Mixed-Integer Nonlinear Optimization: Applications, Algorithms, and Computation V

Sven Leyffer

Mathematics \& Computer Science Division Argonne National Laboratory

Graduate School in
Systems, Optimization, Control and Networks
Université catholique de Louvain
February 2013

Collaborators

Pietro Belotti, Ashutosh Mahajan, Christian Kirches, Jeff Linderoth, and Jim Luedtke

Outline

(1) Challenges of Nonconvex MINLP \& General Approach

- Challenges of Nonconvex MINLP
- General Approach to Nonconvex MINLP
(2) Generic Relaxation Strategies
(3) Spatial Branch-and-Bound

4 Tightening Bounds and Relaxations
(5) Exploiting Structure, Structure, and Structure
(6) Summary and Conclusions

Outline

(1) Challenges of Nonconvex MINLP \& General Approach

- Challenges of Nonconvex MINLP
- General Approach to Nonconvex MINLP
(2) Generic Relaxation Strategies
(3) Spatial Branch-and-Bound

4) Tightening Bounds and Relaxations
(5) Exploiting Structure, Structure, and Structure

6 Summary and Conclusions

Challenges of Nonconvex MINLP

Mixed-Integer Nonlinear Program (MINLP)
$\underset{x}{\operatorname{minimize}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$
... now drop assumption that $f(x)$ and $c(x)$ are convex

Challenges of nonconvex MINLP

- Objective function $f(x)$ can have many local minimizers
- Continuous relaxation of constraint set

$$
\{x \mid c(x) \leq 0, x \in X\}
$$

... can be disjoint, may have no interior

Challenges of Nonconvex MINLP

Definition (Local/Global Minimum)

Consider nonconvex optimization problem $\underset{x}{\operatorname{minimize}} f(x)$ subject to $x \in \mathcal{F}:=\{x: c(x) \leq 0, x \in X\}$

- x^{*} is a local minimum iff $\exists \mathcal{N}\left(x^{*}\right)$ such that $f(x) \geq f\left(x^{*}\right)$ for all $x \in \mathcal{N}\left(x^{*}\right) \cap \mathcal{F}$
- x^{*} is a global minimum iff $f(x) \geq f\left(x^{*}\right)$ for all $x \in \mathcal{F}$

NB: Neighborhood $\mathcal{N}\left(x^{*}\right)$ makes no sense for MINLPs!

Challenges of Nonconvex MINLP

$\underset{x}{\operatorname{minimize}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

Nonconvex $f(x)$ with three local and one global min

Challenges of Nonconvex MINLP

$$
\underset{x}{\operatorname{minimize}} f(x) \text { subject to } c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I
$$

Remarks:

- NLP solvers are not guaranteed to find even local minima ... though they work remarkably well in practice!
- BnB, Benders, OA, ECP not guaranteed to find optimum
- Finding a global min is difficult ... proving it is even harder There are many important applications of nonconvex MINLPs!

Real-Life Nonconvex Stairs

... at Hotel Les Tanneurs, Namur, Belgium

Outline

(1) Challenges of Nonconvex MINLP \& General Approach

- Challenges of Nonconvex MINLP
- General Approach to Nonconvex MINLP
(2) Generic Relaxation Strategies
(3) Spatial Branch-and-Bound

4 Tightening Bounds and Relaxations
(5) Exploiting Structure, Structure, and Structure

6 Summary and Conclusions

General Approach to Nonconvex MINLP

$\underset{x}{\operatorname{minimize}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

Use our old MIP trick: convex relaxation!

- Relax integrality as before: $x_{i} \in \mathbb{R} \forall i \in I$
- New: relax $f(x) \geq \breve{f}(x)$ and constraints $c(x) \geq \breve{c}(x)$
- Ensure relaxation is tractable: e.g. $\breve{f}(x), \breve{c}(x)$ convex

General Approach to Nonconvex MINLP

$\underset{x}{\operatorname{minimize}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$
Relaxation $\underset{x}{\operatorname{minimize}} \breve{f}(x)$ subject to $\breve{c}(x) \leq 0, x \in X$
... gives lower bound; but solution typically infeasible in MINLP Need constraint enforcement to guarantee convergence

- Branching on integer variables or convex underestimators
- Relaxation refinement tightens the relaxation over subdomain

Outline

(1) Challenges of Nonconvex MINLP \& General Approach

- Challenges of Nonconvex MINLP
- General Approach to Nonconvex MINLP
(2) Generic Relaxation Strategies
(3) Spatial Branch-and-Bound

4) Tightening Bounds and Relaxations
(5) Exploiting Structure, Structure, and Structure

6 Summary and Conclusions

Factorable Functions and MINLP

Consider MINLP with nonconvex, factorable $f(x)$ and $c(x)$ $\underset{x}{\operatorname{minimize}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

Definition (Factorable Function)

$g(x)$ is factorable iff expressed as sum of products of unary functions of a finite set $\mathcal{O}_{\text {unary }}=\{\sin , \cos , \exp , \log ,|\cdot|\}$ whose arguments are variables, constants, or other functions, which are factorable.

- Combination of functions from set of operators $\mathcal{O}=\{+, \times, /, \hat{,}, \sin , \cos , \exp , \log ,|\cdot|\}$.
- Excludes integrals $\int_{\xi=x_{0}}^{x} h(\xi) d \xi$ and black-box functions
- Represented as expression trees

Expression Tree Example

Expression tree of $f\left(x_{1}, x_{2}\right)=x_{1} \log \left(x_{2}\right)+x_{2}^{3}$

Relaxations of Factorable Functions

MINLP with nonconvex, factorable $f(x)$ and $c(x)$ $\underset{x}{\operatorname{minimize}} f(x)$ subject to $c(x) \leq 0, x \in X, x_{i} \in \mathbb{Z} \forall i \in I$

Combine expression trees of objective and constraints

- Root of each expression is $c_{1}(x), c_{2}(x), \ldots, c_{m}(x)$, or $f(x)$
- Associated bounds: $[-\infty, 0]$ for $c_{i}(x)$, and $[-\infty, \bar{\eta}]$ for $f(x)$
- Leaf nodes of all trees represent variables $x_{1}, x_{2}, \ldots, x_{n}$
\Rightarrow gives directed acyclic graph (DAG)

Modeling languages (e.g. AMPL, GAMS) have DAG \& "API"

Example of DAG

$$
\begin{array}{ll}
\min & x_{1}+x_{2}^{2} \\
\text { s.t. } & x_{1}+\sin x_{2} \leq 4, \\
& x_{1} \in[-4,4] \cap \mathbb{Z},
\end{array} \quad x_{1} x_{2} \in[0,10] \cap \frac{x_{2}^{3} \leq 5}{} .
$$

Three nodes without entering arcs for objective \& constraints

Reformulation of Factorable MINLP

Reformulate factorable MINLP as

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & x_{n+q} \\ \text { subject to } & x_{k}=\vartheta_{k}(x) \quad k=n+1, n+2, \ldots, n+q \\ & l_{i} \leq x_{i} \leq u_{i} \quad i=1,2, \ldots, n+q \\ & x \in X, \\ & x_{i} \in \mathbb{Z}, \forall i \in I\end{cases}
$$

see e.g. [Smith and Pantelides, 1997]

- q new auxiliary variables, x_{n+1}, \ldots, x_{n+q}
- ϑ_{k} is operator from $\mathcal{O}\{+, \times, /, \hat{,} \sin , \cos , \exp , \log \}$
- Bounds on variables written explicitly

Example of Reformulation of Factorable MINLP

$$
\begin{aligned}
& \min x_{1}+x_{2}^{2} \\
& \text { s.t. } x_{1}+\sin x_{2} \leq 4, \quad x_{1} x_{2}+x_{2}^{3} \leq 5 \\
& x_{1} \in[-4,4] \cap \mathbb{Z}, \quad x_{2} \in[0,10] \cap \mathbb{Z} .
\end{aligned}
$$

Reformulation

$$
\begin{array}{l|l|l|l}
\min & \begin{array}{l}
x_{9} \\
\text { s.t. }
\end{array} & \begin{array}{l}
x_{7}=x_{5}+x_{6}-5 \\
x_{3}=\sin x_{2} \\
x_{4}=x_{1}+x_{3}-4
\end{array} \left\lvert\, \begin{array}{ll|l}
x_{8}=x_{2}^{2} & -1 \leq x_{3} \leq 1 & 0 \leq x_{6} \leq 1000 \\
x_{5}=x_{1} x_{2} & -45 \leq x_{7} \leq 0 \\
x_{9}=x_{1}+x_{8} & -9 \leq x_{4} \leq 0 & 0 \leq x_{8} \leq 100 \\
x_{6}=x_{2}^{3} & -4 \leq x_{1} \leq 4 & -40 \leq x_{5} \leq 40 \\
x_{1}, x_{2}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9} \in \mathbb{Z} .
\end{array}\right.
\end{array}
$$

- Integrality inherited from function
- Bounds inherited from function

Reformulation of Factorable MINLP

Theorem (Equivalence of Factorable Formulation)

MINLP and factorable MINLP are equivalent, i.e. optimal solutions to one can be transformed into optimal solution of the other.

Factorable form makes it easier to get convex relaxation:

- Nonconvex sets, $k=n+1, n+2, \ldots, n+q$

$$
\Theta_{k}=\left\{x \in \mathbb{R}^{n+q}: x_{k}=\vartheta_{k}(x), x \in X, I \leq x \leq u, x_{i} \in \mathbb{Z}, i \in I\right\}
$$

... nonconvex due to nonlinear equality

- Let $\breve{\Theta}_{k} \supset \Theta_{k}$ convex relaxation

$$
\left\{\begin{array}{lll}
\underset{x}{\operatorname{minimize}} & x_{n+q} & \\
\text { subject to } & x \in \breve{\Theta}_{k} & k=n+1, n+2, \ldots, n+q \\
& l_{i} \leq x_{i} \leq u_{i} & i=1,2, \ldots, n+q \\
& x \in X
\end{array}\right.
$$

... convex relaxation ... only look at simple sets!

Reformulation of Factorable MINLP

General convex relaxation with polyhedral sets $\breve{\Theta}_{k}$:

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & x_{n+q} \\ \text { subject to } & x \in \breve{\Theta}_{k} \\ & k=n+1, n+2, \ldots, n+q \\ & l_{i} \leq x_{i} \leq u_{i} \\ & x \in X .\end{cases}
$$

Polyhedral set $\breve{\Theta}_{k}$ defined by $a^{k} \in \mathbb{R}^{m_{k}}, B^{k} \in \mathbb{R}^{m_{k} \times(n+q)}$, and $d^{k} \in \mathbb{R}^{m_{k}}$:

$$
\breve{\Theta}_{k}=\left\{x \in \mathbb{R}^{n+q}: a^{k} x_{k}+B^{k} x \geq d^{k}, x \in X, I \leq x \leq u\right\},
$$

Gives lower bounding LP relaxation for MINLP solvers:

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & x_{n+q} \\ \text { subject to } a^{k} x_{k}+B^{k} x \geq d^{k} & k=n+1, n+2, \ldots, n+q \\ & l_{i} \leq x_{i} \leq u_{i} \\ & x \in X .\end{cases}
$$

Now just need to construct polyhedral sets, see e.g. Lecture IV

Examples of Polyhedral Relaxations

Construct relaxation for each operator $\in \mathcal{O}\{+, \times, /, \hat{,}, \sin , \cos , \exp , \log \}$

- Odd-degree monomials, $x_{k}=x_{i}^{2 p+1}$, see [Liberti and Pantelides, 2003]
- Bilinear functions $x_{k}=x_{i} x_{j}$, [McCormick, 1976]

Let $x=\left(x_{i}, x_{j}, x_{k}\right), L=\left(l_{i}, l_{j}, l_{k}\right), U=\left(u_{i}, u_{j}, u_{k}\right)$ get convex hull of $\Theta_{k}=\left\{x: x_{k}=x_{i} x_{j}, L \leq x \leq U\right\}$:

$$
\begin{array}{ll}
x_{k} \geq I_{j} x_{i}+I_{i} x_{j}-l_{i} I_{j} & x_{k} \leq l_{j} x_{i}+u_{i} x_{j}-u_{i} l_{j} \\
x_{k} \geq u_{j} x_{i}+u_{i} x_{j}-u_{i} u_{j} & x_{k} \leq u_{j} x_{i}+l_{i} x_{j}-l_{i} u_{j}
\end{array}
$$

Remark

Note that tightness of convex hull depends on bounds $l_{i}, l_{j}, l_{k}, u_{i}, u_{j}, u_{k}$

Examples of Polyhedral Relaxations

Polyhedral relaxation, $\breve{\Theta}_{k}$, of $x_{k}=x_{i}^{2}$ with x_{i} continuous/integer

... if $x_{i} \in \mathbb{Z}$ then add inequalities violated at $x_{i}^{\prime} \notin \mathbb{Z}$

Examples of Polyhedral Relaxations

Polyhedral relaxation, $\breve{\Theta}_{k}$, of $x_{k}=x_{i}^{3}$ and $x_{k}=x_{i} x_{j}$

Alternative Relaxation Approach

[Androulakis et al., 1995] propose α-convexification for

$$
f(x)=x^{T} Q x+c^{T} x \quad \text { with } \quad x \in[I, u]
$$

Lower bound obtained from:

$$
\breve{f}(x)=x^{T} Q x+c^{T} x+\alpha \sum_{i=1}^{n}\left(x_{i}-l_{i}\right)\left(x_{i}-u_{i}\right) .
$$

which can be written as convex quadratic

$$
\breve{f}(x)=x^{T} P x+d^{T} x,
$$

where $P=Q+\alpha I \succeq 0$ iff $\alpha \geq-\lambda_{\text {min }}(Q)$
Can be extended to non-quadratic functions
Solver GloMIQO [Misener and Floudas, 2012]

Outline

(1) Challenges of Nonconvex MINLP \& General Approach

- Challenges of Nonconvex MINLP
- General Approach to Nonconvex MINLP
(2) Generic Relaxation Strategies
(3) Spatial Branch-and-Bound

4 Tightening Bounds and Relaxations
(5) Exploiting Structure, Structure, and Structure
(6) Summary and Conclusions

Spatial Branch-and-Bound (BnB)

To separate solution of relaxation use spatial BnB

- Implicit enumeration technique like integer BnB
- Recursively define partitions of feasible set into two sets
- Use reformulation outlined above
- Solve LP relaxations (\Rightarrow lower bounds)
... and nonconvex NLPs (\Rightarrow upper bound if feasible)

Classic references \& Solvers:

- [Sahinidis, 1996, Tawarmalani and Sahinidis, 2002] BARON solver
- [Smith and Pantelides, 1997]
- [Belotti et al., 2009]

Couenne solver ... open-source in COIN-OR

Spatial Branch-and-Bound (BnB)

Key ingredients of spatial BnB
(1) Procedure to compute lower bound for subproblem
(2) Procedure for partitioning feasible set of subproblem:
$\operatorname{NLP}\left(I^{-}, u^{-}\right)$and $\operatorname{NLP}\left(I^{+}, u^{+}\right)$
... generates tree almost like integer BnB
NLP node is subproblem: $\operatorname{NLP}(I, u)$

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & f(x), \\ \text { subject to } & c(x) \leq 0, \\ & x \in X \\ & l_{i} \leq x_{i} \leq u_{i} \forall i=1,2, \ldots, n \\ & x_{i} \in \mathbb{Z}, \forall i \in I\end{cases}
$$

... restriction of original MINLP

Spatial Branch-and-Bound (BnB)

Lower bounding problem at $\operatorname{NLP}(I, u)$, e.g. $\operatorname{LP}(I, u)$

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & x_{n+q} \\ \text { subject to } a^{k} x_{k}+B^{k} x \geq d^{k} & k=n+1, n+2, \ldots, n+q \\ & l_{i} \leq x_{i} \leq u_{i} \\ & x \in X .\end{cases}
$$

If $\operatorname{LP}(I, u)$ infeasible, then prune node.
Otherwise, \hat{x} optimal solution of $\operatorname{LP}(I, u)$:

- If \hat{x} feasible in $\operatorname{NLP}(I, u)$ (hence MINLP), then fathom node (new incumbent)
- If \hat{x} not feasible in $\operatorname{NLP}(I, u)$ then ... branch ...
(1) \hat{x} not integral, i.e., $\exists i \in I: \hat{x}_{i} \notin \mathbb{Z}$
(2) Nonconvex constraint is violated, i.e.

$$
\exists k \in\{n+1, n+2, \ldots, n+q\}: \hat{x}_{k} \neq \vartheta_{k}(\hat{x}) .
$$

Branching for Spatial Branch-and-Bound

Two possible ways to branch (integer / nonlinear):
(1) \hat{x} not integral: $x_{i} \leq\left\lfloor\hat{x}_{i}\right\rfloor \vee x_{i} \geq\left\lceil\hat{x}_{i}\right\rceil$ like integer BnB
(2) $\exists k: \hat{x}_{k} \neq \vartheta_{k}(\hat{x})$ nonlinear infeasible:

- Choose branching variable x_{i} from arguments of $\vartheta_{k}(x)$
- Branch $x_{i} \leq \hat{x}_{i} \vee x_{i} \geq \hat{x}_{i} \ldots$ two subproblems
- Refine convex relaxation in each branch ... tighter bounds

Remark

Branching on $\hat{x}_{k} \neq \vartheta_{k}(\hat{x})$ leaves \hat{x} feasible in both branches spatial BnB no longer finite ... different from integer BnB

Theorem (Finite Termination Smokescreen)

Spatial BnB is finite if spatial branching process is finite.
... interval arithmetic helps eliminate subproblems

Branching for Spatial Branch-and-Bound

Partition $\operatorname{NLP}(I, u)$ into $\operatorname{NLP}\left(I^{-}, u^{-}\right)$and $\operatorname{NLP}\left(I^{+}, u^{+}\right)$
... based on $x_{i} \leq b \vee x_{i} \geq b$

- Good performance depends on good choice of i and b
- Ideal choice balances three goals
(1) Increase both bounds $\operatorname{LP}\left(I^{-}, u^{-}\right)$and $\operatorname{LP}\left(I^{+}, u^{+}\right)$
(2) Shrink both feasible sets $\operatorname{NLP}\left(I^{-}, u^{-}\right)$and $\operatorname{NLP}\left(I^{+}, u^{+}\right)$
(3) Provide a balanced BnB tree

Finding continuous branching candidates x_{i} :

- x_{i} not fixed in parent problem
- x_{i} is argument of violated function $\hat{x}_{k} \neq \vartheta_{k}(x)$

Branching for Spatial Branch-and-Bound

Branching example $x_{k}=\vartheta_{k}\left(x_{i}\right)=\left(x_{i}\right)^{2}$ violated

Branching for Spatial Branch-and-Bound

Branching example $x_{k}=\vartheta_{k}\left(x_{i}\right)=e^{x_{i}}$

Branching for Spatial Branch-and-Bound

Variable selection techniques

- Strong branching, pseudocost branching, and reliability branching generalized from MINLP
- Violation transfer:
- Find variable x_{i} with largest impact on constraint violation
- Look at all $x_{k} \neq \vartheta_{k}(x)$ for all $k=1,2, \ldots, n+q$

Choice of branching point b :

- Matters more than for integer branching
\ldots because branch is $x_{i} \leq b \vee x_{i} \geq b$
- Ensure that \hat{x} infeasible in both $\operatorname{LP}\left(I^{-}, u^{-}\right)$and $\operatorname{LP}\left(I^{+}, u^{+}\right)$
... ensure refinement is good enough \Rightarrow convergence "proof"

Nonconvex Branch-and-Bound

Branch-and-bound for Nonconvex MINLP

Choose tol $\epsilon>0$, set $U=\infty$, add $(\operatorname{NLP}(-\infty, \infty))$ to heap \mathcal{H}. while $\mathcal{H} \neq \emptyset$ do

Remove $\operatorname{NLP}(I, u)$ from heap: $\mathcal{H}=\mathcal{H}-\{\operatorname{NLP}(I, u)\}$. Solve relaxation $\operatorname{LP}(I, u) \Rightarrow$ solution $x^{(I, u)}$
Possibly solve NLP (I, u) for an upper bound
if $L P(I, u)$ is infeasible then
Prune node: infeasible
else if $f\left(x^{(I, \mu)}\right)>U$ then
Prune node; dominated by bound U
else if $x_{l}^{(I, u)}$ integral and $x_{k}=\vartheta_{k}(x), \forall k$ then
Update incumbent: $U=f\left(x^{(l, u)}\right), x^{*}=x^{(I, u)}$.
else
BranchOnVariable $\left(x_{i}^{(I, u)}, I, u, \mathcal{H}\right)$

Outline

(1) Challenges of Nonconvex MINLP \& General Approach

- Challenges of Nonconvex MINLP
- General Approach to Nonconvex MINLP
(2) Generic Relaxation Strategies
(3) Spatial Branch-and-Bound

4 Tightening Bounds and Relaxations
(5) Exploiting Structure, Structure, and Structure
(6) Summary and Conclusions

Tightening Bounds and Relaxations

Bound tightening to reduce range of bounds $x_{i} \in\left[l_{i}, u_{i}\right]$
... because tighter bounds \Rightarrow tighter relaxations \Rightarrow smaller trees

Conceptual bound-tightening procedure:
Feasible set $\mathcal{F}=\left\{x \in[I, u]: c(x) \leq 0, x \in X, x_{I} \in \mathbb{Z}^{p}\right\}$ Solve $2 n$ (global) optimization problems, given upper bound U :
$I_{i}^{\prime}=\min \left\{x_{i}: x \in \mathcal{F}, f(x) \leq U\right\} ; \quad u_{i}^{\prime}=\max \left\{x_{i}: x \in \mathcal{F}, f(x) \leq U\right\}$.
... nonconvex MINLPs just as hard \Rightarrow use relaxations:
(1) FBBT: feasibility-based bound tightening
(2) OBBT: optimality-based bound tightening

FBBT: Feasibility-Based Bound Tightening

FBBT broadly used:

- Artificial intelligence community \& constraint programming
- NLP solvers [Messine, 2004]
- MILP solvers [Savelsbergh, 1994]

Basic Principle of FBBT

Infer bounds on x_{i} from tighter bounds on x_{j} for $j \neq i$.
Example 1: $x_{j}=x_{i}^{3}$ and $x_{i} \in\left[l_{i}, u_{i}\right]$

- Tighten interval of x_{j} to $\left[l_{j}, u_{j}\right] \cap\left[l_{i}^{3}, u_{i}^{3}\right]$
- Tightened l_{j}^{\prime} on $x_{j} \Rightarrow$ tighter $l_{i}^{\prime}=\sqrt[3]{l_{j}}$ for x_{i}

Example 2: $x_{k}=x_{i} x_{j}$ with $(1,1,0) \leq\left(x_{i}, x_{j}, x_{k}\right) \leq(5,5,2)$

- $l_{i}=l_{j}=1 \Rightarrow I_{k}=l_{i} l_{j}=1>0$
- $u_{k}=2 \Rightarrow x_{i} \leq \frac{u_{k}}{l_{j}}$ and $x_{j} \leq \frac{u_{k}}{l_{i}} \Rightarrow u_{i}^{\prime}=u_{j}^{\prime}=2<5$

FBBT: Feasibility-Based Bound Tightening

FBBT for affine functions $x_{k}=a_{0}+\sum_{j=1}^{n} a_{j} x_{j}$ for $k>n$

- $J^{+}=\left\{j=1,2, \ldots, n: a_{j}>0\right\}$ positive coefficients
- $J^{-}=\left\{j=1,2, \ldots, n: a_{j}<0\right\}$ negative coefficients
\Rightarrow valid bounds are ...

$$
a_{0}+\sum_{j \in J^{-}} a_{j} u_{j}+\sum_{j \in J^{+}} a_{j} l_{j} \leq x_{k} \leq a_{0}+\sum_{j \in J^{-}} a_{j} l_{j}+\sum_{j \in J^{+}} a_{j} u_{j}
$$

Bounds $\left[I_{k}, u_{k}\right]$ on x_{k} give new bounds on x_{j}, e.g. for $j \in J^{+}$

$$
l_{j}^{\prime}=\frac{1}{a_{j}}\left(I_{k}-\left(a_{0}+\sum_{i \in J^{+} \backslash\{j\}} a_{i} u_{i}+\sum_{i \in J^{-}} a_{i} l_{i}\right)\right)
$$

... similar for u_{j}^{\prime} and $j \in J^{-}$
Better bounds from convex combination of inequalities, ...
... or solving more equations!

FBBT: Feasibility-Based Bound Tightening

For nonlinear functions, propagate bounds through DAG:

Assume solution \hat{x} found with $f(\hat{x})=10$:
(1) $10 \geq x_{9}:=x_{1}+x_{8}$ and $x_{1} \geq-4$ imply $x_{8} \leq 14<100$ tighter
(2) Propagate to $x_{8}=x_{2}^{2}$ implies $-\sqrt{14} \leq x_{2} \leq \sqrt{14}$ tightens x_{2}
... no more tightening
In general propagate bounds until improvement tails off.

FBBT: Feasibility-Based Bound Tightening

Properties of FBBT

- Efficient and fast implementation for large-scale MINLP
- Can exhibit poor convergence, e.g. for $\alpha>1$ consider: $\min x_{1}$ s.t. $\left.x_{1}=\alpha x_{2}, x_{2}=\alpha x_{1}, x_{1} \in[-1,1]\right\}$
- Solution is $(0,0)$
- FBBT does not terminate in finite number of steps
- Sequence of tighter bounds for $I=1,2, \ldots$ with $\left.\left\{\left[-\frac{1}{\alpha^{\prime}}, \frac{1}{\alpha^{\prime}}\right]\right\} \right\rvert\, \rightarrow(0,0)$
... hence combine with other techniques

OBBT: Optimality-Based Bound Tightening

Solving min $/ \max x_{i}$ s.t. $x \in \mathcal{F}$ (nonconvex MINLP) not practical Instead, define (linear) relaxation
$\mathcal{F}(I, u)=\left\{\begin{array}{lll}x \in \mathbb{R}^{n+q}: & \begin{array}{l}a^{k} x_{k}+B^{k} x \geq d^{k} \\ \\ l_{i} \leq x_{i} \leq u_{i}\end{array} & i=n=1,2, \ldots, n+q \\ & x \in X\end{array}\right\}$
Now get bounds on x_{i} for $i=1, \ldots, n$ by solving $2 n$ LPs:

$$
\begin{align*}
& I_{i}^{\prime}=\min \left\{x_{i}: x \in \mathcal{F}(I, u)\right\} \\
& u_{i}^{\prime}=\max \left\{x_{i}: x \in \mathcal{F}(I, u)\right\} \tag{1}
\end{align*}
$$

... only apply at root node, or small number of nodes

Numerical Results for Branch-and-Refine

prob	basic	+ presolve	+ var-select	+ node-select
TVC1	108861	40446	7756	8031
TVC2	fail	72270	5792	5547
TVC3	62045	861	627	627
TVC4	fail	38792	1396	1582
TVC5	fail	7369	5619	4338
TVC6	fail	12131	6096	5503

(\# LPs solved)

Outline

(1) Challenges of Nonconvex MINLP \& General Approach

- Challenges of Nonconvex MINLP
- General Approach to Nonconvex MINLP
(2) Generic Relaxation Strategies
(3) Spatial Branch-and-Bound

4) Tightening Bounds and Relaxations
(5) Exploiting Structure, Structure, and Structure

6 Summary and Conclusions

Relaxations of Structured Nonconvex Sets

Spatial BnB for nonconvex MINLP is broadly applicable

- Branch-and-refine is one example (see Lecture IV)
- Generality of approach means that bounds can be weak
- In general, may not get convex hull of feasible set
\Rightarrow search enormous trees without solving the problem

Example: Try solving nonlinear power flow with BARON!

Important to exploit structure in spatial BnB

- Look for special structure within problems
- Design tight relaxations for classes of nonconvex constraints
- Implement problem/structure specific branching rules

Nonconvex Quadratic Constraints [Mahajan and Munson, 2010]

Quadratic constraint: $\quad x^{T} A x+c x+d \leq 0, \quad x \in \mathbb{R}^{n}$
Applications: reactor core-reloading; power networks

- All Eigenvalues of A positive \Rightarrow region is convex
- Otherwise, region is nonconvex
- Other solvers create outer approximation of feasible region:
(1) create McCormick outer approximation of terms $x_{i} x_{j}, \forall i \neq j$
(2) solve relaxation and branch on individual x_{i}

Small Example

$$
\begin{aligned}
& \min _{x \geq 0} 4 x_{0}+x_{1} \\
& \text { s.t. } \\
& \\
& \quad \\
& \quad-12 x_{0}^{2}-2 x_{1}^{2}+26 x_{2}^{2}-8 x_{1} x_{2} \\
& \\
& \quad+16 x_{0} x_{2} \leq-100
\end{aligned}
$$

Solver	\# Iterations
BARON	321
Couenne	701
MINOTAUR	2

Eigenvalues: -5, 6, 30

Identifying SOC Structure in Quadratic Constraints

- Factorize $A=Q D Q^{T}, Q$ orthogonal \& D diagonal matrix
- Let $D=R E R$ with E a diagonal $\{0, \pm 1\}$

$$
y^{T} E y+b^{T} y+d \quad \text { where } y=R Q^{T} x, b=R^{-1} Q^{T} c
$$

- If no negative eigenvalues, then convex constraint!
- If exactly one negative and no zero eigenvalues, then equivalent to two convex SOCs:

$$
\begin{equation*}
\Rightarrow\left\|\left(y_{i}+\frac{b_{i}}{2}\right)_{i \in I_{+}}^{\sqrt{\tilde{z}}}\right\|_{2} \leq\left|y_{j}-\frac{b_{j}}{2}\right| \quad \text { (of the form } \sum_{i=0}^{n-1} x_{i}^{2} \leq x_{n}^{2} \text {) } \tag{2}
\end{equation*}
$$

- Separate/branch on absolute value:

$$
\|\ldots\|_{2} \leq y_{j}-\frac{b_{j}}{2} \quad \text { and } \quad\|\ldots\|_{2} \leq-y_{j}+\frac{b_{j}}{2}
$$

Results: Small Quadratic Instances

			\# Nodes		
Inst.	Var	Con	BARON	Couenne	MINOTAUR
q1d2	2	2	39	14	2
q1d3	3	2	321	701	2
q2d6	6	4	107505	3868500	4
q3d6	6	6	301	2001	8
q3d9	9	6	>1250100	>1844800	8
q4d8	8	8	3715	29301	16
q5d10	10	10	1532839	3125701	32
q5d10b	10	10	>1033800	>2818700	32
q5d15	15	10	557905	>1321800	32
q6d12	12	12	>1358100	>3377600	64

Results: Small Quadratic Instances

			Time[s] or gap\% after 1h		
Inst.	Var	Con	BARON	Couenne	MINOTAUR
q1d2	2	2	0.1	0.2	0.02
q1d3	3	2	0.50	0.7	0.03
q2d6	6	4	158.2	2498	0.2
q3d6	6	6	0.7	1.3	0.7
q3d9	9	6	16.7%	574.0%	0.3
q4d8	8	8	6.98	16.6	2.4
q5d10	10	10	2261.8	2259.9	1.8
q5d10b	10	10	145.1%	54.5%	1.8
q5d15	15	10	2519.7	27.8%	18.4
q6d12	12	12	0.4%	3.5%	9.0

Illustration of Branching on Cones

Branch on second-order cones (indefinite with one negative e.v.):

- Eigenvalue decomposition to expose structure
- Convex substructures (solved as NLPs)
- Better than thousands of little boxes (branch-and-bound)

See also "animated pdf files" ...

Another Example of Importance of Structure

Nonconvex set: $x_{1}^{2}+x_{2}^{2} \geq 1$ and $x_{1}, x_{2} \in[0,2]$
Convex hull $\left\{X: x_{1}, x_{2} \in[0,2]\right.$ and $\left.x_{1}+x_{2} \geq 1\right\}$

Relaxation introduces x_{3} and x_{4} with $x_{3} \leq x_{1}^{2}$ and $x_{4} \leq x_{2}^{2}$
(1) Replace $x_{1}^{2}+x_{2}^{2} \geq 1$ by $x_{3}+x_{4} \geq 1$ (linear)
(2) Relax nonconvex constraints $x_{3} \leq x_{1}^{2}$ and $x_{4} \leq x_{2}^{2}$:

$$
x_{3} \leq 2 x_{1} \text { and } x_{4} \leq 2 x_{2}
$$

Eliminate variables x_{3} and x_{4} and get:

$$
2 x_{1}+2 x_{2} \geq x_{3}+x_{4} \geq 1 \quad \Leftrightarrow \quad x_{1}+x_{2} \geq 1 / 2
$$

... weaker than convex hull

General Nonconvex Quadratic Functions

Consider quadratically constrained quadratic program (QCQPs)

$$
\left\{\begin{array}{l}
\underset{x}{\operatorname{minimize}} x^{T} Q_{0} x+c_{0}^{T} x, \\
\text { subject to } x^{T} Q_{k} x+c_{k}^{T} x \leq b_{k}, \quad k=1, \ldots, q \\
\\
\\
\\
\\
0 \leq x \leq b \\
\end{array}\right.
$$

... can also include integer variables and linear constraints

- $Q_{k} n \times n$ symmetric matrix
- A is an $m \times n$ matrix
- Q_{k} not necessarily convex \Rightarrow nonconvex problem

General Nonconvex Quadratic Functions

Equivalent reformulation of QCQP: introduce $X_{i j}$ for all i, j pairs

$$
\begin{cases}\underset{x, X}{\operatorname{minimize}} & Q_{0} \bullet X+c_{0}^{T} x, \\ \text { subject to } & Q_{k} \bullet X+c_{k}^{T} x \leq b_{k}, \quad k=1, \ldots, q \\ & A x \leq b, \\ & 0 \leq x \leq u, x_{i} \in \mathbb{Z}, \forall i \in I \\ & X=x x^{T},\end{cases}
$$

where $X=\left[X_{i j}\right]$ matrix, $Q_{k} \bullet X=\sum_{i j}\left[Q_{k}\right]_{i j} X_{i j}=\sum_{i j}\left[Q_{k}\right]_{i j} x_{i} x_{j}$.

- $X=x x^{T}$ represents nonconvex constraint $X_{i j}=x_{i} x_{j}$
... otherwise problem is linear!
- Relaxing equality $X=x x^{\top}$ gives convex (linear) relaxation
... next show two approaches: RLT and SDP

General Nonconvex Quadratic Functions

Reformulation-Linearization Technique (RLT)
[Adams and Sherali, 1986]

- Get nonconvex constraints by multiplying nonnegative pairs

$$
\begin{aligned}
& x_{i}, x_{j}, u_{i}-x_{i}, \text { and } u_{j}-x_{j}: \\
& x_{i} x_{j} \geq 0, \quad\left(u_{i}-x_{i}\right)\left(u_{j}-x_{j}\right) \geq 0, \quad x_{i}\left(u_{j}-x_{j}\right) \geq 0, \quad\left(u_{i}-x_{i}\right) x_{j} \geq 0
\end{aligned}
$$

- Linearize constraints, replacing $x_{i} x_{j}$ by $X_{i j}$:

$$
X_{i j} \geq 0, \quad X_{i j} \geq u_{i} x_{j}+u_{j} x_{i}-u_{i} u_{j}, \quad X_{i j} \leq u_{j} x_{i}, \quad X_{i j} \leq u_{i} x_{j}
$$

- Replace nonconvex $X=x x^{\top}$ by linear inequalities
\Rightarrow polyhedral relaxation \ldots same as earlier relaxation of $x_{i} x_{j}$.

General Nonconvex Quadratic Functions

Strengthening RLT

(1) Exploiting binary variables ... similar for integers

- If $x_{i} \in\{0,1\}$ then $x_{i}^{2}=x_{i}$ for all feasible points
- Add linear constraints $X_{i i}=x_{i}$
(2) Multiply linear constraints to improve RLT relaxation
- Multiplying $x_{i} \geq 0$ and $b_{t}-\sum_{j=1}^{n} a_{t j} x_{j} \geq 0$ gives

$$
b_{t} x_{i}-\sum_{j=1}^{n} a_{t j} x_{i} x_{j} \geq 0
$$

- Again linearize $X_{i j}=x_{i} x_{j}$ to get inequality

$$
b_{t} x_{i}-\sum_{j=1}^{n} a_{t j} x_{i j} \geq 0
$$

... generalizes to products between linear constraints Snag: results in potentially huge LP relaxation!

General Nonconvex Quadratic Functions

Semi-Definite Programming (SDP) relaxations of QCQPs
(1) Relax $X-x x^{\top}=0$ to $X-x x^{\top} \succeq 0$
(2)

$$
X-x x^{T} \succeq 0 \quad \Leftrightarrow \quad\left[\begin{array}{ll}
1 & x^{T} \\
x & X
\end{array}\right] \succeq 0
$$

(3) Improve by adding $X_{i i}=x_{i}$ for binary $x_{i} \in\{0,1\}$
(1) Additional constraints by squaring \& linearizing constraints
... here $H \succeq 0$ means H positive semi-definite $\left(x^{T} H x \geq 0, \forall x\right)$

Both RLT and SDP good in practice ... RLT re-starts better!

Partial Separability and SDP Relaxations

Often Hessians Q_{k} have more structure, e.g. partially separable

$$
q(x)=\sum_{i=1}^{\prime}\left(\frac{1}{2} x_{[i]}^{T} H_{[i]} x_{[i]}+g_{[i]}^{T} x_{[i]}\right)
$$

Definition (Partially Separable Function)

A nonlinear function $f(x)$ is partially separable, iff

$$
f(x)=\sum_{i=1}^{l} f_{i}\left(x_{[i]}\right)
$$

where $f_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}$ depends on subvector $x_{[i]}$ of x where $n_{i} \ll n$.

- SDP relaxation works with $n \times n$ SDP matrix
- Partially separable SDP has / matrices of size $n_{i} \times n_{i}$
- Smaller cones \Rightarrow faster linear algebra

Partial Separability and SDP Relaxations

Using partial separability, we can make some $H_{[i]}$ convex

$$
H=\left[\begin{array}{rrr}
4 & -1 & \\
-1 & 4 & -1 \\
& -1 & 4 \\
& & -1 \\
& & -1
\end{array}\right] \quad g=\left(\begin{array}{l}
-1 \\
-1 \\
-1 \\
-1
\end{array}\right)
$$

Decompose as ($g_{[2]}$ exercise)

$$
H_{[1]}=\left[\begin{array}{rrr}
4 & -1 & \\
-1 & 4 & -1 \\
& -1 & 4
\end{array}\right] \quad H_{[2]}=\left[\begin{array}{r}
0-1 \\
-1-1
\end{array}\right] \quad g_{[1]}=\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
$$

- Get $H_{[1]} \succeq 0$ convex
- Solve order of magnitude faster

Bilinear Covering Sets

Framework for valid inequalities with "orthogonal disjunction" Pure integer covering set for $r>0$

$$
B^{\mathrm{I}}:=\left\{(x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{Z}_{+}^{n} \mid \sum_{i=1}^{n} x_{i} y_{i} \geq r\right\}
$$

For any i, convex hull of two variable set

$$
B_{i}^{I}:=\left\{\left(x_{i}, y_{i}\right) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+} \mid x_{i} y_{i} \geq r\right\}
$$

is polyhedron defined by $d \leq\lceil r\rceil+1$ linear inequalities:

$$
\operatorname{conv}\left(B_{i}^{\mathrm{I}}\right)=\left\{x: a^{k} x_{i}+b^{k} y_{i} \geq 1, \quad k=1, \ldots, d\right\}
$$

wlog (scale) right-hand-side $=1$
Structure of $\operatorname{conv}\left(B_{i}^{\mathrm{I}}\right)$

- Includes $x_{i} \geq 1$ and $y_{i} \geq 1$
- Other inequalities constructed as $a x_{i}+b y_{i} \geq 1$:
- Do not cut off any $\left(x_{i}^{t}, y_{i}^{t}\right)=(t,\lceil r / t\rceil)$
- Satisfied by exactly two $\left(x_{i}^{t}, y_{i}^{t}\right)$, for $t=1, \ldots,\lceil r\rceil$

Bilinear Covering Sets

Let $\Pi:=\{\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, d\}\}:$ i.e. $\pi \in \Pi$ then $\pi(i)$ selects an inequality in $\operatorname{conv}\left(B_{i}^{\mathrm{I}}\right)$

Theorem (Characterization of Convex Hull conv($\left.B_{i}^{I}\right)$)

The convex hull of B^{1} is given by the set of $x \in \mathbb{R}_{+}^{n}, y \in \mathbb{R}_{+}^{n}$ that satisfy the inequalities

$$
\sum_{i=1}^{n}\left(a^{\pi(i)} x_{i}+b^{\pi(i)} y_{i}\right) \geq 1, \quad \forall \pi \in \Pi
$$

See [Tawarmalani et al., 2010]
$\operatorname{conv}\left(B_{i}^{\mathrm{I}}\right)$ has exponential number of inequalities, but have ...
... efficient separation: $\pi(i)$ index of most violated constraint

Outline

(1) Challenges of Nonconvex MINLP \& General Approach

- Challenges of Nonconvex MINLP
- General Approach to Nonconvex MINLP
(2) Generic Relaxation Strategies
(3) Spatial Branch-and-Bound

4 Tightening Bounds and Relaxations
(5) Exploiting Structure, Structure, and Structure

6 Summary and Conclusions

Summary and Key Points

Key Points

- General approach to nonconvex MINLP based on
(1) Decomposition of nonlinear functions \rightarrow computational graph
(2) Construction of under-estimators of simple functions
- Exploiting structure is key to success
- Must exploit structure of nonconvex MINLP
- Three pillars of nonconvex MINLP:
structure, structure, structure

Final Exam for Course Credit: Have a beer with Sven on Friday!

Office Hours: Today after the course in room 115

Adams, W. and Sherali, H. (1986).
A tight linearization and an algorithm for zero-one quadratic programming problems.
Management Science, 32(10):1274-1290.

Androulakis, I. P., Maranas, C. D., and Floudas, C. A. (1995). $\alpha \mathrm{BB}$: A global optimization method for general constrained nonconvex problems.
Journal of Global Optimization, 7:337-363.

Belotti, P., Lee, J., Liberti, L., Margot, F., and Wächter, A. (2009). Branching and bounds tightening techniques for non-convex MINLP.
Optimization Methods and Software, 24(4-5):597-634.

Liberti, L. and Pantelides, C. C. (2003).
Convex envelopes of monomials of odd degree.
Journal of Global Optimization, 25(2):157-168.
Mahajan, A. and Munson, T. (2010).
Exploiting second-order cone structure for global optimization.
Preprint ANL/MCS-P1801-101, Argonne National Laboratory.
Submitted to Mathematical Programming.

McCormick, G. P. (1976).
Computability of global solutions to factorable nonconvex programs: Part I Convex underestimating problems.
Mathematical Programming, 10:147-175.
Messine, F. (2004).

Deterministic global optimization using interval constraint propagation techniques.
RAIRO-RO, 38(4):277-294.
E
Misener, R. and Floudas, C. (2012).
GloMIQO: Global mixed-integer quadratic optimizer.
Journal of Global Optimization, pages 1-48.
Sahinidis, N. V. (1996).
BARON: A general purpose global optimization software package.
Journal of Global Optimization, 8:201-205.
Savelsbergh, M. W. P. (1994).
Preprocessing and probing techniques for mixed integer programming problems.
ORSA Journal on Computing, 6:445-454.

Smith, E. M. B. and Pantelides, C. C. (1997).
Global optimization of nonconvex MINLPs.
Computers \& Chemical Engineering, 21:S791-S796.
Tawarmalani, M., Richard, J.-P., and Chung, K. (2010).
Strong valid inequalities for orthogonal disjunctions and bilinear covering sets.
Mathematical Programming, 124:481-512.
10.1007/s10107-010-0374-6.

Tawarmalani, M. and Sahinidis, N. V. (2002).
Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications.
Kluwer Academic Publishers, Boston MA.

