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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize f(x)

subject to ¢(x) <0
xeX
x; € Zforalliel

Basic Assumptions for Convex MINLP
Al X is a bounded polyhedral set.
A2 f and c twice continuously differentiable convex

A3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later)
A3 is technical (MFCQ would have been sufficient)
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Overview of Basic Methods

Two broad classes of method

@ Single-tree methods; e.g.

o Nonlinear branch-and-bound
o LP/NLP-based branch-and-bound
e Nonlinear branch-and-cut

... build and search a single tree

@ Multi-tree methods; e.g.

o Outer approximation
e Benders decomposition
o Extended cutting plane method

. alternate between NLP and MILP solves

Multi-tree methods only evaluate functions at integer points
Concentrate on methods for convex problems today.

Can mix different methods & techniques.
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Nonlinear Branch-and-Bound

Solve NLP relaxation (xz continuous, not integer)

minimize f(x) subject to ¢(x) <0, x € X

X

o If x;, € ZV i€ Z, then solved MINLP
o If relaxation is infeasible, then MINLP infeasible

.. otherwise search tree whose nodes are NLPs:

minimize f(x),

subject to c(x) <0, (NLP(/, u))
x e X, 7
i <xi <u, Viel.

NLP relaxation is NLP(—o0, c0) ... search tree

6
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Nonlinear Branch-and-Bound

Solve relaxed NLP (0 < x7 < 1 continuous relaxation)
... solution value provides lower bound

@ Branch on x; non-integral
@ Solve NLPs & branch until

@ Node infeasible: [
@ Node integer feasible: [J
= get upper bound (U)

@ Lower bound > U: A

infeasible

Search until no unexplored nodes

Software:
o GAMS-SBB, MINLPBB [L]
L integer dominated
@ BARON [Sahinidis] global feasible by UBD
UBD

@ Couenne [Belotti] global



Nonlinear Branch-and-Bound

Branch-and-bound for MINLP

Choose tol € > 0, set U = 0o, add (NLP(—o00, c0)) to heap H.

while H # () do
Remove (NLP(/, u)) from heap: H =H — { NLP(/,u) }.
Solve (NLP(/, u)) = solution x(/:¥)
if (NLP(/,u)) is infeasible then
‘ Prune node: infeasible
else if f(x("*)) > U then
‘ Prune node; dominated by bound U

else if xg’u) integral then

‘ Update incumbent : U = f(x(h)), x* = x(h),
else

‘ BranchOnVariabIe(x,.(l’”), lu,H)
end
end




Nonlinear Branch-and-Bound

BnB is finite, provided X is bounded polyhedron:

Theorem (Finiteness of Nonlinear Branch-and-Bound)

Solve MINLP by nonlinear branch-and-bound, and assume that
A1-A3 hold. Then BnB terminates at optimal solution (or
indication of infeasibility) after a finite number of nodes.

Proof.
@ (A1-A3) = every NLP solved globally (convex, MFCQ)
@ Boundedness of X = tree is finite

= convergence, see e.g. Theorem 24.1 of [Schrijver, 1986].

g
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Nonlinear Branch-and-Bound

BnB trees can get pretty large ...

Synthesis MINLP B&B Tree: 10000+ nodes after 360s

... be smart about solving NLPs & searching tree!
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Advanced Nonlinear BnB

Basic BnB will work, but needs improvements:
@ Selection of branching variables
@ Node selection strategies
@ Inexact NLP solves & hot-starts
o Cutting planes & branch-and-cut
@ Software design & modern solvers, e.g. MINOTAUR
. critical for efficient implementation



N
Advanced Nonlinear BnB: Variable Selection

Ideally choose branching sequence to minimize tree size
. impossible in practice; sequence not known a priori
=> choose variable that maximizes increase in lower bound

Let Z. C 7 set of candidates: fractional integer variables
. in practice choose subset of important variables (priorities)

Maximum Fractional Branching
Branch on variable iy with largest integer violation:

o= argr;\ax{min (xi — | %], [x]—x)},
1€Le

. as bad as random branching [Achterberg et al., 2004]
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Advanced Nonlinear BnB: Variable Selection
Successful rules estimate change in lower bound after branching
@ Increasing lower bound improves pruning

@ For x;,i € Z, define degradation estimates D,.Jr and D;”
for increase in lower bound

@ Goal: make both D,-+ and D; large!
o Combine D" and D; into single score:

Si = umin(Di—i_v Dl_) + (1 - M) maX(Dlﬂ_v Dl_)7
where parameter p € [0, 1] close to 1.

Degradation-Based Branching
Branch on variable iy with largest degradation estimate:

io = argmax {s; }
ieZ.

. methods differ by how D,.Jr and D;” computed
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Advanced Nonlinear BnB: Variable Selection

The first approach for computing degradations is ...

Strong Branching
Solve 2 x |Z.| NLPs for every potential child node:
o Solution at current (parent) node (NLP(/, u)) is f, := f(/¥)
o V x;,i € I, create two temporary NLPs:
NLP;(/~,u™) and NLP;(/T, u™)
@ Solve both NLPs ...
.. if both infeasible, then prune (NLP(/, u))

.. if one infeasible, then fix integer in parent (NLP(/, u))
.. otherwise, let solutions be fﬁ and f,~ and compute
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Advanced Nonlinear BnB: Variable S‘election

Advantage/Disadvantage of strong branching:
@ Good: Reduce the number of nodes in tree
@ Bad: Slow overall, because too many NLPs solved

@ Solving NLPs approximately does not help

Fact: MILP # MINLP

LPs hot-start efficiently (re-use basis factors),
but NLPs cannot be warm-started (neither IPM nor SQP)!

Reason (NLPs are, well ... nonlinear):
o NLP methods are iterative: generate sequence {x(¥)}

@ At solution, x(), have factors from x(~1) ... out-of-date

16
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Approximate Strong Branching

Simple idea: Use QP (LP) approximation [Bonami et al., 2011]

CPUJs] for root node and round (2 # ints) of strong branching:

problem # ints ‘ Full NLP  Cold QP Hot QP
stockcycle 480 4.08 3.32 0.532
RSyn0805H 296 78.7 69.8 1.94
SLay10H 180 18.0 17.8 1.25
Syn30MO03H 180 40.9 14.7 2.12

@ Small savings from replacing NLP by QP solves.

@ Order of magnitude saving from re-using factors.
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Approximate Strong Branching

Hot-QP Starts in BQPD [Fletcher]

@ parent node is dual feasible after branching

@ perform steps of dual active-set method to get primal feasible
@ re-use factors of basis B = LU
@ re-use factors of dense reduced Hessian ZTHZ = LT DL
o use LU and LT DL to factorize KKT system
H AT o [Y
{A 0 ] where B ™ =[A: V] " = [Z}

@ 2-3 pivots to re-optimize independent of problem size
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Approximate Strong Branching

Parametric QP solve

a 19/42



N
Performance Profiles [Dolan and More, 2002]

Performance profiles

Random Most-Fractional

name CPU nodes CpPU nodes

BatchS101006M 1419 9464 68.7 7560 H

Rt e e s aw  Clever way to display a benchmark
BatchS151208M 6781.6 176188 1710.0 102744

BatchS201210M > 10800 > 174400 6050.6 275740

CLay0204H bl U 4272 27.3 3404

CLay0204M 4563 0.7 1361

VY solver s

# iter(s, p)

best_iter(p)

CLay0205] 271 9 1n 2 120: 81022
CLay0205! 22695
CLay0303! 1032
CLay0304 24l 4 13 11631

CLay0304! 30698
CLa:'[BUSH '160.1 lSmK .21@ 70552
CLay0305M 710.9 185254 56.7 38282
FLay04H 9 3158 37.1 3012
FLay04M 3204 1.4 2504
FLay05H w)s 9 185954 47813 120508 p 6 p ro b | em
FLay05M 215.2 188346 1253 114122
FLay06M > 10800 > 5166800 > 10800 > 6022600

@ ‘“probability distribution”: ‘

solver “A” is at most x-times
slower than best. y |
@ Origin shows percentage of "
problems where solver “A” is best. : .
@ Asymptotics shows reliability of ) N —— :

Normalized Time

solver “A".
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S ———
Performance Profiles (Formal Definition)

Performance ratio of t, s for p € P of problems, s € S of solvers:

roo— tp,s
P2 min{t,;|i€S,}

distribution function ps(7) for solver s € S

size{lpeP|rps <7

ps(7) probability that solver s is at most 7X slower than best
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Approximate Strong Branching

proportion of problems
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Approximate Strong Branching
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Advanced Nonlinear BnB: Variable Selection

Pseudocost Branching

Keep history of past branching to estimate degradations

e ni,n; number of times up/down node solved for variable i

o p;", p; pseudocosts updated when child solved:

fr—f
+ _ P + o+t - _ - _
p; _m+Piv”i =n"+1or pf =..n =..

Compute estimates of D,-Jr and D;” or branching:

. )
Df = (Ixi] =) 5 and D = (x = [x))

]

i

Initialize pseudocosts with strong branching
Good estimates for MILP, [Linderoth and Savelsbergh, 1999]
Not clear how to update, if NLP infeasible ... ¢; penalty?
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N
Advanced Nonlinear BnB: Variable Selection

Following approach combines strong branching and pseudocosts

Reliability Branching
Strong branching early, then pseudocost branching

o While n or n; < 7(=5) do strong branching on x;
+

@ Once n;” or n; > 7 switch to pseudocost

Important alternatives to variables branching:
@ SOS branching, see [Beale and Tomlin, 1970]

@ Branching on split disjunctions
(aTXI < b> Vv (aTXI > b+ 1)

where a € ZP and b € Z ... conceptually like conjugate
directions
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N
Advanced Nonlinear BnB: Node Selection

Strategic decision on which node to solve next.

Goals of node selection
@ Find good feasible solution quickly to reduce upper bound, U

@ Prove optimality of incumbent x* by increasing lower bound

Popular strategies:
© Depth-first search
@ Best-bound search
© Hybrid schemes
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Advanced Nonlinear BnB: Depth-First Search

Depth-First Search
Select deepest node in tree (or last node added to heap H) J

Advantages:
e Easy to implement (Sven likes that ;-)
o Keeps list of open nodes, H, as small as possible

@ Minimizes the change to next NLP (NLP(/, u)):
.. only single bound changes = better hot-starts

Disadvantages:

@ poor performance if no upper bound is found:
= explores nodes with a lower bound larger than solution

o 27 /42



N
Advanced Nonlinear BnB: Best-Bound Search

Best-Bound Search J

Select node with best lower bound

Advantages:

@ Minimizes number of nodes for fixed sequence of branching
decisions, because all explored nodes would have been
explored independent of upper bound

Disadvantages:
@ Requires more memory to store open problems
@ Less opportunity for warm-starts of NLPs

@ Tends to find integer solutions at the end
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Advanced Nonlinear BnB: Best-Bound Search

© Best Expected Bound: node with best bound after branching:

p.Jr pf
b; = fp + ([xi] —x,-)n# and b, =1, + (xi — LX,J)n%
Next node is max, {min (blj, blj)}.
@ Best Estimate: node with best expected solution in subtree

+

. p; p:
e="f,+ Y  min <((x,-1 =) (- M)ﬂf),
i:x;fractional i i

Next node is max, {ep}.

... good search strategies combine depth-first and best-bound
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Advanced Nonlinear BnB: Inexact NLP Solves

Role for inexact solves in MINLP
@ Provide approximate values for strong branching
@ Solve NLPs inexactly during tree-search:

o [Borchers and Mitchell, 1994] consider single SQP iteration
... perform early branching if limit seems non-integral
. augmented Lagrangian dual for bounds
o [Leyffer, 2001] considers single SQP iteration
. use outer approximation instead of dual
. numerical results disappointing

. reduce solve time by factor 2-3 at best

@ New idea: search QP tree & exploit hot-starts for QPs
... QP-diving discussed next ...
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Advanced Nonlinear BnB: QP-Diving

Branch-and-bound solves huge number of NLPs = bottleneck!

Full NLP

QP-Diving Tree-Search:

@ solve root node & save
factors from last QP solve

@ same KKT for whole subtree N \

@ perform MIQP tree-searches | . cibie
o depth-first search:
= fast hot-starts
e back-track:
warm-starts

. integer dominated
Need new fathoming rules ... feasible linear objf
solve NLP

. alternative: change QP approximation after back-track
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Advanced Nonlinear BnB: QP-Diving

Assume MINLP is convex

QP-Diving Tree-Search: Full NLP
Solve QPs until
@ QP infeasible: @
... QP is relaxation of NLP \
@ Node integer feasible: [
= NLP to get upper bnd (V)
... QP over-/under-estimates

infeasible

= resolve
o |n.feaS|b|e O-cut n < U: ¢ integer dominated
Linear O-cut: n> fi + 8 d feasible linear objf
solve NLP
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New Extended Performance Profiles

Performance ratio of t, s for p € P of problems, s € S of solvers:

”> — tp,S
P2 min{t,; | i €S,i#s}

distribution function ps(7) for solver s € S

size{pe P | Fps < T}
d '

ps(T) =

@ ps(7) probability that solver s is at most 7x slower than best
@ For 7ps > 1 get standard performance profile
@ Extension: 7, s < 1 if solver s is fastest for instance p

@ $5(0.25) probability that solver s is 4x faster than others
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CPU-Times for MINOTAUR with Hot-Starts (IPOPT)

1
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Hot-started QP give a huge improvement
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CPU-Times for MINOTAUR with Hot-Starts (filterSQP)

1
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Hot-started QP give a huge improvement
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Typical Results

RSyn0840M02M
Solver CPU NLPs CPU/100NLPs
IPOPT 7184.91 69530 10.3335
filterSQP | 7192.54 37799 19.0284
QP-Diving | 5276.23 1387837 0.3802
= many more nodes ...
CLay0305H
Solver CPU NLPs CPU/100NLPs
IPOPT 1951.1 16486 11.8349
filterSQP | 849.74 16717 5.0831
QP-Diving | 97.89 24029 0.4074

= similar number of nodes ...

a little faster.

much faster!

36
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MINOTAUR: A New Software Framéwork for MINLP

et RO

Nonlinear
Optimization
Toolkit:
Algorithms,
Underestimators &
Relaxations

%

It’s only half bull

Goal: Implement a Range of Algorithms in Common Framework
o Fast, usable MINLP solver.
o Flexibility for developing new algorithms.

@ Ease of developing new algorithms.
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MINOTAUR's Four Main Components

Interfaces for reading input Base
o AMPL e Data Structures:
e Problem
o Objective & Constraints
Engines to solve LP/NLP/QP o Functions
e QP: BQPD o Modifications
e Gradient, Jacobian, Hessian
o NLP: FilterSQP/IPOPT ' '
QP/ @ Tools for Search:
o LP: OSI-CLP e Node Processors
o Node Relaxers
Algorithms to solve MINLP e Branchers
e Branch-and-Bound ° _Tree Manager
@ Outer-Approximation ° Utlhtll_es & Ti
o Loggers imers
@ Quesada-Grossmann o Opgtigons

@ Branch-and-Refine
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MINOTAUR's Four Main Components

Interfaces for reading input Base
o AMPL @ Your Data Structures:
e Problem
® Your Interface Here o Objective & Constraints
Engines to solve LP/NLP/QP o Functions
e QP: BQPD o Modifications
o Gradient, Jacobian, Hessian
@ NLP: FilterSQP/IPOPT ' '
QP/ @ Your Tools for Search:
o LP: OSI-CLP
e Node Processors
@ Your engine here o Node Relaxers
Algorithms to solve MINLP e Branchers
e Branch-and-Bound ° _Tree Manager
@ Quter-Approximation o Utilities i
o Loggers & Timers
@ Quesada-Grossmann o Options
@ Branch-and-Refine Highly Customizable

@ Your algorithm here

S
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Features
Bonmin FiIMINT BARON Couenne Minotaur
Algorithms:
NLP B&B v X X X v
Branch & Cut N v X X v
Branch & Reduce X X v N v
Support for Nonlinear Functions:
Comput. Graph X X v v v
Nonlin. Reform. X X X X v
Native Derivat. X X X X v
Interfaces:
AIMMS X X v X X
AMPL v v X v v
GAMS N X v N X
Open Source v X X v v
a 39 /42



MINOTAUR Performance

1 T T

T T T
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Time taken for 463 MINLP Instances from GAMS, MacMINLP,

Normalized Time

CMU test-sets.
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MINOTAUR's Soft-Wear Stack

. available at www.mcs.anl.gov/minotaur
o 41/42


www.mcs.anl.gov/minotaur

Summary and Teaching Points

Nonlinear Branch-and-Bound

@ Solves problem by branching globally for convex MINLPs
@ Need careful implementation of

e Branching variable & node selection
o Software infrastructure ... build on other frameworks!
o Interfaces to NLP and other solvers

@ Exploit linearity (or QP) as much as possible
e QP diving works really well for many MINLPs
e Approximate tree-search reduces CPU time

@ Implementation matters ... many open-source solvers
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