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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Basic Assumptions for Convex MINLP

A1 X is a bounded polyhedral set.

A2 f and c twice continuously differentiable convex

A3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later)
A3 is technical (MFCQ would have been sufficient)
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Overview of Basic Methods

Two broad classes of method
1 Single-tree methods; e.g.

Nonlinear branch-and-bound
LP/NLP-based branch-and-bound
Nonlinear branch-and-cut

... build and search a single tree
2 Multi-tree methods; e.g.

Outer approximation
Benders decomposition
Extended cutting plane method

... alternate between NLP and MILP solves

Multi-tree methods only evaluate functions at integer points

Concentrate on methods for convex problems today.

Can mix different methods & techniques.
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Nonlinear Branch-and-Bound

Solve NLP relaxation (xI continuous, not integer)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X

If xi ∈ Z ∀ i ∈ I, then solved MINLP

If relaxation is infeasible, then MINLP infeasible

... otherwise search tree whose nodes are NLPs:
minimize

x
f (x),

subject to c(x) ≤ 0,
x ∈ X ,
li ≤ xi ≤ ui , ∀i ∈ I.

(NLP(l , u))

NLP relaxation is NLP(−∞,∞) ... search tree
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Nonlinear Branch-and-Bound

Solve relaxed NLP (0 ≤ xI ≤ 1 continuous relaxation)
. . . solution value provides lower bound

Branch on xi non-integral

Solve NLPs & branch until
1 Node infeasible: •
2 Node integer feasible: �
⇒ get upper bound (U)

3 Lower bound ≥ U:

Search until no unexplored nodes
Software:

GAMS-SBB, MINLPBB [L]

BARON [Sahinidis] global

Couenne [Belotti] global

dominated

by UBD

integer

feasible

UBD

infeasible

x =0 x =1
ii
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Nonlinear Branch-and-Bound

Branch-and-bound for MINLP
Choose tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove (NLP(l , u)) from heap: H = H− { NLP(l , u) }.
Solve (NLP(l , u)) ⇒ solution x (l ,u)

if (NLP(l , u)) is infeasible then
Prune node: infeasible

else if f (x (l ,u)) > U then
Prune node; dominated by bound U

else if x
(l ,u)
I integral then

Update incumbent : U = f (x (l ,u)), x∗ = x (l ,u).
else

BranchOnVariable(x
(l ,u)
i , l , u,H)

end

end
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Nonlinear Branch-and-Bound

BnB is finite, provided X is bounded polyhedron:

Theorem (Finiteness of Nonlinear Branch-and-Bound)

Solve MINLP by nonlinear branch-and-bound, and assume that
A1-A3 hold. Then BnB terminates at optimal solution (or
indication of infeasibility) after a finite number of nodes.

Proof.

(A1-A3) ⇒ every NLP solved globally (convex, MFCQ)

Boundedness of X ⇒ tree is finite

⇒ convergence, see e.g. Theorem 24.1 of [Schrijver, 1986]. �
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Nonlinear Branch-and-Bound

BnB trees can get pretty large ...

Synthesis MINLP B&B Tree: 10000+ nodes after 360s

... be smart about solving NLPs & searching tree!
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Advanced Nonlinear BnB

Basic BnB will work, but needs improvements:

Selection of branching variables

Node selection strategies

Inexact NLP solves & hot-starts

Cutting planes & branch-and-cut

Software design & modern solvers, e.g. MINOTAUR

... critical for efficient implementation
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Advanced Nonlinear BnB: Variable Selection

Ideally choose branching sequence to minimize tree size
... impossible in practice; sequence not known a priori
⇒ choose variable that maximizes increase in lower bound

Let Ic ⊂ I set of candidates: fractional integer variables
... in practice choose subset of important variables (priorities)

Maximum Fractional Branching

Branch on variable i0 with largest integer violation:

i0 = argmax
i∈Ic

{min (xi − bxic , dxie − xi )} ,

... as bad as random branching [Achterberg et al., 2004]
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Advanced Nonlinear BnB: Variable Selection
Successful rules estimate change in lower bound after branching

Increasing lower bound improves pruning

For xi , i ∈ I, define degradation estimates D+
i and D−i

for increase in lower bound

Goal: make both D+
i and D−i large!

Combine D+
i and D−i into single score:

si := µmin(D+
i ,D

−
i ) + (1− µ) max(D+

i ,D
−
i ),

where parameter µ ∈ [0, 1] close to 1.

Degradation-Based Branching

Branch on variable i0 with largest degradation estimate:

i0 = argmax
i∈Ic

{si}

... methods differ by how D+
i and D−i computed
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Advanced Nonlinear BnB: Variable Selection

The first approach for computing degradations is ...

Strong Branching

Solve 2× |Ic | NLPs for every potential child node:

Solution at current (parent) node (NLP(l , u)) is fp := f (l ,u)

∀ xi , i ∈ Ic create two temporary NLPs:
NLPi (l−, u−) and NLPi (l+, u+)

Solve both NLPs ...
... if both infeasible, then prune (NLP(l , u))
... if one infeasible, then fix integer in parent (NLP(l , u))
... otherwise, let solutions be f +

i and f −i and compute

D+
i = f +

i − fp, and D−i = f −i − fp.
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Advanced Nonlinear BnB: Variable Selection

Advantage/Disadvantage of strong branching:

Good: Reduce the number of nodes in tree

Bad: Slow overall, because too many NLPs solved

Solving NLPs approximately does not help

Fact: MILP 6= MINLP

LPs hot-start efficiently (re-use basis factors),
but NLPs cannot be warm-started (neither IPM nor SQP)!

Reason (NLPs are, well ... nonlinear):

NLP methods are iterative: generate sequence {x (k)}
At solution, x (l), have factors from x (l−1) ... out-of-date
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Approximate Strong Branching

Simple idea: Use QP (LP) approximation [Bonami et al., 2011]

CPU[s] for root node and round (2 # ints) of strong branching:

problem # ints Full NLP Cold QP Hot QP

stockcycle 480 4.08 3.32 0.532
RSyn0805H 296 78.7 69.8 1.94
SLay10H 180 18.0 17.8 1.25
Syn30M03H 180 40.9 14.7 2.12

Small savings from replacing NLP by QP solves.

Order of magnitude saving from re-using factors.
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Approximate Strong Branching

Hot-QP Starts in BQPD [Fletcher]

parent node is dual feasible after branching

perform steps of dual active-set method to get primal feasible

re-use factors of basis B = LU

re-use factors of dense reduced Hessian ZTHZ = LTDL

use LU and LTDL to factorize KKT system[
H AT

A 0

]
where B−1 = [A : V ]−1 =

[
Y
Z

]
2-3 pivots to re-optimize independent of problem size

18 / 42



Approximate Strong Branching

Parametric QP solve
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Performance Profiles [Dolan and More, 2002]

Performance profiles
Clever way to display a benchmark

∀ solver s log2

(
# iter(s, p)

best iter(p)

)
p ∈ problem

“probability distribution”:
solver “A” is at most x-times
slower than best.

Origin shows percentage of
problems where solver “A” is best.

Asymptotics shows reliability of
solver “A”.
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Performance Profiles (Formal Definition)

Performance ratio of tp,s for p ∈ P of problems, s ∈ S of solvers:

rp,s =
tp,s

min{tp,i | i ∈ S , }

distribution function ρs(τ) for solver s ∈ S

ρs(τ) =
size{p ∈ P | rp,s ≤ τ}

|P|
.

ρs(τ) probability that solver s is at most τ× slower than best
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Approximate Strong Branching

 0

 20

 40

 60

 80

 100

 1  10  100  1000

p
ro

p
o

rt
io

n
 o

f 
p

ro
b

le
m

s

x times worse than best

NLP-fullstrong
QP-fullstrong
LP-fullstrong

Performance (# nodes) of NLP/QP/LP strong branching

22 / 42



Approximate Strong Branching
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Advanced Nonlinear BnB: Variable Selection

Pseudocost Branching

Keep history of past branching to estimate degradations

n+
i , n

−
i number of times up/down node solved for variable i

p+
i , p

−
i pseudocosts updated when child solved:

p+
i =

f +
i − fp
dxie − xi

+ p+
i , n+

i = n+
i + 1 or p−i = ... n−i = ...

Compute estimates of D+
i and D−i or branching:

D+
i = (dxie − xi )

p+
i

n+
i

and D−i = (xi − bxic)
p−i
n−i

.

Initialize pseudocosts with strong branching

Good estimates for MILP, [Linderoth and Savelsbergh, 1999]

Not clear how to update, if NLP infeasible ... `1 penalty?

24 / 42



Advanced Nonlinear BnB: Variable Selection

Following approach combines strong branching and pseudocosts

Reliability Branching

Strong branching early, then pseudocost branching

While n+
i or n−i ≤ τ(= 5) do strong branching on xi

Once n+
i or n−i > τ switch to pseudocost

Important alternatives to variables branching:

SOS branching, see [Beale and Tomlin, 1970]

Branching on split disjunctions(
aT xI ≤ b

)
∨
(

aT xI ≥ b + 1
)

where a ∈ Zp and b ∈ Z ... conceptually like conjugate
directions

25 / 42



Advanced Nonlinear BnB: Node Selection

Strategic decision on which node to solve next.

Goals of node selection

Find good feasible solution quickly to reduce upper bound, U

Prove optimality of incumbent x∗ by increasing lower bound

Popular strategies:

1 Depth-first search

2 Best-bound search

3 Hybrid schemes
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Advanced Nonlinear BnB: Depth-First Search

Depth-First Search

Select deepest node in tree (or last node added to heap H)

Advantages:

Easy to implement (Sven likes that ;-)

Keeps list of open nodes, H, as small as possible

Minimizes the change to next NLP (NLP(l , u)):
... only single bound changes ⇒ better hot-starts

Disadvantages:

poor performance if no upper bound is found:
⇒ explores nodes with a lower bound larger than solution
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Advanced Nonlinear BnB: Best-Bound Search

Best-Bound Search

Select node with best lower bound

Advantages:

Minimizes number of nodes for fixed sequence of branching
decisions, because all explored nodes would have been
explored independent of upper bound

Disadvantages:

Requires more memory to store open problems

Less opportunity for warm-starts of NLPs

Tends to find integer solutions at the end
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Advanced Nonlinear BnB: Best-Bound Search

1 Best Expected Bound: node with best bound after branching:

b+
p = fp + (dxie − xi )

p+
i

n+
i

and b−p = fp + (xi − bxic)
p−i
n−i

.

Next node is maxp
{

min
(
b+
p , b

−
p

)}
.

2 Best Estimate: node with best expected solution in subtree

ep = fp +
∑

i :xi fractional

min

(
(dxie − xi )

p+
i

n+
i

, (xi − bxic)
p−i
n−i

)
,

Next node is maxp {ep}.

... good search strategies combine depth-first and best-bound
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Advanced Nonlinear BnB: Inexact NLP Solves

Role for inexact solves in MINLP

Provide approximate values for strong branching

Solve NLPs inexactly during tree-search:

[Borchers and Mitchell, 1994] consider single SQP iteration
... perform early branching if limit seems non-integral
... augmented Lagrangian dual for bounds
[Leyffer, 2001] considers single SQP iteration
... use outer approximation instead of dual
... numerical results disappointing

... reduce solve time by factor 2-3 at best

New idea: search QP tree & exploit hot-starts for QPs
... QP-diving discussed next ...
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Advanced Nonlinear BnB: QP-Diving

Branch-and-bound solves huge number of NLPs ⇒ bottleneck!

QP-Diving Tree-Search:

solve root node & save
factors from last QP solve

same KKT for whole subtree

perform MIQP tree-searches

depth-first search:
⇒ fast hot-starts
back-track:
warm-starts

Need new fathoming rules ... linear objf

integer

feasible

infeasible

x =0 x =1

Full NLP

QP

QP

QP

solve NLP

dominated

i i

... alternative: change QP approximation after back-track
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Advanced Nonlinear BnB: QP-Diving

Assume MINLP is convex

QP-Diving Tree-Search:
Solve QPs until

1 QP infeasible: •
... QP is relaxation of NLP

2 Node integer feasible: �
⇒ NLP to get upper bnd (U)
... QP over-/under-estimates
⇒ resolve

3 Infeasible O-cut η < U:
Linear O-cut: η ≥ fk + gT

k d linear objf

integer

feasible

infeasible

x =0 x =1

Full NLP

QP

QP

QP

solve NLP

dominated

i i
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New Extended Performance Profiles

Performance ratio of tp,s for p ∈ P of problems, s ∈ S of solvers:

r̂p,s =
tp,s

min{tp,i | i ∈ S , i 6= s}

distribution function ρs(τ) for solver s ∈ S

ρ̂s(τ) =
size{p ∈ P | r̂p,s ≤ τ}

|P|
.

ρ̂s(τ) probability that solver s is at most τ× slower than best

For r̂p,s ≥ 1 get standard performance profile

Extension: r̂p,s < 1 if solver s is fastest for instance p

ρ̂s(0.25) probability that solver s is 4× faster than others
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CPU-Times for MINOTAUR with Hot-Starts (IPOPT)
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CPU-Times for MINOTAUR with Hot-Starts (filterSQP)
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Typical Results

RSyn0840M02M
Solver CPU NLPs CPU/100NLPs

IPOPT 7184.91 69530 10.3335
filterSQP 7192.54 37799 19.0284
QP-Diving 5276.23 1387837 0.3802

⇒ many more nodes ... a little faster.

CLay0305H
Solver CPU NLPs CPU/100NLPs

IPOPT 1951.1 16486 11.8349
filterSQP 849.74 16717 5.0831
QP-Diving 97.89 24029 0.4074

⇒ similar number of nodes ... much faster!
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MINOTAUR: A New Software Framework for MINLP

Mixed
Integer
Nonlinear
Optimization
Toolkit:
Algorithms,
Underestimators &
Relaxations

Goal: Implement a Range of Algorithms in Common Framework

Fast, usable MINLP solver.

Flexibility for developing new algorithms.

Ease of developing new algorithms.
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MINOTAUR’s Four Main Components
Interfaces for reading input

AMPL

Your Interface Here

Engines to solve LP/NLP/QP

QP: BQPD

NLP: FilterSQP/IPOPT

LP: OSI-CLP

Your engine here

Algorithms to solve MINLP

Branch-and-Bound

Outer-Approximation

Quesada-Grossmann

Branch-and-Refine

Your algorithm here

Base

Data Structures:

Problem
Objective & Constraints
Functions
Modifications
Gradient, Jacobian, Hessian

Tools for Search:

Node Processors
Node Relaxers
Branchers
Tree Manager

Utilities

Loggers & Timers
Options
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Highly Customizable
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Features

Bonmin FilMINT BARON Couenne Minotaur

Algorithms:
NLP B&B X × × × X
Branch & Cut X X × × X
Branch & Reduce × × X X X

Support for Nonlinear Functions:
Comput. Graph × × X X X
Nonlin. Reform. × × × × X
Native Derivat. × × × × X

Interfaces:
AIMMS × × X × ×
AMPL X X × X X
GAMS X × X X ×

Open Source X × × X X
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MINOTAUR Performance
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MINOTAUR’s Soft-Wear Stack

... available at www.mcs.anl.gov/minotaur
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Summary and Teaching Points

Nonlinear Branch-and-Bound

Solves problem by branching globally for convex MINLPs

Need careful implementation of

Branching variable & node selection
Software infrastructure ... build on other frameworks!
Interfaces to NLP and other solvers

Exploit linearity (or QP) as much as possible

QP diving works really well for many MINLPs
Approximate tree-search reduces CPU time

Implementation matters ... many open-source solvers
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