Linear Programming

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Introduction to Linear Programming
(2) Active-Set Method for Linear Programming - Obtaining an Initial Feasible Point for LPs

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I},
\end{array}
$$

where \mathcal{E}, \mathcal{I} are equality and inequality constraints, and $x \in \mathbb{R}^{n}$.

- Name "linear program" dates back to when Dantzig used LPs to solve planning problems for US Air Force.
- Fundamental building block of nonlinear algorithms.
- Fundamental building block of mixed-integer algorithms.
- Efficient commercial and open-source solvers

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I}
\end{array}
$$

Text book standard form of linear program:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

... note A in constraints, not A^{T}
Our form makes it easier to explain certain methods ...

Introduction to Linear Programming

Simplest nonlinear optimization problem is a linear program (LP)

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I}
\end{array}
$$

Solvers allow more flexible problem definitions:

- Bounds on variables: $l \leq x \leq u$
- Two-sided constraints: $I_{c} \leq A^{T} x \leq u_{c}$

Solvers exploit special structure

- Network constraints \Rightarrow can form inverse explicitly

The Busy College Student Problem

How should a college student spend his/her time?

- Day is divided into regular tasks: 'Study', 'Lecture’, ‘Tutorial’, 'Sleep’, 'Eat', 'Friends’, \& 'Beer'
- Student derives benefit from each of these tasks
- College and student's parents place constraints on tasks
- Student must decide how much time to spend on each task

Defining the Problem Vaiables

For set of tasks, \mathcal{T}, define $\mathrm{h}(\mathrm{t}) \geq 0$ as hours spent on task $t \in \mathcal{T}$

Building the Objective

Each task $t \in \mathcal{T}$ has Value(t) to student; goal is to maximize value

$$
\underset{\mathrm{h}}{\operatorname{maximize}} \sum_{t \in \mathcal{T}} \operatorname{Value}(t) \cdot \mathrm{h}(t)
$$

The Busy College Student Problem

Constraints imposed by College regarding split of study times

- Must spend at least as much time in lectures as in study/tutorials

$$
\mathrm{h}(\text { study })+\mathrm{h} \text { (tutorial) } \leq \mathrm{h} \text { (lecture) }
$$

- Must study at least 8 hours per day

$$
h(\text { study })+h(\text { tutorial })+h(\text { lecture }) \geq 8
$$

- Must achieve minimum course credit (different for study, tutorial, lectures:

$$
h(\text { study })+\frac{3}{2} h(\text { tutorial })+2 h(\text { lecture }) \geq 10
$$

The Busy College Student Problem

Constraints imposed by the parents and universe:

- Parents rules for a healthy life style
- Spend at least 10 hours sleeping or eating

$$
h(\text { eat })+h(\text { sleep }) \geq 10
$$

- Don't overeat and get enough sleep:

$$
h(\text { sleep }) \geq 8 h(\text { eat })
$$

- Can only spend 24 hours in a day

$$
\sum_{t \in \mathcal{T}} \mathrm{~h}(t) \leq 24
$$

Building the Student Model in AMPL

Create a txt file (e.g. called Student.mod) with ...
Define of the set of tasks, \mathcal{T} : 'Study', 'Lecture', ‘Tutorial', ‘Sleep’, 'Eat', ‘Friends', \& 'Beer'
\# ... set of Tasks student can perform set Tasks := \{ 'Study', 'Lecture', 'Tutorial', 'Sleep', 'Eat', 'Friends', 'Beer' \};

Define of the model parameters (value)
\# ... parameters: value of each task param Value\{Tasks\} >= 0, default 1;
... default value of 0 (indifferent), and requiring nonnegativity
Define the variables (hours per task)
\# ... variables: hours per task var h\{Tasks\} >= 0;

Building the Student Model in AMPL

Define the objective function:

$$
\underset{\mathrm{h}}{\operatorname{maximize}} \sum_{t \in \mathcal{T}} \operatorname{Value}(t) \cdot \mathrm{h}(t)
$$

\# ... maximize total value to student maximize fun: sum\{t in Tasks\} Value[t] * h[t];

Add the constraints, e.g. only 24 hours in day:

$$
\sum_{t \in \mathcal{T}} \mathrm{~h}(t) \leq 24
$$

```
subject to
    # ... finite number of hours per day
    hoursPerDay: sum{t in Tasks} h[t] <= 24;
```


Building the Student Model in AMPL

Add the parent's rules for a healthy life style

- Spend at least 10 hours sleeping or eating

$$
h(\text { eat })+h(\text { sleep }) \geq 10
$$

- Don't overeat and get enough sleep:

$$
h(\text { sleep }) \geq 8 h(\text { eat })
$$

```
parentsRule1: h['Sleep'] + h['Eat'] >= 10;
parentsRule2: h['Sleep'] >= 8*h['Eat'];
```

NB: Only need one subject to in model file.

Building the Student Model in AMPL

Add the remaining constraints, and then define the data: data;
param: Value := \# ... international survey data
'Study'3
'Lecture' 1
'Tutorial' 2
'Sleep' 2
'Eat' 6
'Friends' 10
'Beer' 8 ;
... or create a separate data file, e.g. Student001.dat.

Running the Student Model in AMPL

Now open AMPL, load the model, select a solver, and sole:
\% ampl
ampl: reset; model Student.mod;
ampl: option solver ipopt;
ampl: solve;
ampl: display h, fun;
... where last command shows the solution

Outline

(1) Introduction to Linear Programming

(2) Active-Set Method for Linear Programming

- Obtaining an Initial Feasible Point for LPs

Active-Set Method for Linear Programming

Introduce active-set method for linear programs (LPs)

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \\
& c^{T} x \\
& \text { subject to } a_{i}^{T} x=b_{i} \quad i \in \mathcal{E} \\
& a_{i}^{T} x \geq b_{i} \quad i \in \mathcal{I},
\end{aligned}
$$

where

- \mathcal{E}, \mathcal{I} are equality and inequality constraints
- variables $x \in \mathbb{R}^{n}$.

Relationship to Simplex Methods

- Active-set methods are equivalent to Simplex method
- More intuitive, and generalizes to quadratic programs
- Dual active-set method is active-set applied to dual LP

Basic Facts About Linear Programming

$$
\underset{x}{\operatorname{minimize}} c^{T} x \text { subject to } A_{\mathcal{E}}^{T} x=b_{\mathcal{E}} \quad A_{\mathcal{I}}^{T} x \geq b_{\mathcal{I}}
$$

- Feasible set may be empty ... detect in phase-I methods ...
- Feasible can be unbounded \Rightarrow LP may be unbounded ... detect this situation during the line-search
- Feasible set is polyhedron; every vertex has n active constraints ... more, if vertex is degenerate
- If solution exists, then there exists a vertex solution

Active-Set Methods for LP

Moves from feasible vertex to another reducing $c^{T} x$.

Active-Set Method for Linear Programming

Move from vertex to vertex, reducing objective

Active-Set Method for LP

Active-Set Methods for LP

Moves from feasible vertex to another reducing $c^{T} x$.
Every iterate, $x^{(k)}$ is vertex of feasible set:

$$
a_{i}^{T} x=b_{i}, \quad i \in \mathcal{W} \quad \Leftrightarrow \quad A_{k}^{T} x=b_{k}
$$

where

- $\mathcal{W} \subset \mathcal{A}(x)$ working set
- If vertex is non-degenerate (exactly n active constraints), then

$$
\mathcal{W}=\mathcal{A}(x)
$$

- Make this non-degeneracy assumption from now on
... solvers can handle degeneracy
- Jacobian and right-hand-side

$$
A_{k}:=\left[a_{i}\right]_{i \in \mathcal{W}} \in \mathbb{R}^{n \times n} \quad \text { and } \quad b_{k}^{T}:=\left(b_{i}\right)_{i \in \mathcal{W}} \in \mathbb{R}^{n}
$$

Active-Set Method for LP

Active-Set Methods for LP

Moves from feasible vertex to another reducing $c^{T} x$.
Every iterate, $x^{(k)}$ is vertex of feasible set:

$$
a_{i}^{T} x=b_{i}, \quad i \in \mathcal{W} \quad \Leftrightarrow \quad A_{k}^{T} x=b_{k},
$$

At $x^{(k)}$, the Lagrange multipliers are

$$
y^{(k)}=A_{k} c
$$

Optimality Test for LP

$$
y_{i}^{(k)} \geq 0, \forall i \in \mathcal{I} \cap \mathcal{W} \Rightarrow x^{(k)} \text { optimal. }
$$

Active-Set Method for LP

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^{T} x$.

Define feasible edges as

$$
A_{k}^{-T}:=\left[s_{i}\right]_{i \in \mathcal{W}} \in \mathbb{R}^{n \times n},
$$

\Rightarrow slope of objective along edge s_{i} is $y_{i}^{(k)}=s_{i}^{T} c$
If $x^{(k)}$ not optimal, then there exists $y_{q}^{(k)}<0$
\Rightarrow edge s_{q} is feasible descend direction
Possibly choice for q is most negative multiplier,

$$
y_{q}:=\min _{i \in \mathcal{I} \cap \mathcal{W}} y_{i}
$$

... not good in practice ... take scaling into account!

Active-Set Method for LP

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^{\top} x$.
Given $x^{(k)}$ not optimal and $y_{q}^{(k)}<0$
... search along the edge $s_{q} \Rightarrow$ move away from constraint q
Drop constraint q from working set, \mathcal{W}, move along line

$$
x=x^{(k)}+\alpha s_{q}
$$

Consider effect on inactive constraints, $i \in \mathcal{I}: i \notin \mathcal{W}$:

$$
r_{i}:=a_{i}^{T} x-b_{i}=a_{i}^{T} x^{(k)}+\alpha a_{i}^{T} s_{q}-b_{i}=: r_{i}^{(k)}+\alpha a_{i}^{T} s_{q} .
$$

Inactive constraint only becomes active, if $a_{i}^{T} s_{q}<0$, after step α :

$$
0=r_{i}=r_{i}^{(k)}+\alpha a_{i}^{T} s_{q} \quad \Leftrightarrow \quad \alpha=\frac{r_{i}^{(k)}}{-a_{i}^{T} s_{q}}
$$

Active-Set Method for LP

- From vertex to vertex along common edge reducing $c^{T} x$.
- Given $x^{(k)}$ not optimal and $y_{q}^{(k)}<0$
... search along the edge $s_{q} \Rightarrow$ move away from constraint q

Side-Track: Degeneracy in LP Active-Set

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^{T} x$.
Move from $x^{(k)}$ along edge $x=x^{(k)}+\alpha s_{q}$ with $y_{q}^{(k)}<0$
Inactive constraint $i \in \mathcal{I}: i \notin \mathcal{W} \ldots$
... becomes active, if $a_{i}^{T} s_{q}<0$, after step α :

$$
0=r_{i}=r_{i}^{(k)}+\alpha a_{i}^{T} s_{q} \quad \Leftrightarrow \quad \alpha=\frac{r_{i}^{(k)}}{-a_{i}^{T} s_{q}}
$$

Degeneracy in LP

If vertex $x^{(k)}$ degenerate, then \exists more than n active constraints
\ldots can cause $\alpha=0$, if $\exists i: r_{i}^{(k)}=0 \ldots$ may cycle

Active-Set Method for LP

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^{\top} x$.
Given $x^{(k)}$ not optimal and $y_{q}^{(k)}<0$
... search along the edge $s_{q} \Rightarrow$ move away from constraint q
Drop constraint q from working set, \mathcal{W}, move along line

$$
x=x^{(k)}+\alpha s_{q}
$$

Consider effect on inactive constraints, $i \in \mathcal{I}: i \notin \mathcal{W}$:

$$
r_{i}:=a_{i}^{T} x-b_{i}=a_{i}^{T} x^{(k)}+\alpha a_{i}^{T} s_{q}-b_{i}=: r_{i}^{(k)}+\alpha a_{i}^{T} s_{q} .
$$

Inactive constraint only becomes active, if $a_{i}^{T} s_{q}<0$, after step α :

$$
0=r_{i}=r_{i}^{(k)}+\alpha a_{i}^{T} s_{q} \quad \Leftrightarrow \quad \alpha=\frac{r_{i}^{(k)}}{-a_{i}^{T} s_{q}}
$$

Active-Set Method for LP

Active-Set Methods for LP

Move from vertex to vertex along a common edge reducing $c^{T} x$.
Drop constraint q from working set, \mathcal{W}, move along $x=x^{(k)}+\alpha s_{q}$ Inactive constraint becomes active, if $a_{i}^{T} s_{q}<0$, after step α :

$$
0=r_{i}=r_{i}^{(k)}+\alpha a_{i}^{T} s_{q} \quad \Leftrightarrow \quad \alpha=-r_{i}^{(k)} / a_{i}^{T} s_{q}
$$

Stay feasible wrt constraints \Rightarrow find $1^{\text {st }}$ newly active constraint:

$$
\alpha=\min _{i \in \mathcal{I}: i \notin \mathcal{W}, a_{i}^{T} s_{q}<0}-r_{i}^{(k)} / a_{i}^{T} s_{q}
$$

If $\nexists i \in \mathcal{I}: i \notin \mathcal{W}$ such that $a_{i}^{T} s_{q}<0 \Rightarrow \alpha=\infty$, LP unbounded Otherwise, $\alpha<\infty$, constraint p becomes active \Rightarrow exchange p and q in working set, move new vertex, $x^{(k+1)}$

Active-Set Method for Linear Programming

Given initial feasible vertex, $x^{(0)}$, working set $\mathcal{W}^{(0)}$, set $k=0$ repeat

Optimality Test: Let $A_{k}:=\left[a_{i}\right]_{i \in \mathcal{W}(k)}$ compute $y^{(k)}=A_{k}^{-1} c$ Find $y_{q}:=\min \left\{y_{i}: i \in \mathcal{W}^{(k)} \cap \mathcal{I}\right\}$
if $y_{q} \geq 0$ then $x^{(k)}$ optimal solution; else

Ratio Test: s_{q} be column of A^{-T} corresp. to y_{q}
$\alpha=\min _{i \in \mathcal{I}: i \notin \mathcal{W}, a_{i}^{T} s_{q}<0} \frac{b_{i}-a_{i}^{T} x^{(k)}}{-a_{i}^{T} s_{q}}=: \frac{b_{p}-a_{p}^{T} x^{(k)}}{-a_{p}^{T} s_{q}}$
if $a_{i}^{T} s_{q} \geq 0, \forall i \in \mathcal{I}: i \notin \mathcal{W}$ then LP is unbounded ; else

$$
\text { Pivot: } p \text { and } q \text { in } \mathcal{W}^{(k+1)}=\mathcal{W}^{(k)}-\{q\} \cup\{p\} \quad \text { Set }
$$

$$
x^{(k+1)}=x^{(k)}+\alpha s_{q} \text { and } k=k+1
$$

end
end
until $x^{(k)}$ is optimal or LP unbounded;

Modern LP Solvers

Modern LP solvers more sophisticated

- Anti-cycling rules to handle degeneracy
- More sophisticated pivoting choice (leaving constraint)
- Using inverse A^{-1} inefficient and numerically unstable.
- Use factors of active-set matrix $A_{k}=L_{k} U_{k}$, where L_{k} is lower and U_{k} is upper triangular matrix
- Update factors after removing a_{q} and adding a_{p}
- Efficient \& numerically stable
- Dual active-set methods start from dual feasible point ... e.g. after changing RHS in branching \Rightarrow great for MIP

LP Solvers for Huge LPs

Active-set solvers inefficient or very large problems ...
... interior-point methods are alternative with good complexity

Getting Initial Feasible Point for LPs

If no initial feasible vertex, then solve auxiliary LP

- Add surplus variables that measure infeasibility
- Solve resulting LP for initial feasible vertex ...
... or proof that LP is infeasible

$$
\begin{aligned}
\underset{x, s}{\operatorname{minimize}} & \sum_{i \in \mathcal{E}}\left(s_{i}^{+}+s_{i}^{-}\right)+\sum_{i \in \mathcal{I}} s_{i} \\
\text { subject to } & a_{i}^{T} x-b_{i}=s_{i}^{+}-s_{i}^{-} \quad i \in \mathcal{E} \\
& a_{i}^{T} x-b_{i} \geq-s_{i} \quad i \in \mathcal{I} \\
& s^{+} \geq 0, s^{-} \geq 0, s \geq 0 .
\end{aligned}
$$

Getting Initial Feasible Point for LPs

$$
\begin{aligned}
\underset{x, s}{\operatorname{minimize}} & \sum_{i \in \mathcal{E}}\left(s_{i}^{+}+s_{i}^{-}\right)+\sum_{i \in \mathcal{I}} s_{i} \\
\text { subject to } & a_{i}^{T} x-b_{i}=s_{i}^{+}-s_{i}^{-} \quad i \in \mathcal{E} \\
& a_{i}^{T} x-b_{i} \geq-s_{i} \quad i \in \mathcal{I} \\
& s^{+} \geq 0, s^{-} \geq 0, s \geq 0 .
\end{aligned}
$$

For any x, initial feasible point for auxiliary LP is

$$
\begin{gathered}
s_{i}:=\min \left(0, b_{i}-a_{i}^{T} x\right) \\
s_{i}^{-}:=\min \left(0, b_{i}-a_{i}^{T} x\right), \quad s_{i}^{+}:=\min \left(0,-b_{i}+a_{i}^{T} x\right),
\end{gathered}
$$

If solution $\left(s=0, s^{+}=0, s^{-}=0\right)$ then feasible, otherwise not.

Summary \& Teaching Points

Simple model as LP

- From description to mathematical formulation
- Translated mathematical formulation into AMPL
... there exist open-source alternatives:
- JuMP based on MIT's Julia project
- Zimpl is AMPL clone developed at ZIB in Berlin
- Can be used with open-source solvers
- Discussed active-set method for LP
- Move from vertex to vertex, reducing objective
- Phase I method for initial feasible point

