compute $y^{(k)} = A_{\nu}^{-1}c$ Find $y_a := \min \{ y_i : i \in \mathcal{W}^{(k)} \cap \mathcal{I} \}$ if $y_a \ge 0$ then $x^{(k)}$ optimal solution ; else Ratio Test: s_q be column of A^{-T} corresp. to y_a $\alpha = \min_{i \in \mathcal{I}: i \notin \mathcal{W}, a_i^T s_q < 0} \frac{b_i - a_i^T x^{(k)}}{-a_i^T s_q} =: \frac{b_p - a_p^T x^{(k)}}{-a_p^T s_q}$ if $a_i^T s_a \ge 0$, $\forall i \in \mathcal{I} : i \notin \mathcal{W}$ then LP is unbounded; else Pivot: p and q in $\mathcal{W}^{(k+1)} = \mathcal{W}^{(k)} - \{q\} \cup \{p\}$ $x^{(k+1)} = x^{(k)} + \alpha s_q$ and k = k + 1Set end end **until** $x^{(k)}$ is optimal or LP unbounded;

Modern LP Solvers

Modern LP solvers more sophisticated

- Anti-cycling rules to handle degeneracy
- More sophisticated pivoting choice (leaving constraint)
- Using inverse A^{-1} inefficient and numerically unstable.
 - Use factors of active-set matrix $A_k = L_k U_k$, where L_k is lower and U_k is upper triangular matrix
 - Update factors after removing a_q and adding a_p
 - Efficient & numerically stable
- Dual active-set methods start from dual feasible point
 - ... e.g. after changing RHS in branching \Rightarrow great for MIP

LP Solvers for Huge LPs

Active-set solvers inefficient or very large problems ...

... interior-point methods are alternative with good complexity

Getting Initial Feasible Point for LPs

If no initial feasible vertex, then solve auxiliary LP

- Add surplus variables that measure infeasibility
- Solve resulting LP for initial feasible vertex or proof that LP is infeasible

$$\begin{array}{ll} \underset{x,s}{\text{minimize}} & \sum_{i \in \mathcal{E}} \left(s_i^+ + s_i^- \right) + \sum_{i \in \mathcal{I}} s_i \\\\ \text{subject to } a_i^T x - b_i = s_i^+ - s_i^- & i \in \mathcal{E} \\\\ & a_i^T x - b_i \geq -s_i & i \in \mathcal{I} \\\\ & s^+ \geq 0, \ s^- \geq 0, \ s \geq 0. \end{array}$$

Getting Initial Feasible Point for LPs

$$\underset{x,s}{\text{minimize}} \quad \sum_{i \in \mathcal{E}} \left(s_i^+ + s_i^- \right) + \sum_{i \in \mathcal{I}} s_i$$

subject to
$$a_i^T x - b_i = s_i^+ - s_i^ i \in \mathcal{E}$$

 $a_i^T x - b_i \ge -s_i$ $i \in \mathcal{I}$
 $s^+ \ge 0, \ s^- \ge 0, \ s \ge 0.$

For any x, initial feasible point for auxiliary LP is

$$s_i := \min\left(0, b_i - a_i^T x\right),$$
$$s_i^- := \min\left(0, b_i - a_i^T x\right), \quad s_i^+ := \min\left(0, -b_i + a_i^T x\right),$$

If solution ($s = 0, s^+ = 0, s^- = 0$) then feasible, otherwise not.

Summary & Teaching Points

Simple model as LP

- From description to mathematical formulation
- Translated mathematical formulation into AMPL
 - ... there exist open-source alternatives:
 - JuMP based on MIT's Julia project
 - Zimpl is AMPL clone developed at ZIB in Berlin
 - Can be used with open-source solvers
- Discussed active-set method for LP
 - Move from vertex to vertex, reducing objective
 - Phase I method for initial feasible point