Mixed-Integer Nonlinear Optimization: Algorithms for Convex Problems
 GIAN Short Course on Optimization:
 Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Outline

(1) Problem Definition and Assumptions
(2) Nonlinear Branch-and-Bound
(3) Advanced Nonlinear Branch-and-Bound

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x) \leq 0 \\
& x \in \mathcal{X} \\
& x_{i} \in \mathbb{Z} \text { for all } i \in \mathcal{I}
\end{aligned}
$$

Basic Assumptions for Convex MINLP

A1 \mathcal{X} is a bounded polyhedral set.
A2 f and c twice continuously differentiable convex A3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later)
A3 is technical (MFCQ would have been sufficient)

Overview of Basic Methods

Two broad classes of method
(1) Single-tree methods; e.g.

- Nonlinear branch-and-bound
- LP/NLP-based branch-and-bound
- Nonlinear branch-and-cut
... build and search a single tree
(2) Multi-tree methods; e.g.
- Outer approximation
- Benders decomposition
- Extended cutting plane method
... alternate between NLP and MILP solves
Multi-tree methods only evaluate functions at integer points
Concentrate on methods for convex problems today.
Can mix different methods \& techniques.

Outline

(1) Problem Definition and Assumptions
(2) Nonlinear Branch-and-Bound

3 Advanced Nonlinear Branch-and-Bound

Nonlinear Branch-and-Bound

Solve NLP relaxation ($x_{\mathcal{I}}$ continuous, not integer)

$$
\underset{x}{\operatorname{minimize}} f(x) \text { subject to } c(x) \leq 0, x \in \mathcal{X}
$$

- If $x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}$, then solved MINLP
- If relaxation is infeasible, then MINLP infeasible
... otherwise search tree whose nodes are NLPs:

$$
\begin{cases}\underset{x}{\operatorname{minimize}} & f(x) \tag{NLP}\\ \text { subject to } & c(x) \leq 0 \\ & x \in \mathcal{X} \\ & I_{i} \leq x_{i} \leq u_{i}, \forall i \in \mathcal{I}\end{cases}
$$

NLP relaxation is $\operatorname{NLP}(-\infty, \infty)$

Nonlinear Branch-and-Bound

Solve relaxed NLP ($0 \leq x_{\mathcal{I}} \leq 1$ continuous relaxation)
...solution value provides lower bound

- Branch on x_{i} non-integral
- Solve NLPs \& branch until
(1) Node infeasible:
(2) Node integer feasible: \square \Rightarrow get upper bound (U)
(3) Lower bound $\geq U$:

- Couenne [Belotti] global

Nonlinear Branch-and-Bound

Branch-and-bound for MINLP

Choose tol $\epsilon>0$, set $U=\infty$, add $(\operatorname{NLP}(-\infty, \infty))$ to heap \mathcal{H}. while $\mathcal{H} \neq \emptyset$ do

Remove $(\operatorname{NLP}(I, u))$ from heap: $\mathcal{H}=\mathcal{H}-\{\operatorname{NLP}(I, u)\}$.
Solve $(\operatorname{NLP}(I, u)) \Rightarrow$ solution $x^{(I, u)}$
if $(\operatorname{NLP}(I, u))$ is infeasible then
Prune node: infeasible
else if $f\left(x^{(1, u)}\right)>U$ then
Prune node; dominated by bound U
else if $x_{\mathcal{I}}^{(I, u)}$ integral then
Update incumbent: $U=f\left(x^{(I, u)}\right), x^{*}=x^{(I, u)}$.
else
BranchOnVariable $\left(x_{i}^{(I, u)}, I, u, \mathcal{H}\right)$
end
end

Nonlinear Branch-and-Bound

BnB is finite, provided \mathcal{X} is bounded polyhedron:

Theorem (Finiteness of Nonlinear Branch-and-Bound)

Solve MINLP by nonlinear branch-and-bound, and assume that A1-A3 hold. Then BnB terminates at optimal solution (or indication of infeasibility) after a finite number of nodes.

Proof.

- (A1-A3) \Rightarrow every NLP solved globally (convex, MFCQ)
- Boundedness of $\mathcal{X} \Rightarrow$ tree is finite
\Rightarrow convergence, see e.g. Theorem 24.1 of [Schrijver, 1986].

Nonlinear Branch-and-Bound

BnB trees can get pretty large ...

Synthesis MINLP B\&B Tree: $10000+$ nodes after 360s
... be smart about solving NLPs \& searching tree!

Outline

(1) Problem Definition and Assumptions
(2) Nonlinear Branch-and-Bound
(3) Advanced Nonlinear Branch-and-Bound

Advanced Nonlinear BnB

Basic BnB will work, but needs improvements:

- Selection of branching variables
- Node selection strategies
- Inexact NLP solves \& hot-starts
- Cutting planes \& branch-and-cut
- Software design \& modern solvers, e.g. MINOTAUR
... critical for efficient implementation

Advanced Nonlinear BnB: Variable Selection

Ideally choose branching sequence to minimize tree size
... impossible in practice; sequence not known a priori
\Rightarrow choose variable that maximizes increase in lower bound
Let $\mathcal{I}_{c} \subset \mathcal{I}$ set of candidates: fractional integer variables
... in practice choose subset of important variables (priorities)

Maximum Fractional Branching

Branch on variable i_{0} with largest integer violation:

$$
i_{0}=\underset{i \in \mathcal{I}_{c}}{\operatorname{argmax}}\left\{\min \left(x_{i}-\left\lfloor x_{i}\right\rfloor,\left\lceil x_{i}\right\rceil-x_{i}\right)\right\},
$$

... as bad as random branching [Achterberg et al., 2004]

Advanced Nonlinear BnB: Variable Selection

Successful rules estimate change in lower bound after branching

- Increasing lower bound improves pruning
- For $x_{i}, i \in \mathcal{I}$, define degradation estimates D_{i}^{+}and D_{i}^{-} for increase in lower bound
- Goal: make both D_{i}^{+}and D_{i}^{-}large!
- Combine D_{i}^{+}and D_{i}^{-}into single score:

$$
s_{i}:=\mu \min \left(D_{i}^{+}, D_{i}^{-}\right)+(1-\mu) \max \left(D_{i}^{+}, D_{i}^{-}\right)
$$

where parameter $\mu \in[0,1]$ close to 1 .

Degradation-Based Branching

Branch on variable i_{0} with largest degradation estimate:

$$
i_{0}=\underset{i \in \mathcal{T}}{\operatorname{argmax}}\left\{s_{i}\right\}
$$

... methods differ by how D_{i}^{+}and D_{i}^{-}computed

Advanced Nonlinear BnB: Variable Selection

The first approach for computing degradations is ...

Strong Branching

Solve $2 \times\left|\mathcal{I}_{c}\right|$ NLPs for every potential child node:

- Solution at current (parent) node (NLP $(I, u))$ is $f_{p}:=f^{(I, u)}$
- $\forall x_{i}, i \in \mathcal{I}_{c}$ create two temporary NLPs:
$\operatorname{NLP}_{i}\left(I^{-}, u^{-}\right)$and $\operatorname{NLP}_{i}\left(I^{+}, u^{+}\right)$
- Solve both NLPs ...
... if both infeasible, then prune (NLP (I, u))
... if one infeasible, then fix integer in parent (NLP (I, u))
... otherwise, let solutions be f_{i}^{+}and f_{i}^{-}and compute

$$
D_{i}^{+}=f_{i}^{+}-f_{p}, \quad \text { and } \quad D_{i}^{-}=f_{i}^{-}-f_{p}
$$

Advanced Nonlinear BnB: Variable Selection

Advantage/Disadvantage of strong branching:

- Good: Reduce the number of nodes in tree
- Bad: Slow overall, because too many NLPs solved
- Solving NLPs approximately does not help

Fact: MILP $=$ MINLP

LPs hot-start efficiently (re-use basis factors), but NLPs cannot be warm-started (neither IPM nor SQP)!

Reason (NLPs are, well ... nonlinear):

- NLP methods are iterative: generate sequence $\left\{x^{(k)}\right\}$
- At solution, $x^{(I)}$, have factors from $x^{(I-1)} \ldots$ out-of-date

Approximate Strong Branching

Simple idea: Use QP (LP) approximation [Bonami et al., 2011]
CPU[s] for root node and round (2 \# ints) of strong branching:

problem	\# ints	Full NLP	Cold QP	Hot QP
stockcycle	480	4.08	3.32	0.532
RSyn0805H	296	78.7	69.8	1.94
SLay10H	180	18.0	17.8	1.25
Syn30M03H	180	40.9	14.7	2.12

- Small savings from replacing NLP by QP solves.
- Order of magnitude saving from re-using factors.

Approximate Strong Branching

Hot-QP Starts in BQPD [Fletcher]

- parent node is dual feasible after branching
- perform steps of dual active-set method to get primal feasible
- re-use factors of basis $B=L U$
- re-use factors of dense reduced Hessian $Z^{T} H Z=L^{T} D L$
- use $L U$ and $L^{T} D L$ to factorize KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right] \quad \text { where } \quad B^{-1}=[A: V]^{-1}=\left[\begin{array}{l}
Y \\
Z
\end{array}\right]
$$

- 2-3 pivots to re-optimize independent of problem size

Approximate Strong Branching

Parametric QP solve

Performance Profiles [Dolan and More, 2002]

	Random			Most-Fractional	
name	CPU	nodes	CPU	nodes	
BatchS101006M	141.9	9464	68.7	7560	
BatchS121208M	2694.8	96566	566.1	41600	
BatchS151208M	6781.6	176188	1710.0	102744	
BatchS201210M	>10800	>174400	6050.6	275740	
CLay0204H	61.0	4272	27.3	3404	
CLay0204M	7.0	4563	0.7	1361	
CLay0205H	271.9	10	2	205	
CLay0205M	338	98	4	2	
CLay0303M			24	81922	
CLay0304H	48	24.44	132	22695	
CLay0304M	7	28	4	4	
CLay0305H-	7160.0	160403	2169.1	11631	
CLay0305M	710.9	185254	56.7	70552	
FLay04H	49.3	3158	37.1	38282	
FLay04M	1.9	3294	1.4	3012	
FLay05H	8605.9	185954	4781.3	129594	
FLay05M	215.2	188346	125.3	114122	
FLay06M	>10800	>5166800	>10800	>6022600	

Performance profiles
Clever way to display a benchmark

$$
\begin{gathered}
\forall \text { solver } s \quad \log _{2}\left(\frac{\# \operatorname{iter}(s, p)}{\operatorname{best} \text { iter }(p)}\right) \\
p \in \text { problem }
\end{gathered}
$$

- "probability distribution": solver " A " is at most x -times slower than best.
- Origin shows percentage of problems where solver " A " is best.
- Asymptotics shows reliability of solver "A".

Performance Profiles (Formal Definition)

Performance ratio of $t_{p, s}$ for $p \in \mathcal{P}$ of problems, $s \in S$ of solvers:

$$
r_{p, s}=\frac{t_{p, s}}{\min \left\{t_{p, i} \mid i \in S,\right\}}
$$

distribution function $\rho_{s}(\tau)$ for solver $s \in S$

$$
\rho_{s}(\tau)=\frac{\operatorname{size}\left\{p \in \mathcal{P} \mid r_{p, s} \leq \tau\right\}}{|\mathcal{P}|}
$$

$\rho_{s}(\tau)$ probability that solver s is at most $\tau \times$ slower than best

Approximate Strong Branching

Performance (\# nodes) of NLP/QP/LP strong branching

Approximate Strong Branching

Performance (CPU time) of NLP/QP/LP strong branching

Advanced Nonlinear BnB: Variable Selection

Pseudocost Branching

Keep history of past branching to estimate degradations

- n_{i}^{+}, n_{i}^{-}number of times up/down node solved for variable i
- p_{i}^{+}, p_{i}^{-}pseudocosts updated when child solved:

$$
p_{i}^{+}=\frac{f_{i}^{+}-f_{p}}{\left\lceil x_{i}\right\rceil-x_{i}}+p_{i}^{+}, n_{i}^{+}=n_{i}^{+}+1 \text { or } p_{i}^{-}=\ldots n_{i}^{-}=\ldots
$$

- Compute estimates of D_{i}^{+}and D_{i}^{-}or branching:

$$
D_{i}^{+}=\left(\left\lceil x_{i}\right\rceil-x_{i}\right) \frac{p_{i}^{+}}{n_{i}^{+}} \text {and } D_{i}^{-}=\left(x_{i}-\left\lfloor x_{i}\right\rfloor\right) \frac{p_{i}^{-}}{n_{i}^{-}}
$$

- Initialize pseudocosts with strong branching
- Good estimates for MILP, [Linderoth and Savelsbergh, 1999]
- Not clear how to update, if NLP infeasible ... ℓ_{1} penalty?

Advanced Nonlinear BnB: Variable Selection

Following approach combines strong branching and pseudocosts

Reliability Branching

Strong branching early, then pseudocost branching

- While n_{i}^{+}or $n_{i}^{-} \leq \tau(=5)$ do strong branching on x_{i}
- Once n_{i}^{+}or $n_{i}^{-}>\tau$ switch to pseudocost

Important alternatives to variables branching:

- SOS branching, see [Beale and Tomlin, 1970]
- Branching on split disjunctions

$$
\left(a^{T} x_{\mathcal{I}} \leq b\right) \vee\left(a^{T} x_{\mathcal{I}} \geq b+1\right)
$$

where $a \in \mathbb{Z}^{p}$ and $b \in \mathbb{Z} \ldots$ conceptually like conjugate directions

Advanced Nonlinear BnB: Node Selection

Strategic decision on which node to solve next.

Goals of node selection

- Find good feasible solution quickly to reduce upper bound, U
- Prove optimality of incumbent x^{*} by increasing lower bound

Popular strategies:
(1) Depth-first search
(2) Best-bound search
(3) Hybrid schemes

Advanced Nonlinear BnB: Depth-First Search

Depth-First Search

Select deepest node in tree (or last node added to heap \mathcal{H})

Advantages:

- Easy to implement (Sven likes that ;-)
- Keeps list of open nodes, \mathcal{H}, as small as possible
- Minimizes the change to next NLP (NLP $(I, u))$:
... only single bound changes \Rightarrow better hot-starts

Disadvantages:

- poor performance if no upper bound is found:
\Rightarrow explores nodes with a lower bound larger than solution

Advanced Nonlinear BnB: Best-Bound Search

Best-Bound Search

Select node with best lower bound

Advantages:

- Minimizes number of nodes for fixed sequence of branching decisions, because all explored nodes would have been explored independent of upper bound

Disadvantages:

- Requires more memory to store open problems
- Less opportunity for warm-starts of NLPs
- Tends to find integer solutions at the end

Advanced Nonlinear BnB: Best-Bound Search

(1) Best Expected Bound: node with best bound after branching:

$$
b_{p}^{+}=f_{p}+\left(\left\lceil x_{i}\right\rceil-x_{i}\right) \frac{p_{i}^{+}}{n_{i}^{+}} \text {and } b_{p}^{-}=f_{p}+\left(x_{i}-\left\lfloor x_{i}\right\rfloor\right) \frac{p_{i}^{-}}{n_{i}^{-}} .
$$

Next node is $\max _{p}\left\{\min \left(b_{p}^{+}, b_{p}^{-}\right)\right\}$.
(2) Best Estimate: node with best expected solution in subtree

$$
e_{p}=f_{p}+\sum_{i: x_{i} \text { fractional }} \min \left(\left(\left\lceil x_{i}\right\rceil-x_{i}\right) \frac{p_{i}^{+}}{n_{i}^{+}},\left(x_{i}-\left\lfloor x_{i}\right\rfloor\right) \frac{p_{i}^{-}}{n_{i}^{-}}\right),
$$

Next node is $\max _{p}\left\{e_{p}\right\}$.
... good search strategies combine depth-first and best-bound

Advanced Nonlinear BnB: Inexact NLP Solves

Role for inexact solves in MINLP

- Provide approximate values for strong branching
- Solve NLPs inexactly during tree-search:
- [Borchers and Mitchell, 1994] consider single SQP iteration ... perform early branching if limit seems non-integral
... augmented Lagrangian dual for bounds
- [Leyffer, 2001] considers single SQP iteration
... use outer approximation instead of dual
... numerical results disappointing
... reduce solve time by factor 2-3 at best
- New idea: search QP tree \& exploit hot-starts for QPs
... QP-diving discussed next ...

Advanced Nonlinear BnB: QP-Diving

Branch-and-bound solves huge number of NLPs \Rightarrow bottleneck!

QP-Diving Tree-Search:

- solve root node \& save factors from last QP solve
- same KKT for whole subtree
- perform MIQP tree-searches
- depth-first search:
\Rightarrow fast hot-starts
- back-track:
warm-starts
Need new fathoming rules ...

... alternative: change QP approximation after back-track

Advanced Nonlinear BnB: QP-Diving

Assume MINLP is convex

QP-Diving Tree-Search:
Solve QPs until
(1) QP infeasible:
... QP is relaxation of NLP
(2) Node integer feasible: \square \Rightarrow NLP to get upper bnd $(U)^{\text {infeasible }}$
... QP over-/under-estimates
\Rightarrow resolve
(3) Infeasible O-cut $\eta<U$: Linear O-cut: $\eta \geq f_{k}+g_{k}^{T} d$

New Extended Performance Profiles

Performance ratio of $t_{p, s}$ for $p \in \mathcal{P}$ of problems, $s \in S$ of solvers:

$$
\hat{r}_{p, s}=\frac{t_{p, s}}{\min \left\{t_{p, i} \mid i \in S, i \neq s\right\}}
$$

distribution function $\rho_{s}(\tau)$ for solver $s \in S$

$$
\hat{\rho}_{s}(\tau)=\frac{\operatorname{size}\left\{p \in \mathcal{P} \mid \hat{r}_{p, s} \leq \tau\right\}}{|\mathcal{P}|}
$$

- $\hat{\rho}_{s}(\tau)$ probability that solver s is at most $\tau \times$ slower than best
- For $\hat{r}_{p, s} \geq 1$ get standard performance profile
- Extension: $\hat{r}_{p, s}<1$ if solver s is fastest for instance p
- $\hat{\rho}_{s}(0.25)$ probability that solver s is $4 \times$ faster than others

CPU-Times for MINOTAUR with Hot-Starts (IPOPT)

Hot-started QP give a huge improvement

CPU-Times for MINOTAUR with Hot-Starts (filterSQP)

Hot-started QP give a huge improvement

Typical Results

RSyn0840M02M

Solver	CPU	NLPs	CPU/100NLPs
IPOPT	7184.91	69530	10.3335
filterSQP	7192.54	37799	19.0284
QP-Diving	5276.23	1387837	0.3802
\Rightarrow many more nodes ...			

a little faster.

CLay0305H

Solver	CPU	NLPs	CPU/100NLPs
IPOPT	1951.1	16486	11.8349
filterSQP	849.74	16717	5.0831
QP-Diving	97.89	24029	0.4074

\Rightarrow similar number of nodes ... much faster!

MINOTAUR: A New Software Framework for MINLP

Mixed
Integer
Nonlinear
Optimization
Toolkit:
Algorithms,
Underestimators \&
Relaxations

Goal: Implement a Range of Algorithms in Common Framework

- Fast, usable MINLP solver.
- Flexibility for developing new algorithms.
- Ease of developing new algorithms.

MINOTAUR's Four Main Components

Interfaces for reading input

- AMPL

Engines to solve LP/NLP/QP

- QP: BQPD
- NLP: FilterSQP/IPOPT
- LP: OSI-CLP

Algorithms to solve MINLP

- Branch-and-Bound
- Outer-Approximation
- Quesada-Grossmann
- Branch-and-Refine
- Data Structures:
- Problem
- Objective \& Constraints
- Functions
- Modifications
- Gradient, Jacobian, Hessian
- Tools for Search:
- Node Processors
- Node Relaxers
- Branchers
- Tree Manager
- Utilities
- Loggers \& Timers
- Options

MINOTAUR's Four Main Components

Interfaces for reading input

- AMPL
- Your Interface Here Engines to solve LP/NLP/QP
- QP: BQPD
- NLP: FilterSQP/IPOPT
- LP: OSI-CLP
- Your engine here Algorithms to solve MINLP
- Branch-and-Bound
- Outer-Approximation
- Quesada-Grossmann
- Branch-and-Refine
- Your algorithm here

Base

- Your Data Structures:
- Problem
- Objective \& Constraints
- Functions
- Modifications
- Gradient, Jacobian, Hessian
- Your Tools for Search:
- Node Processors
- Node Relaxers
- Branchers
- Tree Manager
- Utilities
- Loggers \& Timers
- Options

Highly Customizable

Features

Bonmin FilMINT BARON Couenne Minotaur

Algorithms:					
NLP B\&B	\checkmark	\times	\times	\times	\checkmark
Branch \& Cut	\checkmark	\checkmark	\times	\times	\checkmark
Branch \& Reduce	\times	\times	\checkmark	\checkmark	\checkmark
Support for Nonlinear Functions:					
Comput. Graph	\times	\times	\checkmark	\checkmark	\checkmark
Nonlin. Reform.	\times	\times	\times	\times	\checkmark
Native Derivat.	\times	\times	\times	\times	\checkmark
Interfaces:	\times	\times	\checkmark		
AIMMS	\checkmark	\checkmark	\times	\checkmark	\checkmark
AMPL	\checkmark	\times	\checkmark	\checkmark	\times
GAMS					
					\checkmark
Open Source					\checkmark

MINOTAUR Performance

Time taken for 463 MINLP Instances from GAMS, MacMINLP, CMU test-sets.

MINOTAUR's Soft-Wear Stack

... available at www.mcs.anl.gov/minotaur

Summary and Teaching Points

Nonlinear Branch-and-Bound

- Solves problem by branching globally for convex MINLPs
- Need careful implementation of
- Branching variable \& node selection
- Software infrastructure ... build on other frameworks!
- Interfaces to NLP and other solvers
- Exploit linearity (or QP) as much as possible
- QP diving works really well for many MINLPs
- Approximate tree-search reduces CPU time
- Implementation matters ... many open-source solvers

Achterberg, T., Koch, T., and Martin, A. (2004).
Branching rules revisited.
Operations Research Letters, 33:42-54.
Beale, E. and Tomlin, J. (1970).
Special facilities in a general mathematical programming system for non- convex problems using ordered sets of variables.
In Lawrence, J., editor, Proceedings of the 5th International Conference on Operations Research, pages 447-454, Venice, Italy.

Bonami, P., Lee, J., Leyffer, S., and Wächter, A. (2011).
More branch-and-bound experiments in convex nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics and Computer Science Division.

Borchers, B. and Mitchell, J. E. (1994).
An improved branch and bound algorithm for mixed integer nonlinear programs. Computers \& Operations Research, 21:359-368.
宔
Duran, M. A. and Grossmann, I. (1986).
An outer-approximation algorithm for a class of mixed-integer nonlinear programs.
Mathematical Programming, 36:307-339.

Geoffrion, A. M. (1972).
Generalized Benders decomposition.
Journal of Optimization Theory and Applications, 10(4):237-260.

Hijazi, H., Bonami, P., and Ouorou, A. (2010).

An outer-inner approximation for separable MINLPs.
Technical report, LIF, Faculté des Sciences de Luminy, Université de Marseille.
Leyffer, S. (2001).
Integrating SQP and branch-and-bound for mixed integer nonlinear programming.
Computational Optimization \& Applications, 18:295-309.
Linderoth, J. T. and Savelsbergh, M. W. P. (1999).
A computational study of search strategies in mixed integer programming. INFORMS Journal on Computing, 11:173-187.

Schrijver, A. (1986).
Theory of Linear and Integer Programming.
Wiley, New York.
庿 Westerlund, T. and Pettersson, F. (1995).
A cutting plane method for solving convex MINLP problems. Computers \& Chemical Engineering, 19:s131-s136.

