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Challenges of Nonconvex MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

... now drop assumption that f (x) and c(x) are convex

Challenges of nonconvex MINLP

Objective function f (x) can have many local minimizers

Continuous relaxation of constraint set{
x |c(x) ≤ 0, x ∈ X

}
... can be disjoint, may have no interior
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Challenges of Nonconvex MINLP

Definition (Local/Global Minimum)

Consider nonconvex optimization problem

minimize
x

f (x) subject to x ∈ F := {x : c(x) ≤ 0, x ∈ X}

x∗ is a local minimum iff ∃ N (x∗) such that f (x) ≥ f (x∗) for
all x ∈ N (x∗) ∩ F
x∗ is a global minimum iff f (x) ≥ f (x∗) for all x ∈ F

NB: Neighborhood N (x∗) makes no sense for MINLPs!
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Challenges of Nonconvex MINLP

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Nonconvex f (x) with three local and one global min
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Challenges of Nonconvex MINLP

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Remarks:

NLP solvers are not guaranteed to find even local minima
... though they work remarkably well in practice!

BnB, Benders, OA, ECP not guaranteed to find optimum

Finding a global min is difficult ... proving it is even harder

There are many important applications of nonconvex MINLPs!
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Real-Life Nonconvex Stairs

... at Hotel Les Tanneurs, Namur, Belgium
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General Approach to Nonconvex MINLP

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Use our old MIP trick: convex relaxation!

Relax integrality as before: xi ∈ R ∀ i ∈ I

New: relax f (x) ≥ f̆ (x) and constraints c(x) ≥ c̆(x)

Ensure relaxation is tractable: e.g. f̆ (x), c̆(x) convex
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General Approach to Nonconvex MINLP

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Relaxation minimize
x

f̆ (x) subject to c̆(x) ≤ 0, x ∈ X

... gives lower bound; but solution typically infeasible in MINLP

Need constraint enforcement to guarantee convergence

Branching on integer variables or convex underestimators

Relaxation refinement tightens the relaxation over subdomain
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Factorable Functions and MINLP

Consider MINLP with nonconvex, factorable f (x) and c(x)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Definition (Factorable Function)

g(x) is factorable iff expressed as sum of products of unary
functions of a finite set Ounary = {sin, cos, exp, log, | · |} whose
arguments are variables, constants, or other functions, which are
factorable.

Combination of functions from set of operators
O = {+,×, /,̂ , sin, cos, exp, log, | · |}.
Excludes integrals

∫ x
ξ=x0

h(ξ)dξ and black-box functions

Represented as expression trees
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Expression Tree Example

Expression tree of f (x1, x2) = x1 log(x2) + x32
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Relaxations of Factorable Functions

MINLP with nonconvex, factorable f (x) and c(x)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Combine expression trees of objective and constraints

Root of each expression is c1(x), c2(x), . . . , cm(x), or f (x)

Associated bounds: [−∞, 0] for ci (x), and [−∞, η̄] for f (x)

Leaf nodes of all trees represent variables x1, x2, . . . , xn

⇒ gives directed acyclic graph (DAG)

Modeling languages (e.g. AMPL, GAMS) have DAG & “API”
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Example of DAG

min x1 + x22
s.t. x1 + sin x2 ≤ 4, x1x2 + x32 ≤ 5

x1 ∈ [−4, 4] ∩ Z, x2 ∈ [0, 10] ∩ Z.

Three nodes without entering arcs for objective & constraints
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Reformulation of Factorable MINLP

Reformulate factorable MINLP as

minimize
x

xn+q

subject to xk = ϑk(x) k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X ,
xi ∈ Z, ∀i ∈ I ,

see e.g. [Smith and Pantelides, 1997]

q new auxiliary variables, xn+1, . . . , xn+q

ϑk is operator from O{+,×, /,̂ , sin, cos, exp, log}
Bounds on variables written explicitly
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Example of Reformulation of Factorable MINLP

min x1 + x22
s.t. x1 + sin x2 ≤ 4, x1x2 + x32 ≤ 5

x1 ∈ [−4, 4] ∩ Z, x2 ∈ [0, 10] ∩ Z.

Reformulation

min x9
s.t. x3 = sin x2 x7 = x5 + x6 − 5 0 ≤ x2 ≤ 10 0 ≤ x6 ≤ 1000

x4 = x1 + x3 − 4 x8 = x22 −1 ≤ x3 ≤ 1 −45 ≤ x7 ≤ 0
x5 = x1x2 x9 = x1 + x8 −9 ≤ x4 ≤ 0 0 ≤ x8 ≤ 100
x6 = x32 −4 ≤ x1 ≤ 4 −40 ≤ x5 ≤ 40 −4 ≤ x9 ≤ 104
x1, x2, x5, x6, x7, x8, x9 ∈ Z.

Integrality inherited from function

Bounds inherited from function
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Reformulation of Factorable MINLP

Theorem (Equivalence of Factorable Formulation)

MINLP and factorable MINLP are equivalent, i.e. optimal solutions
to one can be transformed into optimal solution of the other.

Factorable form makes it easier to get convex relaxation:

Nonconvex sets, k = n + 1, n + 2, . . . , n + q

Θk = {x ∈ Rn+q : xk = ϑk(x), x ∈ X , l ≤ x ≤ u, xi ∈ Z, i ∈ I}

... nonconvex due to nonlinear equality

Let Θ̆k ⊃ Θk convex relaxation
minimize

x
xn+q

subject to x ∈ Θ̆k k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X .

... convex relaxation ... only look at simple sets!
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Reformulation of Factorable MINLP
General convex relaxation with polyhedral sets Θ̆k :

minimize
x

xn+q

subject to x ∈ Θ̆k k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X .

Polyhedral set Θ̆k defined by ak ∈ Rmk , Bk ∈ Rmk×(n+q), and
dk ∈ Rmk :

Θ̆k = {x ∈ Rn+q : akxk + Bkx ≥ dk , x ∈ X , l ≤ x ≤ u},

Gives lower bounding LP relaxation for MINLP solvers:
minimize

x
xn+q

subject to akxk + Bkx ≥ dk k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X .

Now just need to construct polyhedral sets, see e.g. Lecture IV
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Examples of Polyhedral Relaxations

Construct relaxation for each operator
∈ O{+,×, /,̂ , sin, cos, exp, log}

Odd-degree monomials, xk = x2p+1
i , see

[Liberti and Pantelides, 2003]

Bilinear functions xk = xixj , [McCormick, 1976]
Let x = (xi , xj , xk), L = (li , lj , lk),U = (ui , uj , uk)
get convex hull of Θk = {x : xk = xixj , L ≤ x ≤ U}:

xk ≥ ljxi + lixj − li lj xk ≤ ljxi + uixj − ui lj
xk ≥ ujxi + uixj − uiuj xk ≤ ujxi + lixj − liuj

Remark

Note that tightness of convex hull depends on bounds
li , lj , lk , ui , uj , uk
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Examples of Polyhedral Relaxations

Polyhedral relaxation, Θ̆k , of xk = x2i with xi continuous/integer

... if xi ∈ Z then add inequalities violated at x ′i 6∈ Z
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Examples of Polyhedral Relaxations

Polyhedral relaxation, Θ̆k , of xk = x3i and xk = xixj
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Alternative Relaxation Approach

[Androulakis et al., 1995] propose α-convexification for

f (x) = xTQx + cT x with x ∈ [l , u]

Lower bound obtained from:

f̆ (x) = xTQx + cT x + α

n∑
i=1

(xi − li )(xi − ui ).

which can be written as convex quadratic

f̆ (x) = xTPx + dT x ,

where P = Q + αI � 0 iff α ≥ −λmin(Q)

Can be extended to non-quadratic functions

Solver GloMIQO [Misener and Floudas, 2012]
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Spatial Branch-and-Bound (BnB)

To separate solution of relaxation use spatial BnB

Implicit enumeration technique like integer BnB

Recursively define partitions of feasible set into two sets

Use reformulation outlined above

Solve LP relaxations (⇒ lower bounds)
... and nonconvex NLPs (⇒ upper bound if feasible)

Classic references & Solvers:

[Sahinidis, 1996, Tawarmalani and Sahinidis, 2002]
BARON solver

[Smith and Pantelides, 1997]

[Belotti et al., 2009]

Couenne solver ... open-source in COIN-OR
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Spatial Branch-and-Bound (BnB)

Key ingredients of spatial BnB

1 Procedure to compute lower bound for subproblem

2 Procedure for partitioning feasible set of subproblem:
NLP(l−, u−) and NLP(l+, u+)

... generates tree almost like integer BnB

NLP node is subproblem: NLP(l , u)

minimize
x

f (x),

subject to c(x) ≤ 0,
x ∈ X
li ≤ xi ≤ ui ∀i = 1, 2, . . . , n
xi ∈ Z, ∀i ∈ I

... restriction of original MINLP
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Spatial Branch-and-Bound (BnB)
Lower bounding problem at NLP(l , u), e.g. LP(l , u)

minimize
x

xn+q

subject to akxk + Bkx ≥ dk k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X .

If LP(l , u) infeasible, then prune node.

Otherwise, x̂ optimal solution of LP(l , u):

If x̂ feasible in NLP(l , u) (hence MINLP), then fathom node
(new incumbent)

If x̂ not feasible in NLP(l , u) then ... branch ...
1 x̂ not integral, i.e., ∃i ∈ I : x̂i /∈ Z
2 Nonconvex constraint is violated, i.e.

∃k ∈ {n + 1, n + 2, . . . , n + q} : x̂k 6= ϑk(x̂).
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Branching for Spatial Branch-and-Bound

Two possible ways to branch (integer / nonlinear):

1 x̂ not integral: xi ≤ bx̂ic ∨ xi ≥ dx̂ie like integer BnB
2 ∃k : x̂k 6= ϑk(x̂) nonlinear infeasible:

Choose branching variable xi from arguments of ϑk(x)
Branch xi ≤ x̂i ∨ xi ≥ x̂i ... two subproblems
Refine convex relaxation in each branch ... tighter bounds

Remark

Branching on x̂k 6= ϑk(x̂) leaves x̂ feasible in both branches spatial
BnB no longer finite ... different from integer BnB

Theorem (Finite Termination Smokescreen)

Spatial BnB is finite if spatial branching process is finite.

... interval arithmetic helps eliminate subproblems

30 / 63



Branching for Spatial Branch-and-Bound

Partition NLP(l , u) into NLP(l−, u−) and NLP(l+, u+)
... based on xi ≤ b ∨ xi ≥ b

Good performance depends on good choice of i and b

Ideal choice balances three goals
1 Increase both bounds LP(l−, u−) and LP(l+, u+)
2 Shrink both feasible sets NLP(l−, u−) and NLP(l+, u+)
3 Provide a balanced BnB tree

Finding continuous branching candidates xi :

xi not fixed in parent problem

xi is argument of violated function x̂k 6= ϑk(x)
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Branching for Spatial Branch-and-Bound

Branching example xk = ϑk(xi ) = (xi )
2 violated
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Branching for Spatial Branch-and-Bound

Branching example xk = ϑk(xi ) = exi
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Branching for Spatial Branch-and-Bound

Variable selection techniques

Strong branching, pseudocost branching, and reliability
branching generalized from MINLP

Violation transfer:

Find variable xi with largest impact on constraint violation
Look at all xk 6= ϑk(x) for all k = 1, 2, . . . , n + q

Choice of branching point b:

Matters more than for integer branching
... because branch is xi ≤ b ∨ xi ≥ b

Ensure that x̂ infeasible in both LP(l−, u−) and LP(l+, u+)
... ensure refinement is good enough ⇒ convergence “proof”
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Nonconvex Branch-and-Bound

Branch-and-bound for Nonconvex MINLP
Choose tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove NLP(l , u) from heap: H = H− {NLP(l , u)}.
Solve relaxation LP(l , u) ⇒ solution x (l ,u)

Possibly solve NLP(l , u) for an upper bound
if LP(l , u) is infeasible then

Prune node: infeasible
else if f (x (l ,u)) > U then

Prune node; dominated by bound U

else if x
(l ,u)
I integral and xk = ϑk(x), ∀k then

Update incumbent : U = f (x (l ,u)), x∗ = x (l ,u).
else

BranchOnVariable(x
(l ,u)
i , l , u,H)
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Tightening Bounds and Relaxations

Bound tightening to reduce range of bounds xi ∈ [li , ui ]
... because tighter bounds ⇒ tighter relaxations ⇒ smaller trees

Conceptual bound-tightening procedure:
Feasible set F = {x ∈ [l , u] : c(x) ≤ 0, x ∈ X , xI ∈ Zp}
Solve 2n (global) optimization problems, given upper bound U:

l ′i = min{xi : x ∈ F , f (x) ≤ U}; u′i = max{xi : x ∈ F , f (x) ≤ U}.

... nonconvex MINLPs just as hard ⇒ use relaxations:

1 FBBT: feasibility-based bound tightening

2 OBBT: optimality-based bound tightening
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FBBT: Feasibility-Based Bound Tightening

FBBT broadly used:

Artificial intelligence community & constraint programming

NLP solvers [Messine, 2004]

MILP solvers [Savelsbergh, 1994]

Basic Principle of FBBT

Infer bounds on xi from tighter bounds on xj for j 6= i .

Example 1: xj = x3i and xi ∈ [li , ui ]

Tighten interval of xj to [lj , uj ] ∩ [l3i , u
3
i ]

Tightened l ′j on xj ⇒ tighter l ′i = 3
√

lj for xi

Example 2: xk = xixj with (1, 1, 0) ≤ (xi , xj , xk) ≤ (5, 5, 2)

li = lj = 1 ⇒ lk = li lj = 1 > 0

uk = 2 ⇒ xi ≤ uk
lj

and xj ≤ uk
li
⇒ u′i = u′j = 2 < 5
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FBBT: Feasibility-Based Bound Tightening
FBBT for affine functions xk = a0 +

∑n
j=1 ajxj for k > n

J+ = {j = 1, 2, . . . , n : aj > 0} positive coefficients

J− = {j = 1, 2, . . . , n : aj < 0} negative coefficients

⇒ valid bounds are ...

a0 +
∑
j∈J−

ajuj +
∑
j∈J+

aj lj ≤ xk ≤ a0 +
∑
j∈J−

aj lj +
∑
j∈J+

ajuj

Bounds [lk , uk ] on xk give new bounds on xj , e.g. for j ∈ J+

l ′j =
1

aj

lk −

a0 +
∑

i∈J+\{j}

aiui +
∑
i∈J−

ai li


... similar for u′j and j ∈ J−

Better bounds from convex combination of inequalities, ...
... or solving more equations!
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FBBT: Feasibility-Based Bound Tightening

For nonlinear functions, propagate bounds through DAG:

Assume solution x̂ found with f (x̂) = 10:

1 10 ≥ x9 := x1 + x8 and x1 ≥ −4 imply x8 ≤ 14 < 100 tighter

2 Propagate to x8 = x22 implies −
√

14 ≤ x2 ≤
√

14 tightens x2

... no more tightening

In general propagate bounds until improvement tails off.
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FBBT: Feasibility-Based Bound Tightening

Properties of FBBT

Efficient and fast implementation for large-scale MINLP

Can exhibit poor convergence, e.g. for α > 1 consider:
min x1 s.t. x1 = αx2, x2 = αx1, x1 ∈ [−1, 1]}

Solution is (0, 0)
FBBT does not terminate in finite number of steps
Sequence of tighter bounds for l = 1, 2, . . . with
{[− 1

αl ,
1
αl ]}l → (0, 0)

... hence combine with other techniques
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OBBT: Optimality-Based Bound Tightening

Solving min /max xi s.t. x ∈ F (nonconvex MINLP) not practical
Instead, define (linear) relaxation

F(l , u) =

x ∈ Rn+q :
akxk + Bkx ≥ dk k = n + 1, n + 2, . . . , n + q
li ≤ xi ≤ ui i = 1, 2, . . . , n + q
x ∈ X

 .

Now get bounds on xi for i = 1, . . . , n by solving 2n LPs:

l ′i = min{xi : x ∈ F(l , u)}
(1)

u′i = max{xi : x ∈ F(l , u)}

... only apply at root node, or small number of nodes
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Numerical Results for Branch-and-Refine

prob basic +presolve +var-select +node-select

TVC1 108861 40446 7756 8031
TVC2 fail 72270 5792 5547
TVC3 62045 861 627 627
TVC4 fail 38792 1396 1582
TVC5 fail 7369 5619 4338
TVC6 fail 12131 6096 5503

(# LPs solved)
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Relaxations of Structured Nonconvex Sets

Spatial BnB for nonconvex MINLP is broadly applicable

Branch-and-refine is one example (see Lecture IV)

Generality of approach means that bounds can be weak

In general, may not get convex hull of feasible set

⇒ search enormous trees without solving the problem

Example: Try solving nonlinear power flow with BARON!

Important to exploit structure in spatial BnB

Look for special structure within problems

Design tight relaxations for classes of nonconvex constraints

Implement problem/structure specific branching rules
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Nonconvex Quadratic Constraints [Mahajan and Munson, 2010]

Quadratic constraint: xTAx + cx + d ≤ 0, x ∈ Rn

Applications: reactor core-reloading; power networks

All Eigenvalues of A positive ⇒ region is convex

Otherwise, region is nonconvex

Other solvers create outer approximation of feasible region:
1 create McCormick outer approximation of terms xixj , ∀i 6= j
2 solve relaxation and branch on individual xi

Small Example
min
x≥0

4x0 + x1

s.t. 7x20 − 2x21 + 26x22
−12x0x1 − 8x1x2
+16x0x2 ≤ −100

Eigenvalues: -5, 6, 30

Solver # Iterations

BARON 321
Couenne 701

MINOTAUR 2
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Identifying SOC Structure in Quadratic Constraints

Factorize A = QDQT , Q orthogonal & D diagonal matrix

Let D = RER with E a diagonal {0,±1}

yTEy + bT y + d where y = RQT x , b = R−1QT c

If no negative eigenvalues, then convex constraint!

If exactly one negative and no zero eigenvalues,
then equivalent to two convex SOCs:

⇒
∥∥∥∥ (yi + bi

2 )i∈I+√
z̃

∥∥∥∥
2

≤
∣∣∣∣yj − bj

2

∣∣∣∣ (of the form
n−1∑
i=0

x2i ≤ x2n ) (2)

Separate/branch on absolute value:

‖ . . . ‖2 ≤ yj −
bj
2

and ‖ . . . ‖2 ≤ −yj +
bj
2
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Results: Small Quadratic Instances

# Nodes

Inst. Var Con BARON Couenne MINOTAUR

q1d2 2 2 39 14 2
q1d3 3 2 321 701 2
q2d6 6 4 107505 3868500 4
q3d6 6 6 301 2001 8
q3d9 9 6 >1250100 >1844800 8
q4d8 8 8 3715 29301 16
q5d10 10 10 1532839 3125701 32
q5d10b 10 10 >1033800 >2818700 32
q5d15 15 10 557905 >1321800 32
q6d12 12 12 >1358100 >3377600 64
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Results: Small Quadratic Instances

Time[s] or gap% after 1h

Inst. Var Con BARON Couenne MINOTAUR

q1d2 2 2 0.1 0.2 0.02
q1d3 3 2 0.50 0.7 0.03
q2d6 6 4 158.2 2498 0.2
q3d6 6 6 0.7 1.3 0.7
q3d9 9 6 16.7% 574.0% 0.3
q4d8 8 8 6.98 16.6 2.4
q5d10 10 10 2261.8 2259.9 1.8
q5d10b 10 10 145.1% 54.5% 1.8
q5d15 15 10 2519.7 27.8% 18.4
q6d12 12 12 0.4% 3.5% 9.0
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Illustration of Branching on Cones

Branch on second-order cones (indefinite with one negative e.v.):

Eigenvalue decomposition to expose structure

Convex substructures (solved as NLPs)

Better than thousands of little boxes (branch-and-bound)

See also “animated pdf files” ...
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Another Example of Importance of Structure

Nonconvex set: x21 + x22 ≥ 1 and x1, x2 ∈ [0, 2]
Convex hull {X : x1, x2 ∈ [0, 2] and x1+x2 ≥ 1}

Relaxation introduces x3 and x4 with x3 ≤ x21 and x4 ≤ x22
1 Replace x21 + x22 ≥ 1 by x3 + x4 ≥ 1 (linear)

2 Relax nonconvex constraints x3 ≤ x21 and x4 ≤ x22 :
x3 ≤ 2x1 and x4 ≤ 2x2

Eliminate variables x3 and x4 and get:

2x1 + 2x2 ≥ x3 + x4 ≥ 1 ⇔ x1 + x2 ≥ 1/2

... weaker than convex hull
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General Nonconvex Quadratic Functions

Consider quadratically constrained quadratic program (QCQPs)
minimize

x
xTQ0x + cT0 x ,

subject to xTQkx + cTk x ≤ bk , k = 1, . . . , q
Ax ≤ b,
0 ≤ x ≤ u, xi ∈ Z, ∀i ∈ I ,

... can also include integer variables and linear constraints

Qk n × n symmetric matrix

A is an m × n matrix

Qk not necessarily convex ⇒ nonconvex problem
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General Nonconvex Quadratic Functions

Equivalent reformulation of QCQP: introduce Xij for all i , j pairs

minimize
x ,X

Q0 • X + cT0 x ,

subject to Qk • X + cTk x ≤ bk , k = 1, . . . , q
Ax ≤ b,
0 ≤ x ≤ u, xi ∈ Z, ∀i ∈ I ,
X = xxT ,

where X = [Xij ] matrix, Qk • X =
∑

ij [Qk ]ijXij =
∑

ij [Qk ]ijxixj .

X = xxT represents nonconvex constraint Xij = xixj
... otherwise problem is linear!

Relaxing equality X = xxT gives convex (linear) relaxation

... next show two approaches: RLT and SDP
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General Nonconvex Quadratic Functions

Reformulation-Linearization Technique (RLT)
[Adams and Sherali, 1986]

Get nonconvex constraints by multiplying nonnegative pairs
xi , xj , ui − xi , and uj − xj :

xixj ≥ 0, (ui−xi )(uj−xj) ≥ 0, xi (uj−xj) ≥ 0, (ui−xi )xj ≥ 0

Linearize constraints, replacing xixj by Xij :

Xij ≥ 0, Xij ≥ uixj + ujxi − uiuj , Xij ≤ ujxi , Xij ≤ uixj

Replace nonconvex X = xxT by linear inequalities

⇒ polyhedral relaxation ... same as earlier relaxation of xixj .
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General Nonconvex Quadratic Functions

Strengthening RLT
1 Exploiting binary variables ... similar for integers

If xi ∈ {0, 1} then x2i = xi for all feasible points
Add linear constraints Xii = xi

2 Multiply linear constraints to improve RLT relaxation

Multiplying xi ≥ 0 and bt −
∑n

j=1 atjxj ≥ 0 gives

btxi −
n∑

j=1

atjxixj ≥ 0

Again linearize Xij = xixj to get inequality

btxi −
n∑

j=1

atjXij ≥ 0

... generalizes to products between linear constraints
Snag: results in potentially huge LP relaxation!
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General Nonconvex Quadratic Functions

Semi-Definite Programming (SDP) relaxations of QCQPs

1 Relax X − xxT = 0 to X − xxT � 0

2

X − xxT � 0 ⇔
[

1 xT

x X

]
� 0

3 Improve by adding Xii = xi for binary xi ∈ {0, 1}
4 Additional constraints by squaring & linearizing constraints

... here H � 0 means H positive semi-definite (xTHx ≥ 0, ∀x)

Both RLT and SDP good in practice ... RLT re-starts better!
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Partial Separability and SDP Relaxations
Often Hessians Qk have more structure, e.g. partially separable

q(x) =
l∑

i=1

(
1

2
xT[i ]H[i ]x[i ] + gT

[i ]x[i ]

)

Definition (Partially Separable Function)

A nonlinear function f (x) is partially separable, iff

f (x) =
l∑

i=1

fi (x[i ])

where fi : Rni → R depends on subvector x[i ] of x where ni � n.

SDP relaxation works with n × n SDP matrix

Partially separable SDP has l matrices of size ni × ni
Smaller cones ⇒ faster linear algebra

57 / 63



Partial Separability and SDP Relaxations

Using partial separability, we can make some H[i ] convex

H =


4 −1
−1 4 −1
−1 4 −1
−1 −1

 g =


−1
−1
−1
−1


Decompose as (g[2] exercise)

H[1] =

 4 −1
−1 4 −1
−1 4

 H[2] =

[
0 −1
−1 −1

]
g[1] =

−1
−1
−1


Get H[1] � 0 convex

Solve order of magnitude faster
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Bilinear Covering Sets
Framework for valid inequalities with “orthogonal disjunction”
Pure integer covering set for r > 0

BI :=
{

(x , y) ∈ Zn
+ × Zn

+ |
n∑

i=1

xiyi ≥ r
}

For any i , convex hull of two variable set

BI
i := {(xi , yi ) ∈ Z+ × Z+ | xiyi ≥ r}

is polyhedron defined by d ≤ dre+ 1 linear inequalities:

conv(BI
i ) =

{
x : akxi + bkyi ≥ 1, k = 1, . . . , d

}
wlog (scale) right-hand-side = 1
Structure of conv(BI

i )

Includes xi ≥ 1 and yi ≥ 1
Other inequalities constructed as axi + byi ≥ 1:

Do not cut off any (x ti , y
t
i ) = (t, dr/te)

Satisfied by exactly two (x ti , y
t
i ), for t = 1, . . . , dre
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Bilinear Covering Sets

Let Π :=
{
π : {1, . . . , n} → {1, . . . , d}

}
: i.e. π ∈ Π then π(i)

selects an inequality in conv(BI
i )

Theorem (Characterization of Convex Hull conv(B I
i ))

The convex hull of BI is given by the set of x ∈ Rn
+, y ∈ Rn

+ that
satisfy the inequalities

n∑
i=1

(aπ(i)xi + bπ(i)yi ) ≥ 1, ∀π ∈ Π

See [Tawarmalani et al., 2010]

conv(BI
i ) has exponential number of inequalities, but have ...

... efficient separation: π(i) index of most violated constraint
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Outline

1 Challenges of Nonconvex MINLP & General Approach
Challenges of Nonconvex MINLP
General Approach to Nonconvex MINLP

2 Generic Relaxation Strategies

3 Spatial Branch-and-Bound

4 Tightening Bounds and Relaxations

5 Exploiting Structure, Structure, and Structure

6 Summary and Conclusions
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Summary and Key Points

Key Points

General approach to nonconvex MINLP based on
1 Decomposition of nonlinear functions → computational graph
2 Construction of under-estimators of simple functions

Exploiting structure is key to success

Must exploit structure of nonconvex MINLP

Three pillars of nonconvex MINLP:
structure, structure, structure

Final Exam for Course Credit: Have a beer with Sven on Friday!

Office Hours: Today after the course in room 115
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