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Recap: Methods for Nonlinear Optimization

Considered three classes of methods
Sequential Quadratic Programming (SQP)
@ Solve sequence of QP approximations

@ Similar to Newton's method ... may fail

Interior-Point Methods (IPM)
@ Solve sequence of perturbed KKT systems

@ Perturbation of Newton's method ... may fail

Augmented Lagrangian Methods
@ Approx. minimize augmented Lagrangian

@ Converge ... but assumptions really strong

Add Global Convergence Mechanisms

Mechanism should interfere as little as possible with method.

28



Motivation
(NLP) minimize f(x) subjecttoc(x)=0 x>0

*

Local methods (e.g. SQP) may not converge if started far from x
... barrier methods require unrealistic assumptions (global solve)

Equip local methods with globalization strategy and mechanism
... to ensure convergence from remote starting points

Globalization Strategy
@ How do we decide a point is better?

@ Uniike unconstrained case, balance objective and feasibility

Globalization Mechanism

@ Generalize line-search or trust-region from unconstrained case
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.
General QOutline of Globalization Strategy

minimize  f(x)

(NLP) subject to  ¢(x) =0
x>0,

Goal and Limitations

Ensure convergence from remote starting points,
i.e. global convergence # global minimum

o Monitor progress of iterates, x(¥)

@ Cannot just use objective decreaseas f(x(¥) + as(k)) < f(x(¥)

@ Must also look at constraint violation, e.g. ||c(x)]|



Penalty and Merit Function Methods

(NLP) minimize f(x) subject toc(x) =0, x>0
X
Combine objective and constraints, e.g. exact penalty function
pp(x) = f(x) + pllc(x)]],
where p > 0 is penalty parameter
@ Local minimizers of p,(x) are local mins. of (NLP)
@ Apply unconstrained globalization techniques
@ Popular penalty functions: ¢1 and ¢> penalty functions
Theorem (Equivalence of Local Minimizers)

If the penalty parameter is sufficiently large, i.e. p > ||y*||p, then a
local minimizers of p,(x) is a local min of (NLP).

@ y* optimal multiplier corresponding to x*
@ || - ||p is the dual e.g. {s-norm is dual of ¢1-norm
@ Monitor progress of SQP, IPM methods using penalty function
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Penalty and Merit Function Methods

(NLP) minimize f(x) subject to ¢(x) =0, x >0
X
Nonsmooth penalty function (e.g. ¢1-norm)

minixmize po(x) = f(x) + pllc(x) |1

Can formulate equivalent smooth problem

minimize  f(x) + 'OZ (st +s7)
i=1

(NLP)
subject to  c¢(x) =sT — s~

x>0,sT>0,s">0

.. apply SQP to this problem
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.
(1 Exact Penalty Function & Maratos Effect

minimize p(x;p) = f(x)+pllc(x)[1 subject tox >0

where ||c(x)||1 constraint violation
@ p(x; p) nonsmooth, but equivalent to smooth problem
@ Penalty parameter not known a priori: p > ||y*||

@ Large penalty parameter = slow convergence; inefficient

@@ e

Maratos effect motivates second-order correction steps
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Filter Methods for Global Convergence

Provide alternative to penalty methods
e Optimal penalty parameter, p > |ly*||p not known a priori

e Penalty adjustment can be problematc ... avoid px — oo
e Modern methods solve two subproblems (LP and QP) to
adjust pg

@ Poor practical convergence, if pi large for highly nonlinear
constraints

View penalty function as two competing aims:
@ Minimize f(x)
@ Minimize h(x) := ||¢(x)|| ... more important

... borrow ideas from multi-objectiv eoptimization
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Filter Methods for NLP

Penalty function combines two competing aims:
@ Minimize f(x)

@ Minimize h(x) := [[c(x)|| ... more important

fix)
Borrow concept of domination from
multi-objective optimization

(hk), £()) dominates (h(), £F(N)
iff Ak < pD) & Fk) < £()

(hy [ )
h(x) = (x) |

i.e. x(K) at least as good as x(/)
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Filter Methods for NLP
Filter F: list of non-dominated pairs (h(), £(1))

f(x)

o new x(kt1) acceptable to filter F, 4

iff
O ) < pvyle F, or
Q < fhvyer

)
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Filter Methods for NLP
Filter F: list of non-dominated pairs (h(), f(1))

fix)
o new x(Kt1) acceptable to filter F, 4
iff
Q hD <hhvleF, or
Q ) <fhvieF

@ remove redundant entries

)

_:7
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Filter Methods for NLP
Filter F: list of non-dominated pairs (h(), £(1))

f(x)
o new x(kt1) acceptable to filter F, 4
iff
Q h) <hhvie F, or
Q ) <fiivieF
@ remove redundant entries
e reject new x(k+1),
if h(kt1) > p(1) & F(k+1) 5 £(1)
& reduce trust region A = A /2 lc(x)
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Filter Methods for NLP
Filter F: list of non-dominated pairs (h(), £(1))

fix)
o new x(kt1) acceptable to filter F, |
iff
Q@ W) <hhvieF, or
Q ) <fhvier
@ remove redundant entries
e reject new x(k+1),
if h(kt1) > p(1) & F(k+1) 5 £(1)
& reduce trust region A = A/2

)

= often accept new x(¥*1) even if penalty function increases
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.
Formal Definition of Step Acceptance

A f(x)
New x(kt1) acceptable 5
iff either of

o h(k+1) < ﬁh(l), or
Q@ k1) 4 A pkt1) < ()
hold VI € Fy
Lemma: co-sequence in F = h(K) — 0

------

h(c(x))

Sufficient objective reduction:

if predicted reduction Ag(¥) > 0 then
check f(x(K)) — f(x(kT1)) > 5 Aqk)

where Ag(k) = g(k)Ts + %STH(k)S

Constants: § =0.999,v =0.001,0 = 0.1
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The Maratos Example Revisited

Filter methods work well for Maratos example ...

@ Maratos step decreases objective & increases constraints

@ Maratos step acceptable to filter

f(x)

lc(x)
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More Filter Methods

1. IPOPT free interior-point line-search filter method

o [Wachter & Biegler, 2005] (3 papers on theory & results)

o tighter “switching condition” & 2nd-order correction steps
= superlinear convergence

@ proof is very complicated, not intuitive

2. [S. Ulbrich, 2003] shows second-order convergence
@ surprisingly: no 2nd-order correction steps
@ replace f(x) in filter by Lagrangian:
L(x,y,z):=f(x)—yTc(x) —zx
o replace ||c(x)|| in filter by ||c(x)|| + z"x
e modify “switching condition” & feasibility

o 15/28



More Filter Methods

3. Pattern search filter [Audet & Dennis, 2000]
o filter plus one feasible iterate x¢: f(x(**1)) < f(xF)
@ only require decrease; no sufficient reduction

@ converges to x, where “0 € 9f(x.)" or "0 € 9l|c(x)||"
= convergence to “KKT points” 777

4. Nonsmooth bundle-filter:
o [Lemaréchal et al, 1995] convex hull of filter points
o [Fletcher & L, 1999] straightforward extension of NLP
o [Karas et al, 2006] “improvement function” & filter 777

5. Filter for nonlinear complementarity [Nie, 2005]
6. Filter for Genetic Algorithms ... standard technique
7. Filter methods for feasibility restoration: min [[c™(x)||
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.
Removing the Need for Second-Order Corrections

Filter methods also suffer from Maratos Effect:

minimize 2(x¥ +x3 — 1) — x;
subject tox? +x3 —1 =10

. example due to Conn, Gould & Toint

Start xo near (1,0)
= f1 > fo and hy > hg reject
= need second-order correction (SOC)
steps
SOC steps are cumbersome

. can we avoid them?
Idea: Use non-monotone filter ...
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Idea of Non-Monotone Filter

f(x)
Consider Shadow Filter: A

o accept new point x(k1),
if dominated by less than M > 0
filter entries

@ standard filter: M =0

o filter ~ semi-permeable membrane

@ count dominating entries ” c- (XM
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Idea of Non-Monotone Filter

fix)
Consider Shadow Filter: A

o accept new point x(k1),
if dominated by less than M > 0
filter entries

@ standard filter: M =0

o filter ~ semi-permeable membrane

@ count dominating entries e (x)
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Idea of Non-Monotone Filter

f(x)
Consider Shadow Filter: A

o accept new point x(k1),
if dominated by less than M > 0
filter entries

@ standard filter: M =0

o filter ~ semi-permeable membrane

@ count dominating entries ” c- (xﬂ
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-
Non-Monotone Sufficient Reduction Test

@ Similar unconstrained optimization

@ Actual reductn > predicted reductn:
f(x(K)) = F(xF) + 5) > 0 Ag¥) replaced
by

( max ?(k—n)_f(xwus)zwq(k)
i{0,...,M}

where for all (k — i) € Fi

o) el e _ JFET0+ (AETD — by 1000 if AT
F=0) 4 (hk=1) — B) /1000 i Ak

@ Sufficient decrease after at most M steps

@ M = 0: monotone reduction
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FASTr: A New Nonmonotone Filter Method

Comparing solvers on 410 small CUTEr problems
@ FilterSQP written in fortran dates back to 1998

@ FASTr currently being developed in C
2500 lines of C-code (vs. 5300 lines of fortran):

o Restoration phase re-uses main loop!
e No second-order correction steps

Performance profiles [Dolan and Moré, 2002]:

# iter(s, p)

€ probl
bestiter(p)) » P & probiem

V solver s perf,(p) = |0g2<

@ Sort in ascending order (step-function)

@ Probability that solver s at most 2% times worse
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FASTr(0), FASTr(2), FASTr(3), FASTr(5)

8.6

a.4

a.2
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Globalization Mechanisms

Key algorithmic ingredients
@ Efficient step computation
e.g. SQP, SLP, IPM, ...
@ Global convergence strategy
e.g. penalty or filter ...

© Global convergence mechanism
. enforce global strategy

Two Main Global Convergence Mechanisms
© Line-search methods
@ Trust-region methods

. already reviewed in unconstrained lectures
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Line-Search Methods

Given direction, s(k), backtrack along s(k) to acceptable point
Search Directions

@ Interior-point methods use primal-dual direction
s= (A, Ay, A;)

@ SQP methods obtain search direction from solution of QP

Search direction must be descend direction for penalty function
Vp(xK: p)Ts <0

. step computation can ensure descend, e.g. modifying Hessian
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Armijo Line-Search Method for NLP

Given X0 e R" let0 <o <1, set k=0
while x(¥) is not optimal do
Approx. step computation subproblem around x(¥) for s.
Ensure descend, e.g. Vp(x(9); p)Ts <0
Seta®=1and /=0
repeat
Set o/t1 = a!/2 and evaluate p(x(¥) 4 o/*1s; p).
Set | =1+1.
until p(x(¥) + a's; p) < FK) 1 alosTVpk);
Set k = k+1.
end

.. similar for filter methods
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Trust-Region Methods

Trust-region methods restrict step during subproblem
@ Add step restriction ||d|| < Ak to approximate subproblem

o Preferred ¢, norm in unconstrained case
e Prefer £, norm in constrained case
.. easy to intersect TR with bounds

e Adjust TR radius Ay as before
@ Require more effort to compute step

@ Have slightly stronger convergence properties

26
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Trust-Region Algorithm Framework

Given x(©) € R", choose NAg>A>0set k=0
repeat
Reset Ay := AK) > A > 0; set success = false,and /=0
repeat
Solve approx. subproblem in [|d|| < Ay
if x(X) + d is sufficiently better than x(K) then
Accept step: x(K+1) = x(K) 1 d; increase Ay j41
Set success = true.
else
| Reject step decrease TR radius, e.g. Ay 11 = Dy,/2.
end

until success = true;
Set k = k + 1.
until x(%) s optimal;
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Teaching Points and Summary

Key algorithmic ingredients
@ Efficient step computation
e.g. SQP, SLP, IPM, ...
@ Global convergence strategy
e.g. penalty or filter ...

© Global convergence mechanism
... line-search or TR

@ Maratos effect prevents Newton steps from being accepted.

@ Nonmonotone methods avoid Maratos effect
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