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Abstract
We present a general numerical solution method for control problems with state vari-
ables defined by a linear PDE over a finite set of binary or continuous control variables.
We show empirically that a naive approach that applies a numerical discretization
scheme to the PDEs to derive constraints for a mixed-integer linear program (MILP)
leads to systems that are too large to be solved with state-of-the-art solvers for MILPs,
especially if we desire an accurate approximation of the state variables. Our framework
comprises two techniques to mitigate the rise of computation times with increasing
discretization level: First, the linear system is solved for a basis of the control space
in a preprocessing step. Second, certain constraints are just imposed on demand via
the IBM ILOG CPLEX feature of a lazy constraint callback. These techniques are
compared with an approach where the relations obtained by the discretization of the
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continuous constraints are directly included in theMILP.Wedemonstrate our approach
on two examples: modeling of the spread of wildfire and the mitigation of water con-
tamination. In both examples the computational results demonstrate that the solution
time is significantly reduced by our methods. In particular, the dependence of the
computation time on the size of the spatial discretization of the PDE is significantly
reduced.

Keywords Mixed-integer linear programming · Partial differential equations ·
Finite-difference methods · Finite-element methods · Convection-diffusion
equation · Global optimal control

Mathematics Subject Classification 90C11 Finite element · 65N30 Mixed integer
programming · 90-10 Mathematical modeling or simulation for problems pertaining
to operations research and mathematical programming

1 Introduction

When amodel in engineering or other applied sciences yields multiple feasible param-
eter choices, one naturally asks, what the optimal choice is for the given application
in mind. Often these problems are formulated as optimization problems, where the
parameters are used as variables and optimality is specified as the minimum (maxi-
mum) of an objective function. Problems of very different nature, such as the optimal
control of a chemical plant or the search of the shortest path to the closest train sta-
tion on a map, can be formulated as optimization problems. The former requires the
control of a complicated engineering problem, sometimes modeled by some form of
differential equation, while the latter is purely combinatorial. Theoretically, one can
list all paths, calculate their length, and choose the shortest path. However, because
the number of choices grows exponentially with the number of crossings on the map,
the best supercomputer in the world would be unable to find the optimal solution with
this naive approach, even for a medium-sized map.

The problems considered in this paper comprise both combinatorial decisions,
modeled by using integer variables, and physical phenomena, modeled by a partial
differential equation (PDE). More precisely, some of the variables of a mixed-integer
program are constrained by the solution of a PDE (in the role of a continuous state
variable), and the PDE in turn is influenced by the discrete variables. Hence the control
variables are partly continuous time-dependent vector-valued functions and partly dis-
crete time-dependent vector-valued functions. Since the feasibility of the PDE-defined
state acts as an additional constraint on the mixed-integer program, such problems are
called “mixed-integer PDE-constrained optimization” (MIPDECO) (see, e.g., [29]).
PDE-constrained optimization without integer variables is already an ambitious field
of research (see, e.g., [2,24] for a survey over the field and the applied mathematical
methods as well as some applications). Continuous control spaces typically fail to be
convex with respect to the norm topology; hence their analysis requires more sophisti-
cated topological concepts. In addition, well-posedness is often not naturally present,
and a regularization of the problem is required to guarantee convergent discretization
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schemes. For MIPDECO problems, the integer nature of some of the control variables
imposes additional difficulties, including convexity issues and the disconnectedness
of the control space.

Two approaches exist for the solution of optimization problems constrained by
differential equations: discretize-then-optimize and optimize-then-discretize (see, e.g.,
[24, Sect. 3.2], or [23]).Here,we follow thediscretize-then-optimize approach, because
our basic idea is to transform the given semi-continuous problem into an approximat-
ing mixed-integer linear program (MILP). This approach was also chosen in recent
publications that required discrete decision variables in PDE-constrained optimiza-
tion problems, such as [22], where a finite-volume method is applied. Moreover, we
believe that it is unlikely that an optimize-then-discretize approach can be developed
for MIPDECOs, because it would imply the existence of algebraic optimality condi-
tions for finite-dimensional general MILPs.

To study MIPDECO problems, one must combine knowledge from two fields of
mathematics, namely, numerics of PDEs and discrete optimization, which historically
have little in common and generally use completely differentmodels andmathematical
tools. The study of the numerics of PDEs began with the work on finite-difference
methods by Richardson in 1911. The examination of discrete or linear optimization
was fundamentally influenced by the work of Dantzig in 1947; see also [8]. Research
on problems requiring PDEs to be integrated into discrete optimization problems has
only recently begun. Most of these studies focus on problems where the PDEs are
defined on the arcs of some given network, such as in traffic flow problems [14], in
production networks [10,15,19], additivemanufacturing [33], gas [26] and heating [27]
networks, or in the coolest path problem [12]. In contrast the problems studied here are
constrained by a time- and space-dependent PDE, while their control is constrained by
binary variables. To our knowledge publications considering those kinds of problems
consider only a one-way influence,meaning that only the PDE is influenced by the flow
of the network [4] or the PDE is an additional constraint for the flow on the network
[20] without itself being affected by the network flow. The model described here, as
showcased by the first application presented in this work, allows for an interdependent
bilateral influence: the decision variables may be constrained by the state described
by the PDE, and the control of the PDE may be simultaneously constrained by the
decision variables.

A critical point in this work is to identify a discretization strategy of the continuous
states given by the solution of a PDE that yields anMILPwhose complexity still allows
for an effective solution of its linear relaxation by the simplexmethod.An investigation
of this issue revealed that an MILP formulated with the linear constraints directly
obtained from a discretization of the PDE by finite differences led to an unacceptably
long computation time of the tested state-of-the-art branch-and-bound solver, even
though the resulting discretized model was sparse. Although we have not carried out
similar computational studies for the finite-element method, we conjecture that the
same runtime behavior can be expected. Hence, here we derive an effectively treatable
MILP through an additional preparation step that greatly enhances the performance
of the subsequent branch-and-bound computation: In our approach a basis of the
control space is chosen, and all states corresponding to these basis control functions
are computed in advance by solving the continuous state equation in each case. By
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linearity of the problem the state corresponding to a particular control can quickly be
determined by superposition of the previously determined basis states. We note that
the dimension of the basis depends linearly on the number of controls and does not
grow with the size of the discretization of the PDE or with the exponential complexity
of the MILP. In the chosen applications, exploiting the time invariance of the linear
system defined by the PDE allows for an additional significant reduction (by a factor
of the number of time steps) of the computational efforts of the preprocessing routine.
This second simplification is not essential for the proposed method to work. The latter
can still be advantageously used in applications, without time invariant controls, if
the preprocessing time remains negligible in comparison to the time the MILP solver
requires. Here, it should be considered that the precomputation of states for the basis
of the control space can be carried out in parallel, which makes the proposed method
even more competitive on parallel architectures.

The remainder of this paper is organized as follows. After the formulation of the
general model (Sect. 2), we provide some basic concepts both of the discrete optimiza-
tion and of the numerics of partial differential equations that are required for deriving
our solution scheme (Sect. 3). Next, two applications are presented that are inspired
by real-world problems: First, the organization of a firefighter mission is discussed
(Sect. 4.1). The goal in this application is to minimize damages caused by a spreading
wildfire using firefighters operating on the roads inside the forest. While the spread
of the fire is modeled by using appropriate PDEs, which also take into account the
effect of the firefighters trying to extinguish the fire, the movement of the firefighters is
modeled by a dynamic network flow, which is constrained by the temperature function
defined via the PDE. The second problem is the prevention of the contamination of a
river by wastewater due to mixing (Sect. 4.2). The idea here is that an underground
flow is going from a contaminated site to a nearby river. In order to minimize the con-
tamination of the river, a fixed number of cleaning facilities that can filter the flow have
to be installed at optimal locations. For these two examples three different kinds of
implementation are presented, and their numerical effectiveness in providing optimal
solutions is analyzed (Sect. 6). In Sect. 7 we discuss our conclusions derived from the
computational experiments and present ideas for future work.

2 General framework for mixed-integer PDE-constrained problems

The class of problems studied in this work fits into the framework of mixed-integer
PDE-constrained optimization problems. As the name suggests, MIPDECO prob-
lems are a superclass of PDE-constrained optimization problems allowing for integer
restrictions on a subset of the variables. Hence, in addition to the general challenges
of PDE-constrained optimization, these problems include combinatorial restrictions
that have to be taken into account when developing solution methods. Additionally,
even if sufficiently regular boundary and initial conditions guarantee the existence of
a unique function satisfying the PDE, this solution function may not possess a rep-
resentation in a closed form. Consequently, the required state variables in the MILP
cannot simply be substituted by simple terms that can quickly be evaluated by theMILP
solver. As is common practice for the numerical treatment of PDEs, finite-dimensional
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systems of (linear) equations are used in this work to approximate the PDEs. These
finite-dimensional systems scale with the resolution of the approximation, and even a
relatively coarse discretization scheme may lead to a system that cannot be handled
by state-of-the-art MILP solvers. This work carries out computational studies for a
specific type of MIPDECO problem in order to analyze which kind of methods are
the most promising with regard to the poor scaling behavior as the resolution of the
approximation is refined.

In the problem class considered here, we assume that the PDE defining the state
function u is linear over a squared domain1 � ⊂ R

2 and a time interval [0, T ]. The
vector-valued function z : [0, T ] → {0, 1}dz , dz ∈ N, contains all binary variables and
w : [0, T ] → R

dw , dw ∈ N, is the vector of the continuous variables used in the control
of the PDE and other continuous variables needed to formulate control restrictions.
The continuous variables are assumed to be square integrable, that is, functions in
L2([0, T ]) in each component. The objective function is denoted by φ : H×G → R,
where H is the space of regular functions in which the state variable u is searched in
(usuallyH = L2(0, T ,W ), which is a space of functions defined on the time interval
[0, T ] with values in a suitable Sobolev space W = W (�) of functions defined on
� to express regularity in space (see e.g. [1]), with W -norms that are L2-integrable
over the time interval [0, T ], and G is the set comprising the control variables w. All
constraints besides the PDE are collected in an operator H , which is assumed to be
linear and bounded. If the partial differential operator of the PDE is given by D, then
the continuous versions of the optimization problems studied here are of the type

min
u,w,z

φ(u, w)

s.t. D(u) = y(w)

u|t=0 = f

α u|∂� + β ∂u
∂n

∣
∣
∂�

= g

H(u, z, w) ≥ 0.

(1)

The operatorD provides a mapping from the state-spaceH to the space Y comprising
all right-hand sides y(w) that can be adjusted by the control variables w. By choosing
the functions α, β : ∂� → R, different boundary conditions such as Dirichlet, Neu-
mann, or Robin boundary conditions (as employed in the wildfire benchmark problem
in Sect. 4.1) can be realized. While every choice of w defines the corresponding state
u, the constraints expressed by H may include restrictions on w depending on u.
Therefore, the PDE cannot be solved independently of the flow variables, nor can
feasibility of the flow variables be guaranteed without taking the solution of the PDE
into account.

For any kind of model that involves a PDE a usual requirement is that the PDE
be “well posed”, meaning that a unique solution exists that continuously depends on
the data [21]. Well-posedness is a natural condition for any system that is supposed
to model real-world problems. While existence and uniqueness of the solution are

1 The theory can equivalently be formulated for general domains—a square is employed here for notational
simplicity.
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required for a plausible interpretation of the solution, only continuous dependence on
the data allows for a meaningful approximate approach for solving the problem. For
this reason the methods should be applied only if the PDE is guaranteed to be well
posed.

3 Background

Because methods from two separate fields of mathematics are used in this work, we
give a short introduction to the relevant concepts required in order to follow the later
sections with more emphasis on methods for handling PDE constraints. A more in-
depth study of the methods and concepts can be found in the references given in the
particular sections.

3.1 Methods for solvingmixed-integer linear programming problems

Many combinatorial optimization problems can be modeled as mixed-integer linear
programs such as

min{cᵀx |Ax ≤ b, x ≥ 0, x ∈ R
p × Z

q}, (2)

where n = p + q; A ∈ R
m×n is the constraint matrix; b ∈ R

m is the right-hand
side; c ∈ R

n are the objective function coefficients; and x ∈ R
n are the unknowns

or variables of the problem partitioned into continuous variables, xC , and integer
variables, xI , such that x = (xC , xI ). The term cᵀx is called the objective function,
Ax ≤ b is the constraint system, and x ≥ 0 are the bound constraints. More general
constraints such as finite lower and upper bounds or equality constraints are easily
included.

MILPs are usually solved by solving a number of related, easier-to-solve linear
programming (LP) subproblems. LPs are an important subclass of MILPs in which all
variables are continuous. In particular, the LP relaxation of (2) is defined as the MILP
in which all integrality restrictions have been relaxed:

min{cᵀx |Ax ≤ b, x ≥ 0, x ∈ R
n}. (3)

The classical method for solving LPs is the revised simplex method (RSM), whose
origins date back to [7]. The most successful simplex method in the context of MILP
is the dual simplex method, which is equivalent to the RSM applied to the dual of (3).
Because the dual simplex method starts from a primal infeasible vertex and maintains
dual feasibility, it is especially well suited to the reoptimization needed in MILP
methods that are described next. For more details on linear programming, we refer to
[6].

Allmethods for solvingMILPs build on efficient and robust LP solvers. The branch-
and-bound method starts by solving the continuous relaxation of (2) in which all
integrality restrictions have been relaxed, resulting in (3). The solution of this LP
provides a lower bound on the optimal solution of the MILP. If the solution of the
LP relaxation is integer feasible, that is, if xI ∈ Z

q , then we have solved the MILP.
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Otherwise, we choose an integer variable, zi that takes a nonintegral value, ẑi , and we
branch on this value by introducing two LPs with added constraints,

zi ≤ �̂zi� and zi ≥ 	̂zi
,

respectively, where �a� is the floor (rounded down integer) of a and 	a
 is the ceiling
(rounded up integer) of a. The branch-and-bound method continues by solving one of
these new LPs, branching again, if the solution is nonintegral. This process creates the
branch-and-bound tree, whose nodes are LP relaxations and whose edges correspond
to branching on variables. The branch-and-boundmethod continues to search this tree,
solvingLPs until no unexplored node is left. A node is explored if we (1) have branched
on a variable, (2) have determined that the LP relaxation is infeasible (in which case
all LPs in the corresponding subtree are infeasible), (3) have found an integral solution
(which provides an upper bound), or (4) have determined that its lower bound is larger
than the current upper bound.

An alternative approach to the branch-and-bound method is the cutting-plane
method which is motivated by the observation that we can solve an MILP in a single-
shot LP solution step if we know the convex hull of the feasible set of the MILP (2).
Unfortunately, determining the convex hull of a general mixed-integer set is as hard
as solving an MILP. However, we can often easily find a hyperplane that separates a
current point, z(k), from the convex hull of (2). By adding such cutting planes to the
LP relaxation, we successively tighten this relaxation until we obtain an integer point.

Modern MILP solvers combine these two approaches into a branch-and-cut
approach that adds a possible cut-generation step before each node of the branch-
and-bound tree is solved. Often, we can find classes of cutting planes that are large
(exponential in the dimensions n orm), and such classes are handled by a cut pool that
adds them one at a time as violated cuts are found. The use of the dual simplex method
in the solution of the LPs means that the reoptimization needed in the branch-and-cut
approach can be implemented efficiently. See, for example, [13,31], for a discussion
of branch-and-cut schemes.

While MILP solvers have achieved a great degree of success, their intrinsic proper-
ties make them less suitable for MIPDECOs, as we demonstrate below. In particular,
the following two aspects of their implementation,which is tailored to “normalMILPs”
(i.e., MILPs without PDE-type constraints), make solving MIPDECOs difficult:

– The constraint matrices from 3D PDEs are often difficult to factorize, and instead,
we use iterative solvers for the solution of the discretized PDE. Unfortunately,
these iterative solvers are fundamentally incompatible with rank-one updates, and
hence the fast reoptimization cannot be readily implemented for MIPDECOs.

– Before actually solving linear programs and performing branch-and-bound, the
solver tries to shrink the problem size by eliminating redundancies in the formu-
lation and by strengthening bounds on variables. Dittel et al. [10] demonstrated
that these routines tend to accumulate small numerical errors, so that after several
time steps an infeasibility of the initial problem is wrongfully detected.
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3.2 Finite-differencemethods

The general idea of finite-difference methods is to replace a (partial) differential equa-
tion defined on a continuous domain by a finite-dimensional system of equations of
real variables, which approximate the solution of the differential equation on a grid.
The grid used for finite-difference methods is often equidistant in each coordinate
direction. Here, we consider nodal finite-difference methods, which for every point of
the grid define a variable that is associated with the function value of the solution of
the PDE. With these variables a system of equations is defined, which are obtained
by replacing the differential operators of the PDE by divided differences centered at
the grid points. In the case of linear PDEs the resulting system is also linear. Finite
differences have a consistency error that vanishes with increasing grid resolution (i.e.,
h → 0), such as

u′(x) = u(x + h) − u(x)

h
+ O(h) forward difference,

u′(x) = u(x) − u(x − h)

h
+ O(h) backward difference,

u′(x) = u(x + h/2) − u(x − h/2)

h
+ O(h2) central difference,

u′′(x) = u(x + h) − 2u(x) + u(x − h)

h2
+ O(h2) second-order central difference,

which can be derived from the Taylor expansions for sufficiently smooth functions.
Becausewe are interested in phenomena that depend on space and time, we distinguish
between the spatial domain �, which is assumed to be a square of side length l so
that � = (0, l) × (0, l), and the time domain [0, T ] representing the modeled period
of time. For functions u : � × [0, T ] → R we use the following notations for their
partial derivatives:

∇u(x, t) :=
(

∂u
∂x1

(x, t)

∂u
∂x2

(x, t)

)

,

�u(x, t) := ∂2

∂x21
u(x, t) + ∂2

∂x22
u(x, t).

To illustrate how the idea of finite-difference methods is applied in practice we
consider linear convection-diffusion equations of type

∂u

∂t
(x, t) − c(x) · ∇u(x, t) − ∇ · (D(x)∇u(x, t)) = y(x, t, w), x ∈ �, t ∈ (0, T ],

(4a)

∂

∂n
u(x, t) = hL(x) (UL(x) − u(x, t)) , x ∈ ∂�, t ∈ (0, T ], (4b)

u(x, 0) = g(x), x ∈ �, (4c)
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where n = n(x) is the outer normal at x ∈ ∂�. We further assume that the param-
eters satisfy c(x) ∈ R

2 and D(x) ∈ R
+ and that UL , hL : ∂� → R, and g : � → R

are continuous functions. All PDEs considered in our applications are of this type with
varying parameters and domains.

For general parabolic problems with Robin boundary conditions and moderate
boundedness assumptions on the data, a proof of the existence of a unique solution
in the Sobolev space of time-space square-integrable functions with square-integrable
first order spatial weak derivatives is given in [28, Th. 4.1, p. 126]. The continuous
dependence on the given data can be obtained as follows: Applying the time-space
norm of the underlying Sobolev space as defined, e.g., in [28, p. 122] to the weak
form of the convection diffusion problem, which is also stated in [28, p. 122], yields a
priori bounds such as those presented in [28, p. 267] for elliptic problems with Robin
boundary conditions. These imply continuous dependence on the equation’s data due
to its linearity.

To reduce the continuous domain to a finite set of points, we define a grid. Let px +1
be the number of points in each spatial coordinate direction (which, for simplicity, are
chosen equal in both spatial directions), and let pt + 1 be the number of points in the
time coordinate direction.

Throughout this paper, we use the notations T := {0, 1, . . . , pt } and X :=
{0, 1, . . . , px } for the index sets. Using these notations, we can define a linear system
with variables uti, j for each i, j ∈ X and t ∈ T in such a way that these variables
approximate the real values u(i · �x, j · �x, t · �t) of the solution to (4a)–(4c).

This linear system is initialized by the values of g evaluated on the grid, which
serve as a discrete version of the initial condition (4c), namely,

u0i, j = g(i · �x, j · �x), i, j ∈ X. (5)

In order to find a suitable replacement for the boundary condition (4b), the so-
called ghost point method is used. In this method additional variables ut−1,i , u

t
px+1,i ,

uti,−1, u
t
i,px+1 for all i ∈ X and t ∈ T are included, so that central differences can be

used for the points lying on the boundary of �. The derivatives in the direction of the
outer normal can therefore be approximated by

∂
∂n u(0, i · �x, t · �t) ≈ ut−1,i−ut1,i

�x , ∂
∂n u(l, i · �x, t · �t) ≈ utpx+1,i−utpx−1,i

�x

∂
∂n u(i · �x, 0, t · �t) ≈ uti,−1−uti,1

�x , ∂
∂n u(i · �x, l, t · �t) ≈ uti,px −uti,px−1

�x

, i ∈ X, t ∈ T.

(6)

Substituting (6) into (4b) and replacing u(i · �x, j · �x, t · �t) by uti, j in (4b), we
obtain the discrete boundary conditions allowdisplaybreaks

ut−1,i − ut1,i = �x ·hL(0, i · �x)(UL(0, i · �x) − ut0,i ), i ∈ X, t ∈ T,

utpx+1,i − utpx−1,i = �x ·hL(l, i · �x)(UL(l, i · �x) − utpx ,i ), i ∈ X, t ∈ T,

uti,−1 − uti,1 = �x ·hL(i · �x, 0)(UL(i · �x, 0) − uti,0), i ∈ X, t ∈ T,

uti,px+1 − uti,px−1 = �x ·hL(i, l)(UL(i, l) − uti,px ), i ∈ X, t ∈ T.

(7)
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We use a Crank-Nicolson-type implicit method for approximating the differential
operators in (4a). Therefore, the differential operators in (4a) are replaced by the
approximating difference quotients

∂u

∂t
(i · �x, j · �x, t · �t) ≈ +uti, j − ut−1

i, j

�t
, i, j ∈ X, t ∈ T,

�u(i · �x, j · �x, t · �t) ≈ +ut−1
i−1, j + ut−1

i, j−1 − 4ut−1
i, j + ut−1

i+1, j + ut−1
i, j+1

2�x2

+ uti−1, j + uti, j−1 − 4uti, j + uti+1, j + uti, j+1

2�x2
, i, j ∈ X, t ∈ T,

∂u

∂x1
(i · �x, j · �x, t · �t) ≈ +ut−1

i+1, j − ut−1
i−1, j

4�x
+ uti+1, j − uti−1, j

4�x
, i, j ∈ X, t ∈ T,

∂u

∂x2
(i · �x, j · �x, t · �t) ≈ +ut−1

i, j+1 − ut−1
i, j−1

4�x
+ uti, j+1 − uti, j−1

4�x
, i, j ∈ X, t ∈ T.

After simplification we obtain the equations

(2R + r2)(u
t−1
i, j−1 + uti, j−1) + (2R + r1)(u

t−1
i−1, j + uti−1, j ) − (4 + 8R)ut−1

i, j

+ (2R − r1)(u
t−1
i+1, j + uti+1, j ) + (4 − 8R)uti, j + (2R − r2)(u

t−1
i, j+1 + uti, j+1)

+ y(i · �x, j · �x, t · �t), i, j ∈ X, t ∈ T, (8)

with R = D �t
�x2

, r1 = c1 �t
�x and r2 = c2 �t

�x . The linear system hence is given by (5),
(7) and (8). The resulting system can be shown to be second-order accurate; and it
is also a so-called unconditionally stable method, which implies that it converges for
small step sizes for all grid ratios (see, e.g., [32]).

3.3 Galerkin and finite-elementmethods

The finite-element method (FEM) can be considered a particular Galerkin approach
adapted to the discretization of PDEs. Galerkinmethods can be applied to approximate
stationary points of general variational problems. In the approach presented here it is
employed to determine an approximation of the continuous linear state equations,
which are thus altered to linear equation constraints for the MILP approximating the
originally given MIPDECO.

If D : H → F denotes a linear operator mapping from a space of (generalized)
functions H defined in � to a space of generalized functions F , both being a subset
of the space of square-integrable real-valued functions L2 = L2(�), and if y ∈ F is
given, a Galerkin approximation to the solution u ∈ H of the general problem

Du = y , (9)

which is assumed to be well posed, can be constructed as follows: Choose two
finite-dimensional linear function spaces V with basis v1, . . . , vp and W with basis
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w1, . . . , wq (usually we assume p = q). The accuracy of the method is governed by
the error estimate of the best approximation of a given function inH by discrete func-
tions from V and by the error estimate of the best approximation of a given function in
F by discrete functions from W (see below). If further we define the standard scalar
product in L2,

〈 f , g〉 =
∫

�

f g dx, (10)

then the Ansatz

uh =
p

∑

k=1

akvk ∈ V (11)

with unknown coefficients a = (ak)k=1,...p ∈ R
p can in the case p = q be uniquely

identified by solving the linear system

p
∑

k=1

ak〈vk, w j 〉 = 〈y, w j 〉 , j = 1, . . . q (12)

with systemmatrix S = (〈vk, w j 〉)1≤k≤p,1≤ j≤q if rank S = p = q. Galerkin methods
provide wide freedom in designing discretization schemes for linear operator equa-
tions. Moreover, the quality of the Galerkin approximation can be controlled by the
best approximation properties of chosen test-and-trial spaces, which allow for rigorous
control of accuracy. In the context of FEM spaces (see below) the quality of the best
approximation is often estimated via the interpolation error; see [3, Ch. II, §6].

A FEM is now characterized by a particular choice of V and W : These spaces
are constructed with the help of a partitioning of the underlying domain into simple
geometric elements such as triangles or quads in a planar case. This partitioning defines
ameshwith elements, edges, and vertices (see [3] for details). The test-and-trial spaces
are now defined as finite-dimensional function spaces containing functions of a certain
overall (Sobolev) regularity (see [1] for all questions related to Sobolev spaces) whose
restriction to a particular mesh element is a multivariate polynomial of a defined
degree. The required overall regularity is usually guaranteed by demanding that certain
functionals associated with mesh entities be continuous over element boundaries.
In the simplest case, a triangle mesh can be chosen with globally continuous test-
and trial-functions whose restriction to any individual triangle is a linear polynomial
(particularly, V = W ). Continuity is then algorithmically guaranteed by requiring
continuity in all vertices of the mesh. In this case, the degrees of freedom are given
by the values associated with the vertices of the mesh, and a basis of V = W can be
obtained by choosing “hat functions”, that is, continuous functions that are linear on
each triangle with value 1 in one node and 0 in all others. The numerical efficiency of
the FEM is connected with the fact that these basis functions are almost local; that is,
they share their support only with basis functions in their direct environment. Hence
S is sparse.
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We will now briefly recall how one obtains a discrete formulation of the state
equation (4a)–(4c) employed in the two benchmark computations presented in this
paper. Basically two ways could be chosen that would lead to a discretization of
the state equation. The first way involves a two step approach where first a purely
spatial FEM is applied, yielding a system of ordinary differential equations (ODEs)
with continuous time variable. The latter can then be treated by any absolutely stable
standard method for ODEs. In the second approach a time-space-Galerkin scheme is
directly applied, specifically, a set of test-and-trial functions are used that vary with
respect to both time and space (see, e.g. [36, Ch. 9]). In this case the underlying
function space is the space L2(0, T , L2(�)) of functions mapping the time interval to
L2(�) such that the time-dependent L2(�)-norms are square-integrable over [0, T ]
with scalar product

〈 f , g〉 =
∫ T

0

(∫

�

f (x, t)g(x, t) dx

)

dt . (13)

In this case, basis functions of the type v(x1, x2)w(t) can be chosen, where v and w

are both piecewise polynomials glued together in such a way that a particular global
regularity arises. Good results with respect to long-term stability have been achieved
with discontinuous Galerkin methods for the temporal test-and-trial functions (see
[36]). The latter approach seems to be, in general, more adequate for deriving equality
constraints to be used within a MILP, since it offers more freedom for algorithm
design and, particularly, the opportunity to adjust spatial and temporal discretization
parameters simultaneously. Nevertheless, the classical approach via the spatially semi-
discrete problem is chosen here. This choice results from the efficient strategy proposed
in this work to decompose the space of feasible states in advance, in the sense of a
prepossessing step, making a time-space-Galerkin approach obsolete (see Sect. 4.1).
Moreover, in many cases both approaches lead to equivalent algorithmic schemes.

For the semi-discretization step the domain � is triangulated, yielding a set of
elements T , edges E , and vertices V . As test-and-trial space we chose

V = W = {

v ∈ C(�) : v(x1, x2)|T = aT x1 + bT x2 + cT , T ∈ T , aT , bT , cT ∈ R
}

,

(14)

where C(�) is the space of functions that are continuous on �. It is well defined
because equality of the values assigned to any vertex in V for all adjacent elements
is already sufficient for global continuity. This is a finite-dimensional vector space of
functions possessing Sobolev H1-regularity whose dimension p = dim V = card V is
given by the cardinality of the set of vertices V . This choice of discretization would fail
to yield good results for convection-diffusion problems in three spatial dimensions,
which is not the case for the problems considered here. Next, Eq. (4a) is brought into its
so-called weak form by multiplying an arbitrary test function ϕ ∈ H1(�), integrating
over �, and applying Green’s identity (see, e.g., [3]).
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The resulting equation is

〈
∂u

∂t
(·, t), ϕ

〉

− 〈c · ∇u(·, t), ϕ〉 + 〈D∇u(·, t),∇ϕ〉 +
∫

∂�

hL(x)u(x, t)ϕ(x) dx

= 〈y, ϕ〉 +
∫

∂�

hL(x)UL(x)ϕ(x) dx (15)

and is required to hold for all ϕ ∈ H1(�). This formulation already contains the
required Robin boundary conditions. An adjustment of the test- and trial space as
required in the case of Dirichlet boundary conditions is not necessary here. Inserting
now the discrete Ansatz uh = ∑p

k=1 akvk and testing with all basis functions vk ,
1 ≤ k ≤ p, we obtain the linear ODE system

(SD + Dc + NhL )a + M
∂a

∂t
= bi + bbd (16)

of first order for the time-dependent vector a = (ak)1≤k≤p of degrees of freedom
corresponding to approximations to the function values in the vertices with the stiff-
ness matrix SD = (〈D∇vi ,∇vk〉)i,k , the mass matrix M = (〈vi , vk〉)i,k , the damping
matrix Dc = (〈c · ∇vi , vk〉)i,k , the boundary mass matrix NhL = (〈hL∇vi , vk〉∂�)i,k ,
the vector of inner loads bi(〈y, vk〉)k , and the vector of boundary loads bbd =
(〈hLUL , vk〉∂�)k . The subscript ∂� indicates that the scalar product in L2(∂�) must
be used.

In order to obtain a fully discrete scheme, the ODE system (16) has to be discretized
with respect to time. In the simplest case, a backward Euler approach can be applied
approximating ∂a

∂t (t ·�t) ≈ (a(t ·�t +�t)−a(t ·�t))/�t ·�t with a discretization
of the time interval in equidistant steps, as described in the beginning of this section.
We arrive at the large set of equality constraints for the degrees of freedom of the
discretized state at discrete time t ∈ T of the form

(

SD + Dc + NhL + 1

�t
M

)

at+1 = bi + bbd + 1

�t
Mat (17)

for all t ∈ T, beginning with a projection of the initial values on the spatial discrete
space a0 in t = 0. Since the backward Euler scheme is absolutely stable, the time step
size �t is limited only because of accuracy requirements as long as SD + Dc + NhL
is sufficiently well conditioned, which is always the case for diffusion-dominated
problems. If convection is dominant, however, numerical problems can bemitigated by
choosing a small�t . From the fully discrete function uh ∈ V with uh(xk, t ·�t) = atk
with k being the index of the node xk ∈ V , approximated states can be computed
in arbitrary points x ∈ � by first identifying the element x is contained in and then
inserting its barycentric coordinates in a representation of the restriction of uh to the
particular element.
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3.4 Dynamic flow on a graph

Because the wildfire application (see Sect. 4.1) requires the modeling of network
dynamics, we briefly introduce flows on directed graphs; for a formal definition we
refer to [9]. Let G = (N , A) be a directed graph, digraph, or network, which is a pair
of two finite nonempty sets N , the nodes, and A, the arcs, where the elements of A
are ordered pairs of elements from N . Let ca be the capacity, δa the transit time, and
La the length of arc a ∈ A. Furthermore, let there be two distinguished nonempty
subsets: N+ ⊂ N , the sources, and N− ⊂ N , the sinks. A dynamic flow on G of
duration T is a set of functions given by

fa : [0, T ] × [0, La] �→ R
+

(θ, x) →
{

0, θ ≤ x δa
La

,

ha(θ − x δa
La

), θ > x δa
La

,

where ha : (0, T ] �→ R
+ are weakly differentiable functions2. The excess at a node

j ∈ N is given by

ex( j, θ):=
∑

i∈N :(i, j)∈A

∫ θ

0
f(i, j)(t, Li, j ) dt−

∑

i∈N :( j,i)∈A

∫ θ

0
f( j,i)(t, 0) dt θ∈[0, T ],

and the external flow f j at a node j ∈ N is defined as

f j (θ):= d

dθ
ex( j, θ)=

∑

i∈N :(i, j)∈A

f(i, j)(θ, Li, j )−
∑

i∈N :( j,i)∈A

f( j,i)(θ, 0) θ∈[0, T ]

Note that if we identify the tail of a with 0 and the head with La , the functions fa
of a dynamic flow are the solutions of the aforementioned linear transport equation on
a, namely,

∂

∂t
fa(t, x) + La

δa

∂

∂x
fa(t, x) = 0, t ∈ (0, T ], x ∈ (0, La],
fa(0, x) = 0, x ∈ (0, La],
fa(t, 0) = ha(t), t ∈ (0, T ],

with ha as the boundary condition in 0. Furthermore, the excess of a node j at time θ

is the difference between the flow that has arrived at j and the flow that has started in
j . Now, because any set of weakly differentiable functions ha : (0, T ] �→ R

+, a ∈ A
can be used to define a dynamic flow, we have to impose additional constraints in
order to actually link the flows on the individual arcs.

We say that a dynamic flow of duration T is flow conserving if

f j (θ) ≥ 0, j ∈ N\N+, θ ∈ [0, T ],
2 In order to simplify notation it is assumed that these functions extend to (−∞, 0) with value zero.
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f j (θ) ≤ 0, j ∈ N\N−, θ ∈ [0, T ].

From the definition of a dynamic flow, it directly follows that the external flows are
given by

f i (θ) =
∑

k∈N :(k,i)∈A

h(k,i)(θ − δk,i ) −
∑

k∈N :(i,k)∈A

h(i,k)(θ), θ ∈ [0, T ], i ∈ N .

(18)

Hence, although defined for the fa , flow conservation is best explained as a restriction
on the ha . They have to be chosen in such a way that the external flow is negative
at sources, positive at sinks, and zero at all other nodes, coinciding with the physical
interpretation of a flow passing through the network.

Depending on the application, a variety of other approaches can be found in the
literature to model flows in networks. One possibility for expressing dynamic changes
of a network flow was given by Göttlich et al. [18]. They derive flow models from
PDEs, thus allowing for the inclusion of physical properties of the flow occurring, for
example, inside the pipes of gas networks.

Another possibility is given by Skutella [35] via the concept of flow over time,
conveyed by a set of positive-valued Lebesgue integrable functions for each arc: Note
that Eq. (18) and a change of variables can further be used to show the following
identity for the excess:

ex( j, θ) =
∫ θ

0
f j (t) dt =

∑

i∈N :( j,i)∈A

∫ θ

0
h( j,i)(t − δ j,i ) dt −

∑

i∈N :(i, j)∈A

∫ θ

0
h(i, j)(t) dt

=
∑

i∈N :( j,i)∈A

∫ θ−δ j,i

0
h( j,i)(t) dt −

∑

i∈N :(i, j)∈A

∫ θ

0
h(i, j)(t) dt .

(19)

Furthermore, if N+ = {s} ⊂ N and N− = {t} ⊂ N , any choice of the ha defining
a flow conserving dynamic flow is called a strongly flow conserving (s, t) flow over
time.

3.5 Numerical considerations

In choosing an adequate discretization of the PDE model given in the context of
a MIPDECO, several points are of particular interest: sufficient accuracy that can
be controlled via numerical parameters, particularly avoidance of instabilities, and
avoidance of mesh dependencies. As far as the first point is concerned, problems
involving a discrete control of PDEs may suffer from the appearance of physically
unstable states, which often take the form of periodically oscillating states whose dis-
cretized objective value is much smaller than that of approximations to the physical
solution. This phenomenon typically arises in topology optimization. While earlier
it was assumed that this phenomenon can be attributed to the existence of solutions
whose figure of merit (for mechanical problems often stiffness) is a consequence of a
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developing micro-structure, it is nowadays accepted that a bad approximation of the
solution of the PDE by the employed discretization method is the reason for it [34].
In the presented approach, this so called checkerboarding is avoided by the employed
numerical schemes used to discretize the PDE, whose convergence is granted and
uniform with respect to the finite dimensional control space. For the finite element
discretization this follows from arguments similar to those presented in [36, Ch. 4]
(particularly from an extension of Theorem 2 to Robin boundary conditions). For the
Finite Difference approach, results from [28, Chapter 6, §8], can be utilized to show
the convergence of the chosen discretization. It should be noted, that checkerboarding
is a more serious problem in three-dimensional convection diffusion problems, where
the incompressibility of the convective medium is considered via an additional con-
straint whose discretization may lead to stability problems. The second point, mesh
dependence, has experimentally been studied in the application part of this work.

Another important issue to be considered in the numerical solution of general
optimal control problems is chattering. While checkerboarding and mesh dependency
are purely numerical problems, chattering is related to properties of the solution of a
time depending control problem:Under certain conditions, optimum trajectories either
in the target space or in the state space may exist that fail to be smooth and that tend
to oscillate infinitely many often on a finite time interval, see [5] or the introduction
to the book [38]. It is well known that the existence of chattering solutions occurs
generically for control problemswith constraints defined via aHamiltonian that allows
for admissible paths on a singular manifold. The existence of chattering solutions is
known to be a possible reason for non converging numerical procedures. However, the
consideredMIPDECO problemwith a one-dimensional state variable does not belong
to a class of problems known to have chattering solutions: The energy dissipation of
parabolic equations attenuates the effect of control switches, so that fast switching
does not yield an immediate effect. Accordingly, chattering has never occurred during
the numerical experiments reported on later in this work. However, a rigorous proof
of this observation is beyond the scope of the present study.

4 Examples of MIPDECO problems

We consider two MIPDECO problems that are motivated by real-world applications.
The first application considers the optimal response to wildfires, and the second appli-
cation computes optimal controls to prevent contaminants in subsurface flow from
reaching a river.

4.1 Wildfire containment

Our goal in the first example is to reduce the impact of wildfires, and we consider
the following situation that fits the framework of MIPDECO. In a forest close to a
populated area with a firefighting department a wildfire in its early stages is reported.
Leaving it burning uncontrolled not onlymight endanger the local population and their
properties but alsomight lead to amajor hazard for the whole region. Of utmost impor-
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tance therefore is that the firefighters plan their response in an optimal way. However,
the safety of the units taking part in the operation must be ensured. While most of the
forest cannot be crossedwith heavy equipment, there is a road network inside the forest
that can be used for firefighting operations. All movements are restricted to this road
network. In addition no movement should take place on roads leading through or too
close to burning territory, since this might endanger the firefighters themselves. Also,
the available resources for controlling the fire (water, equipment, and manpower) are
limited; therefore an optimal resource allocation and proper scheduling might make
the difference between either getting the fire under control or a major disaster.

Two types of dynamics are interacting in this kind of problem and have to be taken
into account for optimal planning: (1) the spreading of the fire, where physical experi-
ence allows for predicting its spread direction and its velocity, and (2) the movement
of the firefighters and their extinguishing agents (water). Since the ultimate goal of
any firefighter mission is to limit the spread of the fire and the fire itself might restrict
the movement of the firefighters, these two dynamics have to be described in a joint
model. We use a time-dependent PDE to model the fire and a dynamic network flow
to model the movements of the firefighters or, more precisely, the water that is used. In
order to express the interdependencies, the flow variables of the network are used as
control variables for the PDE, and additional constraints are imposed on the network
flow, including the state variable defined via the PDE.We assume that the road network
is given in the form of a directed graph G := (N , A) with capacities Ci, j and transit
times δ̂i, j for all arcs (i, j) ∈ A. Each node i ∈ N is endowed with a coordinate
xi ∈ � ⊂ R

2, a square area of interest, and each arc a ∈ A is associated with a
straight line connecting the coordinates of its incident nodes. We further assume that
the transportation of water in the firefighting mission can be described approximately
by a flow conserving dynamic flow on G. We further distinguish two subsets of N :
The source nodes, denoted by N+ ⊂ N , represent locations where the firefighters can
release or pick up stored water into the network; and the demand nodes (sinks) denoted
by N− ⊂ N are nodes suitable for extinguishing the fire. While the assumption of
finitely many sources is obviously reasonable, the assumptions of only finitely many
places to supply water to the fire seems a bit artificial. For the time being, it is required
to impose a control problem on the PDE with only finitely many control variables.
Otherwise, regularization techniques would be required to render the control problem
well-posed (see [24, Ch. 1]), which is out of the scope of this work. If one wants to
get an idea what the finiteness of sinks could mean in practice one could think of a
bad ground, with only some place where the equipment for fighting the fire can be
mounted. We introduce the time horizon [0, T ] as the duration of the mission. As
shown in the preliminaries, it suffices to specify the boundary functions expressing
the flow entering the arcs a ∈ A, which we denote by wa : [0, T ] �→ R

+. The flows
entering at source nodes s ∈ N+ are denoted by ws : [0, T ] �→ R

−, and the flow exit-
ing at demand nodes d ∈ N− are denoted by wd : [0, T ] �→ R

+. For all other nodes
k we set wk = 0. We further introduce binary-valued functions zi : [0, T ] �→ {0, 1}
for all nodes i ∈ N . These functions are used to assess whether a node is safe or not
and are required to be 0 when the temperature at time t ∈ [0, T ] at the respective
coordinate xi exceeds a threshold UB , and 1 otherwise. Because we require the flow
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to be feasible and flow conserving, and in order to ensure the safety of the firefighters,
the following conditions are imposed:

wi, j (0) = 0, (i, j) ∈ A, (20a)
∑

i :(i,k)∈A

wi,k(t − δ̂i,k) = wk(t) +
∑

j :(k, j)∈A

wk, j (t), k ∈ N , t ∈ (0, T ], (20b)

wi, j (t) ≤ Ci, j z j (t), (i, j) ∈ A, t ∈ [0, T ], (20c)
u(xi , t) − (1 − zi (t))M ≤ UB , i ∈ N , t ∈ [0, T ], (20d)

zi (t) ∈ {0, 1}, i ∈ N , t ∈ [0, T ], (20e)

where M > 0 is an upper bound on the temperature. Here (20a) requires that initially
no flow be present in the network, and (20b) ensures the conservation of the flow.
Constraints (20c) enable flow only on those arcs (i, j) ∈ A where the respective head
node j is considered as being safe; if z j (t) = 1 for time t ∈ [0, T ] and node j ∈ N ,
then a flow is possible on any arc (i, j) up to the capacity limit Ci, j . Constraint (20d)
forces z j (t) = 0 if u(xi , t) > UB ; thus the capacity is reduced to zero when the
temperature at the head node j exceeds the thresholdUB . For modeling the dynamics
of the fire the following PDE system is considered:

ut (x, t) − c · ∇u(x, t) − D�u(x, t) = y(x, t, w), x ∈ �, t ∈ (0, T ], (21a)

∂

∂n
u(x, t) = hL(UL − u(x, t)), x ∈ ∂�, t ∈ (0, T ], (21b)

u(x, 0) = g(x), x ∈ �, (21c)

u(x, t) ≥ UL , x ∈ �, t ∈ [0, T ]. (21d)

Here the squared area � and time horizon [0, T ] are used respectively as the spa-
tial and time domains for a convection-diffusion equation with Robin-type boundary
conditions.

In (21a) the parameter D, the coefficient of the diffusion term, models the speed of
the spreading of the fire, and parameter c is the velocity field of the wind. In the follow-
ing computational studies these parameters are independent of space and time, but the
methods work also in the dependent case. The boundary condition (21b) imposes that
the normal derivative at the boundary is directly proportional to the difference of the
temperature on the boundary and the ambient temperature UL . Equation (21c) is the
initial condition, which in this case is the initial temperature distribution. Condition
(21d) keeps the temperature everywhere above the ambient temperature level. This
prevents the control function y from affecting the state in areas that are not burning.

With this type of model for the fire we are able to express the effect of the wind
and the diffusive behavior of the fire, while keeping the PDE linear. It is a simplified
version of the PDE used by Mandel et al. [30]. In order to avoid nonlinearities in the
model we implicitly assume that the additional heat generated by the nonlinear fuel
term in [30] and the temperature loss by radiation to the atmosphere are in balance.
While this is unlikely to be the case, keeping the temperature loss to the atmosphere
and at the same time leaving out the additional heat generated by the fuel term would
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Fig. 1 Summands of y for different flow intensities

result in an even less realistic model. Especially the absense of the fuel term and other
modeling decisions, such as a finite number of sources and sinks in the road network,
have to be taken account when deriving conclusions from our model.

As expressed by the dependency of y on the vectorw of flow functions, this function
connects the PDE to the dynamic flow. Various choices for y are plausible, and the
computational methods remain meaningful as long as y is regular enough to guarantee
a unique solution of the PDE system. Because the controls at different nodes do
not interact, |N−| functions that individually scale with the intensity of the control
functions wi , i ∈ N , are chosen as y. For our computational studies the following
functions are chosen:

y(x, t, w) = −γ
∑

i∈N−
wi (t) exp

(

−‖x − xi‖2
σ 2

)

. (22)

On the one hand, these function guarantee that each outgoing flow function has a
similar effect, shifted to its respective coordinate. On the other hand, they restrict the
individual control functions to a local effect, which has its maximum at the respective
coordinate xi and decreases according to a Gaussian distribution. The shape and the
scaling with the value of these functions is visualized in Fig. 1. The parameters λ and
σ can be used to further tune the height and width of the Gaussian, respectively.

The objective of any firefighting mission is to minimize the damage caused by the
fire. We assume that the damage is proportional to the integral of the temperature
u(x, t) in� over the time horizon [0, T ]weighted by a space-dependent non-negative
function ω. The use of ω guarantees that some regions can be favored over others, for
example, if they are inhabited.With this idea inmindwedefine the infinite-dimensional
problem as

min
u,w,z

∫ T

0

∫

�

ω(x)u(x, t) dx dt,

s.t. (20a)−(20e), (21a)−(21d).

(23)

4.2 Minimization of river contamination

The application in this section is illustrated in Fig. 2. We assume that there is some
contaminated area, illustrated by the orange-striped area, and some freshwater reser-
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Fig. 2 Sketch of the problem (differently scaled in x− and y−direction)

voir, illustrated by the blue striped area. Between those two areas there is a region
of porous rocks with a passing underground flow leading to an exchange of water
between the two areas. For a survey on groundwater flow modelling with contaminant
transport, we refer to [25] and the references therein.

We denote this inner area by �; it is the domain of the PDE. For simplicity (and
especially to reduce the computation times)� is considered to beonly two-dimensional
and squared. Since the flow is going from the contaminated area in the direction of the
freshwater reservoir, it is important to prevent any hazardous substances from reaching
the freshwater reservoir. To this end, cleaning facilities can be constructed inside �,
but the budget allows only for the building of K facilities. Thus, an optimal allocation
of the cleaning facilities is crucial. To model this problem we derive a model in the
framework given by (1). Similar to Winkler et al. [37], we use a convection-diffusion
equation defined on the squared area � := (0, l) × (0, l) represented by the dotted
region in Fig. 2 for modeling the underground flow:

ut (x, t) − c(x) · ∇u(x, t) − ∇ · (D(x)∇u(x, t)) = y(x, t, w), x ∈ �, t ∈ (0, T ], (24a)
∂

∂n
u((x1, 0), t) = ∂

∂n
u((x1, l), t) = 0, x1 ∈ (0, l), t ∈ (0, T ], (24b)

∂

∂n
u((0, x2), t) = hL (UR − u((0, x2), t)), x2 ∈ (0, l), t ∈ (0, T ], (24c)

∂

∂n
u((l, x2), t) = hL (UL − u((l, x2), t)), x2 ∈ (0, l), t ∈ (0, T ], (24d)

u(x, t) ≥ UL , x ∈ �, t ∈ (0, T ], (24e)

where u of (24a) represents the quantity of a pollutant in the water (a lower value indi-
cates better water quality). The flow on the two vertical sides is set to be proportional
to the difference of its level of pollution and the level on the outside, UL and UR ,
respectively, and no flow is passing through the top or bottom boundary. Therefore,
we impose homogeneous Neumann-type boundary conditions (24b) on the top and
the bottom and Robin-type boundary conditions (24c), (24d) on the borders between
the contaminated area and the freshwater reservoir. Similarly to the wildfire problem,
constraint (24e) is imposed in order to exclude physically impossible states, namely,
those states where the water quality would be better than that of unpolluted water.
The cleaning facilities filtrate the water and therefore act like sinks at the distributed
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n possible locations xi ∈ � for i ∈ {1, . . . , n}. Each cleaning facility has a function
wi associated with it that models the filtration for each instant. With these functions
we can define the control function y as

y(x, t, w) = −γ

n
∑

i=1

wi (t) exp

(

−‖x − xi‖2
σ 2

)

. (25)

Since only K facilities can be built, we define binary variables zi ∈ {0, 1} for
i ∈ {1, . . . , n}, indicating whether a facility will be built or not, and formulate the
additional restrictions as follows:

0 ≤ wi (t) ≤ Mzi , i ∈ {1, . . . , n}, t ∈ [0, T ], (26a)
n

∑

i=1

zi ≤ K , (26b)

zi ∈ {0, 1}, i ∈ {1, . . . , n}. (26c)

Here (26a) sets the filtration wi (t) to 0 if a facility has not been built or bounds it by
the maximal possible filtration M , and (26b) bounds the number of facilities by K .
With this we can formulate the continuous optimization problem as

min
u,w,z

∫ T

0

∫ l

0

∂

∂n
u(0, x2, t) dx2 dt,

s.t. (24a)−(24e), (26a)−(26c).

(27)

The objective function is an integral over the flow that is entering the freshwater
reservoir.

5 Solutionmethods

To solve problems (23) and (27), we first find an approximating finite-dimensional
system and then solve this system to optimality. Because all operators in (23) and (27)
are linear, the discretized optimization problem is in both cases a finite-dimensional
MILP. For the approximation a variety of different approaches exist, two of which
were introduced in Sect. 3. We use these methods to derive two approximations to
(23). Approximations to (27) can be derived analogously.

5.1 Direct replacement of continuous state equations

In the first approach to solve the wildfire MIPDECO presented in this work, the
continuous state equations given by the PDE are discretized and directly used as
constraints in the resulting MILP. To this end, we approximate the PDE using a finite-
difference method. However, the conclusions drawn from this approach also apply to
a FEM discretization.
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For the approximation using finite differences, we use the continuous variables uti, j
defined in Sect. 3.2; for ease of notation we assume that the coordinates xi of the nodes
i ∈ N lie on the grid, and we refer to the temperature at these grid points by uti . In the
computational studies they are interpolated by a linear combination of the temperature
at the nearest grid points.

For the discretization of the dynamic flow the characterization given by (18) is used.
Therefore, the discretization along the spatial dimension of the flow fa on the arcs
can be avoided leading to a more compact approximation. For the discrete models,
the functions wa are replaced with variables wt

i, j ∈ R
+ for all (i, j) ∈ A and t ∈ T

approximating the flow entering arc (i, j) at time t · �t . If pt (the number of time-
discretization points) is chosen independently of the transit times, then δ̂i, j is not
necessarily a multiple of �t for some arcs (i, j) ∈ A. We therefore round down the
true transit times to the nearest multiple of �t by letting

δi, j := min
t∈T:t ·�t≥δ̂i, j

t · �t,

For all t ∈ T we further introduce the discrete variables wt
i for all i ∈ N and require

wt
i ∈ R

− for all i ∈ N\N− and wt
i ∈ R

+ for all i ∈ N\N+ to ensure that flow
can enter (or leave) only at sources and sinks. Also the binary-valued functions z are
replaced by variables zti ∈ {0, 1} for all i ∈ N and t ∈ T. For the solution u of the PDE
the goal is to adapt the constraints of the continuous model such that zti ≈ zi (t · �t)
and wt

i ≈ wi (t · �t) for all i ∈ N , t ∈ T. Therefore, we approximate the dynamic
flow conditions (20a)–(20e) with the conditions

w0
i, j = 0, (i, j) ∈ A, (28a)

∑

i∈N :(i,k)∈A∧δi,k≤t

w
t−δi,k
i,k = wt

k +
∑

j∈N :(k, j)∈A

wt
k, j , k ∈ N , t ∈ T, (28b)

uti − (1 − zti )M ≤ UB, i ∈ N , t ∈ T, (28c)

wt
i, j ≤ Ci, j z

t
j , (i, j) ∈ A, t ∈ T, (28d)

zti ∈ {0, 1}, i ∈ N , t ∈ T, (28e)

where M > 0 is an upper bound on the temperature. While the state constraint (21d)
are directly adapted to the discrete setting by requiring

uti, j ≥ UL , i, j ∈ X, t ∈ T\{0}, (29)

the conditions (5), (7), and (8) with control given by (22) are added as a replacement
for (21a)–(21c). After the integral in the objective function is replaced by a trapezoidal
rule on the grid points, the discrete model becomes

min
u,w,z

�x2 �t
pt∑

t=0

px∑

i=0

px∑

j=0

ω(i · �x, j · �x)λtμiν j u
t
i, j ,

s.t. (5), (7), (8), (28a)−(28e), (29),

(30)
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where the objective coefficients are

λt =
{

0.5, t = 0
1, t > 0

, μi =
{

0.5, i ∈ {0, px }
1, otherwise

, and νi =
{

0.5, i ∈ {0, px }
1, otherwise.

In the approach discussed in this section, the discrete relations obtained by the finite-
difference method are directly encoded as constraints in the resulting MILP.

5.2 Computing discrete states for a basis of the control space

For the second approach we use the principle of superposition for linear PDEs. By this
principle, the state (i.e., the evolution of temperature) can be determined in any critical
point of the infrastructural network for a particular chosen control by superposition
of the states determined for a basis of the control space. Here, approximations to the
state PDE are computed by the FEM. This is not a principal requirement; however,
the FEM facilitates several technical steps in this approach. A discrete FEM solution,
as a function defined in whole of �, can readily be evaluated in any point where
information on the state is needed. Hence the mesh to compute the FEM solution can
be chosen independently of the set of points, where the state must be computed. In
particular, this approach allows adaptive meshing to increase the accuracy of the FEM
approximation exactly in those points where it is required.

Because the operators are linear and the control function is a linear combination of
functions, it follows for the continuous state u that

u(x, t) = uinh(x, t) +
∑

i∈N
ui (x, t), (31)

where uinh is the solution of (21a)–(21c) for w = 0 and ui are the solutions of (21a)–
(21c) for each summand in (22), that is for each term

−γwi (t) exp

(

−‖x − xi‖2
σ 2

)

and homogeneous boundary and initial conditions (i.e., set to zero). The second step is
to find a suitable approximation of each function wi in terms of the discrete variables
wt
i . We therefore define the piecewise constant control

wi (t) ≈ w̃i (t) =
∑

τ∈T
wτ
i χ[τ ·�t,τ ·�t+�t)(t) (32)

as such an approximation, where χI is the characteristic function for the interval I
(i.e., χI (t) = 1 for t ∈ I , and 0 otherwise). With this approximation we can use
the principle of superposition in order to approximate the ui . For a fixed i and τ , we
denote by ũτ

i the respective solution calculated for wτ
i = 1 and all others summands

123



718 F. Gnegel et al.

in (32) set to 0. Then, we can approximately say

ui (x, t) ≈
∑

τ∈T
wτ
i ũ

τ
i (x, t) (33)

and

u(x, t) ≈ uinh(x, t) +
∑

i∈N

∑

τ∈T
wτ
i ũ

τ
i (x, t), (34)

where the approximation is due to the fact that ũτ
i (x, t) approximates u(x, t). Using

this approximation, however, would require the solution of pt (|N |+1) PDEs, which is
prohibitive because it scales with the number of time steps. For fixed x ∈ �, however,
we can exploit the time invariance of the solutions and obtain ũτ

i (x, t) by shifting the
second argument of ũ0i (x, t) to the right:

ũτ
i (x, t) =

{

0, 0 ≤ t ≤ τ · �t,

ũ0i (x, t − τ · �t), τ · �t < t ≤ T ,
i ∈ N .

Hence, only |N |+1 PDEs need to be solved in order to approximate u, and (34) can be
used to replace (21a)-(21c) in the continuous model3. This approach also enables us
to separate the solution of the PDE from the optimization process, which opens up the
possibility to use adaptive FEM instead of finite differences. In addition, finite-element
methods in contrast to finite-difference methods define a linear combination of basis
functions and thus can be used to derive values anywhere in � and not only on a grid.
We can therefore use the same variables uti, j , independent of the finite-element mesh,
defined as

uti, j = uinh(i · �x, j · �x, t · �t) +
∑

τ∈T

∑

k∈N
wτ
k ũ

τ
k (i · �x, j · �x, t · �t), i, j ∈ X, t ∈ T.

(35)

With this expansion we define the MILP for the second approach as

min
u,w,z

�x2�t
∑

t∈T

px∑

i, j=0

λtμiν jω(i�x, j�x)uti, j ,

s.t. (28a)−(28e), (29), (35).

(36)

In practice, this scheme is realized by a table of points for which solutions computed
by a FEM have to be evaluated. To do so quickly, an efficient point location algorithm
based on a hierarchical substructuring of the finite-element mesh is implemented in
the employed software oFEM [11]. In this way, the constraints of the MILP obtained
after discretization are computed in advance.

3 A similar approach has independently be found and applied by Anna Thünen (unpublished).
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6 Implementation details and computational experiments

In this section we study the performance of the two discretization techniques when
applied to the system (23) modeling a wildfire spread and to the system (27) modeling
the flow of contaminated groundwater. More precisely we study the impact of the
discretization parameters �x and �t on the overall solution time of an MILP solver.
All computations were carried out on a 2018 Mac mini with a 3.2 GHz Intel Core i7
CPU and 64 GBRAM. All occurringMILPs were solved by the branch-and-cut solver
IBM ILOG CPLEX 12.8.0.0, and the PDE solutions needed in the preprocessing step
of the model based on finite elements were obtained by employing the object-oriented
software package oFEM [11].

While the IBM ILOG CPLEX can be used as a black box for solving MILPs, it
also provides “callbacks”, which are interfaces that can be used to include customized
subroutines in the branch-and-cut process. Taking a closer look at the discretized state
constraints in (29), one can see that each outflow variable has an influence on every
point of the grid. Therefore, condition (29) and the respective discrete variant of (24e),
which are sparse when uti, j is included as variables, become dense after substituting
(35). These are the only conditions that scale with the discretization resolution in space
and time. Thus, these conditions might make the LP-relaxations in the branch-and-cut
scheme more complex and their solution more time consuming.

Algorithm 1: Lazy Constraint Callback (CB)
1 for t ∈ T do
2 for i ∈ X do
3 for j ∈ X do
4 uti, j ← uinh(i · �x, j · �x, t · �t) + ∑

τ∈T
∑

k∈N wτ
k ũ

τ
k (i · �x, j · �x, t · �t);

5 umin ← min
(i, j)∈X×X

uti, j ;

6 (ī, j̄) ← argmin
(i, j)∈X×X

uti, j ;

7 if umin < UL then
8 add Constraint ut

ī, j̄
≥ UL ;

Many of these state constraints are redundant because neighboring grid points do
not differ much in their function values, and hence one might be able to enforce only a
few of them during the branch-and-cut process to find an optimum that already fulfills
them all. If this is the case, it is also an optimal solution for the original problem.
Constraints that are unlikely to cut off feasible solutions found in the branch-and-cut
process are often referred to as lazy constraints and can be treated specially in the
solution process by using a callback. The so-called lazy constraint callback allows
adding these constraints to the model on demand, speeding up the solution of the LP
relaxations at the cost of making branching decisions based on incomplete information
and requiring to resolve the LP relaxations whenever one is found to be violated.
The addition of these constraints has to be done carefully. If all constraints that are
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Table 1 Parameter configuration for the wildfire model

Parameter |N | |A| Ci, j T UL hL UB c D γ σ M ω(x)

Value 19 18 0.15 1.0 0.0 0.0 0.8 (−0.01 − 0.01) 0.02 25.0 0.18 5.0 1.0

Parameter g(x)

Value 0.3 +
⎧

⎨

⎩

1.2, if
∥
∥
∥x −

(

1 1
)ᵀ∥

∥
∥

2 ≤ 0.4

0.0, else

(a) (b) (c) (d)

Fig. 3 Visualization of an optimal solution

violated are added in every callback, the amount of additional constraints might not
be much less than the original one, and the speedup would be negligible. Therefore,
we implemented it as given in the pseudocode of Algorithm 1, which is executed
whenever an incumbent is found.

In this callback the temperatures (the concentrations of the pollutant) at the grid
points are calculated, and the minimum for each time step and the corresponding
indices are stored. If theminimum is less than the lower boundUL , the incumbent is not
feasible, and the respective constraint is added to themodel. This approach adds atmost
one constraint per timestep to the model. If no constraint is added, the incumbent does
not violate any of the lazy constraints and is accepted as the new optimal solution. This
callbackmight be calledmany times, and the sumof its execution timesmight outweigh
the potential gains from reducing the number of active constraints. Furthermore, it is
likely that the branching order is changed, which might also increase or decrease the
total computational effort. Therefore, computational studies of the FEM-based model
are carried out twice, once with the callback switched on and once with the callback
switched off.
Computational experiments for the wildfire application: The model (30) based on
finite differences contains significantly more constraints and variables than does the
second model (36) based on a FEM. Yet, this by no means can be seen as evidence that
the second model can always be solved faster than the first one. To study the impact
of the discretization resolutions px and pt , we fixed all other parameters to the values
given in Table 1.

Snapshots and a link to the full video of a visualization of an optimal solution of
this configuration can be found in Fig. 3.
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Fig. 4 Computational results for different numbers of time steps pt for the two approaches applied to the
wildfire model

The computation times for the two approaches are depicted in the Fig. 4a, b. The
time limit was set to 20,000 s. If it was reached for an instance, no computation time
is reported and there is a gap in the plot. The different graphs show the runtimes for
different levels of time and space discretization with a logarithmic scale on the vertical
axis.One of the difficulties in comparing the two approaches is that the presolve routine
of the IBM ILOG CPLEX runs into numerical difficulties on many of the instances of
the finite-difference approach and cuts off all feasible solutions. Therefore the graphs
in Fig. 4b are the results of a run in which bound-strengthening and the variable
aggregator are switched off. The difference in computation time is still clearly visible
since the first method could not solve any instance with a spatial resolution of over
20×20 grid points, while the FEM-based approach was able to solve all instances with
a spatial resolution of up to 160×160. The results suggest that even larger resolutions
can be solved, which we could not verify because of memory limitations.

The best computation time, however, were achieved with the lazy constraint call-
back switched on, given in Fig. 5a. All instances could be solved for a spatial resolution
of up to 160 × 160. Switching on the callback, as visualized by the graph in Fig. 5b
showing the ratios of the computation times, leads to a speedup by a factor of up to
200 compared with the computation times with the callback switched off.

In another computational experiment our goal was to investigate the mesh-
dependency of the solution. The results of this are given in Table 2, which gives
some insight to the solution vectors of different resolutions for the best approach. In
order to be able to compare these for different resolutions we fixed the different time
resolutions and projected suitable spacial resolutions on a grid with px = 160. The
results obtained in this way are then compared to the solution vector with px = 160.
In the first column the amount of differing binary variables (from the total number of
binary variables) are given. For all time resolutions there is a noticeable downward
trend. The second column contains the euclidean distance of the temperature values for
the grid points, which is also decreasing for finer spacial resolutions. Since the grids
have to be compatible to allow for a direct comparison only few resolutions could be
checked, so that no conclusions about convergence to zero can be drawn. What we

123



722 F. Gnegel et al.

100

101

102

103

104

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160

100

101

102

103

(a) (b)

Fig. 5 Computational results for constraint callback

can conclude, however, is that especially for coarse resolutions mesh-dependency has
a large impact on the solution quality and that investing computational resources and
improving solution approaches are worthwhile. Our computational experiments do
not allow to study the impact of the resolution of the time discretization on the solu-
tion, since we would only be able to compare two data points to each other (those for
pt = 30 and pt = 60). Another doubling of the time-resolution results in a doubling
of the number of binary variables in the model and could not be solved within the time
limit. This poor scaling with the resolution cannot be avoided by our methodology.

Computational experiments for the river contamination application: A visualiza-
tion of the parameter configuration for the river contamination problem given in Table
3 and its optimal solution are depicted in Fig. 6.

Analogously to the graphs in Fig. 4, the results of the two approaches applied to (27)
are depicted in Fig. 7. The advantages of the FEM-based approach are again clearly
visible because the first method could not solve any instance with a spatial resolution
of over 21×21 grid points, while the FEM-based approach was able to solve instances
with up to 90 × 90 grid points.

As shown in Fig. 8, switching on the lazy constraint callback again leads to a large
reduction in computation time, and therefore resolutions of up to 90 × 90 grid points
could be solved for all time discretizations.

Analogous to the presentation of the results for thewildfire application,Table 4gives
some insight to the solution vectors of different resolutions and allow an investigation
of mesh-dependencies. The results are now projected and compared to the results of
a spacial resolution with px = 80. For the first column listing the number of differing
binary variables, in contrast to the wildfire model, there is no clear trend and the results
suggest that the optimal choice of the binary variables can be mesh-dependent. For the
euclidean distance of the state values, it is visible that there only is a downward trend
for finer spacial resolutions if the binary variables do not differ by much. Especially
due to variance of the binary variables, no conclusions about convergence should be
derived from the few data points used. These results suggest even more so than the
ones for the wildfire model, that a carefully designed solution approach is of utmost
importance and that reaching resolutions at which the influence of the mesh used for
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Table 2 Comparison of results for various resolutions to those for px = 160

Resolution Different binary variables Euclidean distance of temperature profiles

px = 10, pt = 30 37/540 69.38

px = 20, pt = 30 10/540 35.86

px = 40, pt = 30 11/540 16.38

px = 80, pt = 30 7/540 7.14

px = 10, pt = 40 45/720 79.36

px = 20, pt = 40 10/720 37.58

px = 40, pt = 40 7/720 18.42

px = 80, pt = 40 6/730 8.02

px = 10, pt = 50 56/900 87.86

px = 20, pt = 50 12/900 41.64

px = 40, pt = 50 16/900 21.77

px = 80, pt = 50 12/900 8.80

px = 10, pt = 60 69/1080 96.31

px = 20, pt = 60 36/1080 47.27

px = 40, pt = 60 32/1080 23.09

px = 80, pt = 60 31/1080 10.95

Table 3 Parameter configuration for the river contamination model

Parameter n K l T UL UR hL γ σ M c(x) D(x) ω(x)

Value 30 5 1.0 1.0 0.0 5.0 1.0 30.0 0.18 5.0
(−1.0 0.1

)

0.07 1.0

Parameter g(x)

Value 0.5 +
⎧

⎨

⎩

2.2, if
∥
∥
∥x −

(

1 1
)ᵀ∥

∥
∥

2 ≤ 0.4

0.0, else

the discretization on the solution quality diminishes is a difficult task. Although, in
contrast to the wildfire model, only the number of continuous and not the number of
binary variables increases with the time resolution given by pt , also for this model
a resolution of pt = 120 could not be solved within the time limit. So, also for this
model we have to conclude that our methodology cannot avoid scaling problems with
the time resolution.

7 Conclusions and future work

The combination of PDE-constrained and discrete optimization results in the new
class of MIPDECO problems that allow for the modeling and mathematical treatment
of a variety of important problems in science and logistics that could not have been
solved before. This is a challenging class of problems, andwe demonstrate empirically
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Fig. 6 Visualization of an optimal solution
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Fig. 7 Computational results for different numbers of timesteps pt for the two approaches applied to the
river contamination model
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Fig. 8 Computational results for constraint callback

that a simple discretize-then-optimize approach using a finite-difference scheme for
MIPDECO results in MILPs that cannot be solved in a reasonable amount of time for
sufficiently fine discretizations.

We propose a general scheme to tackle such problems and demonstrate its appli-
cation in two example problems. Our approach constructs PDE solutions for a basis
of the control space, and we show how the superposition principle can additionally be
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Table 4 Comparison of results for various resolutions to those for px = 80

Resolution Different binary variables Euclidean distance of contamination levels

px = 10, pt = 30 10/30 201.76

px = 20, pt = 30 0/30 48.02

px = 40, pt = 30 0/30 27.19

px = 10, pt = 40 10/30 324.63

px = 20, pt = 40 0/30 54.43

px = 40, pt = 40 0/30 25.63

px = 10, pt = 50 10/30 362.73

px = 20, pt = 50 10/30 340.12

px = 40, pt = 50 10/30 340.11

px = 10, pt = 60 0/30 138.29

px = 20, pt = 60 2/30 135.29

px = 40, pt = 60 2/30 120.02

exploited to reduce the number of PDE solution steps required to construct a full basis.
This approach has been implemented based on the FEM discretization, and we obtain
a much better performance. We note that this advantage is not inherent to the use of
the FEM, because the linear system defined by finite-difference methods could also
be solved in advance. The advantage of using the FEM in the preprocessing step is
that its solution can be used to directly obtain values anywhere in the domain and that
the accuracy of the picked-up values can be increased and controlled by local mesh
refinement. Finite-difference methods, in contrast, approximate the solution only on
the underlying grid points that are usually regularly distributed and require a partic-
ular interpolation technique. Moreover, grid adaptation and error control are much
more difficult in this case. We further conclude that the second approach allows for
knowledge about the peculiarities of the constraints derived from the PDE discretiza-
tion (i.e., the redundancy of many state constraints) to be incorporated in the solution
method. This observation reduces the runtimes especially for approximations with fine
spatial resolutions. Our approach demonstrates that eliminating the PDE constraints
and variables whose number scales with the discretization size seems to be a viable
method for solving MIPDECO approximations with high accuracy.

Further investigations into these methods are required to illuminate the analytical
background of the proposed methods and to discuss convergence properties on a
formal level. In particular, the importance of regularization has not been discussed in
this paper, and only nonregularized problems are solved. Regularization could prevent
the algorithmic scheme from convergence if the discretization level is increased.

Additionally, an enormous potential exists to enhance the algorithmic formulations
proposed in this work. The flexibility of the FEM with respect to, for example, geo-
metric adaptability and rigorous error control, should be further exploited in future
approaches. The FEM offers the particular advantage of providing methods that allow
for spatial discretization in such a way that a given functional of interest, namely, a
figure that is determined from the solution of the PDE, can be approximated as well as
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possible with the numerical resources at hand. An efficient way to achieve this goal is
mesh adaptation based on a posteriori error control, for example, with the method of
dual weighted residuals or so-called goal-oriented error estimators. The constraints to
be evaluated for the approximating MILPs refer to just a small number of degrees of
freedom of the FEM problem defining the continuous state variables. Only these must
be known and computed accurately in the context of an active-set strategy. The results
presented in this work further suggest that a general framework for a highly efficient
treatment of MIPDECO problems could be based on a time-space-Galerkin method
relying on sets of tensor-product basis functions with a discontinuousGalerkinmethod
in time. Also of interest is how far the utilized FEM basis functions and meshes can be
adapted to guarantee a fast computation of all states related to a suitable basis of the
control space, so that the discretization of the PDE-defined constraints can be turned
into discrete versions in such a way that IBM ILOG CPLEX (or another MILP solver)
can deal with them in the most efficient way.

The proposed method works only for linear PDEs, which often do not capture all
the important properties of a real-world application. For example, an exact model for
the physics of fire requires a PDE system including nonlinear terms (see, for example,
[30], where the PDE modeling the fire is coupled to a fuel term with a nonlinear
expression). Because our method explicitly relies on linearity, it cannot be extended to
nonlinear models. It might, however, be useful for approaches in which the occurring
nonlinear terms are approximated by linear or piecewise linear functions.
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