

Mixed-Integer Nonlinear Optimization: Algorithms for Convex Problems GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

Problem Definition and Assumptions

3 Advanced Nonlinear Branch-and-Bound

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to } c(x) \leq 0 \\ & x \in \mathcal{X} \\ & x_i \in \mathbb{Z} \text{ for all } i \in \mathcal{I} \end{array}$$

Basic Assumptions for Convex MINLPA1 \mathcal{X} is a bounded polyhedral set.A2 f and c twice continuously differentiable convexA3 MINLP satisfies a constraint qualification.

A2 (convexity) most restrictive (show how to relax later) A3 is technical (MFCQ would have been sufficient)

Overview of Basic Methods

Two broad classes of method

- Single-tree methods; e.g.
 - Nonlinear branch-and-bound
 - LP/NLP-based branch-and-bound
 - Nonlinear branch-and-cut
 - ... build and search a single tree
- Ø Multi-tree methods; e.g.
 - Outer approximation
 - Benders decomposition
 - Extended cutting plane method
 - ... alternate between NLP and MILP solves

Multi-tree methods only evaluate functions at integer points

Concentrate on methods for convex problems today.

Can mix different methods & techniques.

Outline

1 Problem Definition and Assumptions

3 Advanced Nonlinear Branch-and-Bound

Solve NLP relaxation ($x_{\mathcal{I}}$ continuous, not integer)

minimize f(x) subject to $c(x) \leq 0, x \in \mathcal{X}$

- If $x_i \in \mathbb{Z} \ \forall \ i \in \mathcal{I}$, then solved MINLP
- If relaxation is infeasible, then MINLP infeasible

... otherwise search tree whose nodes are NLPs:

$$\begin{cases} \underset{x}{\text{minimize } f(x),} \\ \text{subject to } c(x) \leq 0, \\ x \in \mathcal{X}, \\ l_i \leq x_i \leq u_i, \ \forall i \in \mathcal{I}. \end{cases}$$
(NLP(*I*, *u*))

NLP relaxation is $\mathsf{NLP}(-\infty,\infty)$

... search tree

Solve relaxed NLP ($0 \le x_{\mathcal{I}} \le 1$ continuous relaxation) ... solution value provides lower bound

Branch on x_i non-integral
Solve NLPs & branch until
1 Node infeasible:
2 Node integer feasible: □
⇒ get upper bound (U)
3 Lower bound ≥ U:

Search until no unexplored nodes Software:

- GAMS-SBB, MINLPBB [L]
- BARON [Sahinidis] global
- Couenne [Belotti] global

Branch-and-bound for MINLP Choose tol $\epsilon > 0$, set $U = \infty$, add (NLP($-\infty, \infty$)) to heap \mathcal{H} . while $\mathcal{H} \neq \emptyset$ do Remove (NLP(I, u)) from heap: $\mathcal{H} = \mathcal{H} - \{ \text{NLP}(I, u) \}.$ Solve (NLP(I, u)) \Rightarrow solution $x^{(I,u)}$ if (NLP(1, u)) is infeasible then Prune node: infeasible else if $f(x^{(l,u)}) > U$ then Prune node; dominated by bound Uelse if $x_{\tau}^{(l,u)}$ integral then Update incumbent : $U = f(x^{(l,u)}), x^* = x^{(l,u)}$. else BranchOnVariable($x_i^{(l,u)}, l, u, \mathcal{H}$) end end

BnB is finite, provided \mathcal{X} is bounded polyhedron:

Theorem (Finiteness of Nonlinear Branch-and-Bound)

Solve MINLP by nonlinear branch-and-bound, and assume that A1-A3 hold. Then BnB terminates at optimal solution (or indication of infeasibility) after a finite number of nodes.

Proof.

- (A1-A3) \Rightarrow every NLP solved globally (convex, MFCQ)
- Boundedness of $\mathcal{X} \Rightarrow$ tree is finite
- \Rightarrow convergence, see e.g. Theorem 24.1 of [Schrijver, 1986].

BnB trees can get pretty large ...

Synthesis MINLP B&B Tree: 10000+ nodes after 360s

... be smart about solving NLPs & searching tree!

Outline

1 Problem Definition and Assumptions

2 Nonlinear Branch-and-Bound

3 Advanced Nonlinear Branch-and-Bound

Advanced Nonlinear BnB

Basic BnB will work, but needs improvements:

- Selection of branching variables
- Node selection strategies
- Inexact NLP solves & hot-starts
- Cutting planes & branch-and-cut
- Software design & modern solvers, e.g. MINOTAUR

... critical for efficient implementation

Ideally choose branching sequence to minimize tree size ... impossible in practice; sequence not known a priori ⇒ choose variable that maximizes increase in lower bound

Let $\mathcal{I}_c \subset \mathcal{I}$ set of candidates: fractional integer variables ... in practice choose subset of important variables (priorities)

Maximum Fractional Branching

Branch on variable i_0 with largest integer violation:

$$i_0 = \underset{i \in \mathcal{I}_c}{\operatorname{argmax}} \left\{ \min \left(x_i - \lfloor x_i \rfloor , \ \left\lceil x_i \right\rceil - x_i \right) \right\},$$

... as bad as random branching [Achterberg et al., 2004]

Successful rules estimate change in lower bound after branching

- Increasing lower bound improves pruning
- For x_i, i ∈ I, define degradation estimates D⁺_i and D⁻_i for increase in lower bound
- Goal: make both D_i^+ and D_i^- large!
- Combine D_i^+ and D_i^- into single score:

$$s_i := \mu \min(D_i^+, D_i^-) + (1-\mu) \max(D_i^+, D_i^-),$$

where parameter $\mu \in [0,1]$ close to 1.

Degradation-Based Branching

Branch on variable i_0 with largest degradation estimate:

$$i_0 = \underset{i \in \mathcal{I}_c}{\operatorname{argmax}} \{s_i\}$$

... methods differ by how D_i^+ and D_i^- computed

The first approach for computing degradations is ...

Strong Branching

Solve $2 \times |\mathcal{I}_c|$ NLPs for every potential child node:

- Solution at current (parent) node (NLP(I, u)) is $f_p := f^{(I,u)}$
- $\forall x_i, i \in \mathcal{I}_c$ create two temporary NLPs: NLP_i(l^-, u^-) and NLP_i(l^+, u^+)
- Solve both NLPs ...
 - ... if both infeasible, then prune (NLP(I, u))... if one infeasible, then fix integer in parent (NLP(I, u))
 - ... otherwise, let solutions be f_i^+ and f_i^- and compute

$$D^+_i = f^+_i - f_p, \;\; ext{and} \;\; D^-_i = f^-_i - f_p.$$

Advantage/Disadvantage of strong branching:

- Good: Reduce the number of nodes in tree
- Bad: Slow overall, because too many NLPs solved
- Solving NLPs approximately does not help

Fact: MILP \neq MINLP

LPs hot-start efficiently (re-use basis factors), but NLPs cannot be warm-started (neither IPM nor SQP)!

Reason (NLPs are, well ... nonlinear):

- NLP methods are iterative: generate sequence $\{x^{(k)}\}$
- At solution, $x^{(l)}$, have factors from $x^{(l-1)}$... out-of-date

Simple idea: Use QP (LP) approximation [Bonami et al., 2011]

 $\mathsf{CPU}[\mathsf{s}]$ for root node and round (2 # ints) of strong branching:

problem	# ints	Full NLP	Cold QP	Hot QP
stockcycle	480	4.08	3.32	0.532
RSyn0805H	296	78.7	69.8	1.94
SLay10H	180	18.0	17.8	1.25
Syn30M03H	180	40.9	14.7	2.12

• Small savings from replacing NLP by QP solves.

• Order of magnitude saving from re-using factors.

Hot-QP Starts in BQPD [Fletcher]

- parent node is dual feasible after branching
- perform steps of dual active-set method to get primal feasible
- re-use factors of basis B = LU
- re-use factors of dense reduced Hessian $Z^T H Z = L^T D L$
- use LU and L^TDL to factorize KKT system

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \quad \text{where} \quad B^{-1} = [A : V]^{-1} = \begin{bmatrix} Y \\ Z \end{bmatrix}$$

• 2-3 pivots to re-optimize independent of problem size

Performance Profiles [Dolan and More, 2002]

	Ra	ndom	Most-Fractional		
name	CPU	nodes	CPU	nodes	
BatchS101006M	141.9	9464	68.7	7560	
BatchS121208M	2694.8	96566	566.1	41600	
BatchS151208M	6781.6	176188	1710.0	102744	
BatchS201210M	> 10800	> 174400	6050.6	275740	
CLay0204H	61.0	4272	27.3	3404	
CLay0204M	7.0	4563	0.7	1361	
CLay0205H	271.9	10 2	205	81922	
CLay0205M	338	994	2	22695	
CLay0303M		22		1032	
CLay0304H	48	24 14	137	11631	
CLay0304M	7	28004	4949	30698	
CLay0305H	/160.0	160403	2169.1	70552	
CLay0305M	710.9	185254	56.7	38282	
FLay04H	49.3	3158	37.1	3012	
FLay04M	1.9	3294	1.4	2504	
FLay05H	8605.9	185954	4781.3	129598	
FLay05M	215.2	188346	125.3	114122	
FLay06M	> 10800	> 5166800	> 10800	> 6022600	

Performance profiles
 Clever way to display a benchmark

$$\forall \text{ solver } s \quad \log_2\left(\frac{\# \operatorname{iter}(s, p)}{\operatorname{best_iter}(p)}\right)$$

 $p \in problem$

- "probability distribution": solver "A" is at most x-times slower than best.
- Origin shows percentage of problems where solver "A" is best.
- Asymptotics shows reliability of solver "A".

Performance Profiles (Formal Definition)

Performance ratio of $t_{p,s}$ for $p \in \mathcal{P}$ of problems, $s \in S$ of solvers:

$$r_{p,s} = \frac{t_{p,s}}{\min\{t_{p,i} \mid i \in S,\}}$$

distribution function $ho_s(au)$ for solver $s \in S$

$$\rho_{s}(\tau) = \frac{\operatorname{size}\{p \in \mathcal{P} \mid r_{p,s} \leq \tau\}}{|\mathcal{P}|}$$

 $\rho_s(\tau)$ probability that solver s is at most $\tau \times$ slower than best

Performance (CPU time) of NLP/QP/LP strong branching

Pseudocost Branching

Keep history of past branching to estimate degradations

- n_i^+, n_i^- number of times up/down node solved for variable *i*
- p_i^+, p_i^- pseudocosts updated when child solved:

$$p_i^+ = \frac{f_i^+ - f_p}{\lceil x_i \rceil - x_i} + p_i^+, \ n_i^+ = n_i^+ + 1 \text{ or } p_i^- = \dots n_i^- = \dots$$

• Compute estimates of D_i^+ and D_i^- or branching:

$$D_i^+ = (\lceil x_i \rceil - x_i) \frac{p_i^+}{n_i^+}$$
 and $D_i^- = (x_i - \lfloor x_i \rfloor) \frac{p_i^-}{n_i^-}$.

- Initialize pseudocosts with strong branching
- Good estimates for MILP, [Linderoth and Savelsbergh, 1999]
- \bullet Not clear how to update, if NLP infeasible ... ℓ_1 penalty?

Following approach combines strong branching and pseudocosts

Reliability Branching

Strong branching early, then pseudocost branching

- While n_i^+ or $n_i^- \le \tau (=5)$ do strong branching on x_i
- Once n_i^+ or $n_i^- > \tau$ switch to pseudocost

Important alternatives to variables branching:

- SOS branching, see [Beale and Tomlin, 1970]
- Branching on split disjunctions

$$\left(a^{\mathsf{T}}x_{\mathcal{I}} \leq b\right) \lor \left(a^{\mathsf{T}}x_{\mathcal{I}} \geq b+1\right)$$

where $a \in \mathbb{Z}^p$ and $b \in \mathbb{Z}$... conceptually like conjugate directions

Advanced Nonlinear BnB: Node Selection

Strategic decision on which node to solve next.

Goals of node selection

- Find good feasible solution quickly to reduce upper bound, U
- Prove optimality of incumbent x^* by increasing lower bound

Popular strategies:

- Depth-first search
- Ø Best-bound search
- O Hybrid schemes

Advanced Nonlinear BnB: Depth-First Search

Depth-First Search

Select deepest node in tree (or last node added to heap \mathcal{H})

Advantages:

- Easy to implement (Sven likes that ;-)
- \bullet Keeps list of open nodes, $\mathcal H_{\text{r}}$ as small as possible
- Minimizes the change to next NLP (NLP(*I*, *u*)):
 ... only single bound changes ⇒ better hot-starts

Disadvantages:

- poor performance if no upper bound is found:
 - \Rightarrow explores nodes with a lower bound larger than solution

Advanced Nonlinear BnB: Best-Bound Search

Best-Bound Search

Select node with best lower bound

Advantages:

• Minimizes number of nodes for fixed sequence of branching decisions, because all explored nodes would have been explored independent of upper bound

Disadvantages:

- Requires more memory to store open problems
- Less opportunity for warm-starts of NLPs
- Tends to find integer solutions at the end

Advanced Nonlinear BnB: Best-Bound Search

Best Expected Bound: node with best bound after branching:

$$b_p^+ = f_p + (\lceil x_i \rceil - x_i) \frac{p_i^+}{n_i^+}$$
 and $b_p^- = f_p + (x_i - \lfloor x_i \rfloor) \frac{p_i^-}{n_i^-}$.

Next node is $\max_{p} \{\min(b_{p}^{+}, b_{p}^{-})\}.$

Best Estimate: node with best expected solution in subtree

$$e_{p} = f_{p} + \sum_{i:x_{i} \text{fractional}} \min\left(\left(\left\lceil x_{i} \right\rceil - x_{i} \right) \frac{p_{i}^{+}}{n_{i}^{+}}, (x_{i} - \lfloor x_{i} \rfloor) \frac{p_{i}^{-}}{n_{i}^{-}} \right),$$

Next node is $\max_{p} \{e_{p}\}$.

... good search strategies combine depth-first and best-bound

Advanced Nonlinear BnB: Inexact NLP Solves

Role for inexact solves in MINLP

- Provide approximate values for strong branching
- Solve NLPs inexactly during tree-search:
 - [Borchers and Mitchell, 1994] consider single SQP iteration

 perform early branching if limit seems non-integral
 augmented Lagrangian dual for bounds

 [Leyffer, 2001] considers single SQP iteration

 use outer approximation instead of dual
 numerical results disappointing
 - ... reduce solve time by factor 2-3 at best
- New idea: search QP tree & exploit hot-starts for QPs ... QP-diving discussed next ...

Advanced Nonlinear BnB: QP-Diving

Branch-and-bound solves huge number of NLPs \Rightarrow bottleneck!

Full NLP **QP-Diving Tree-Search**: $x_i = 0$ solve root node & save factors from last QP solve same KKT for whole subtree • perform MIQP tree-searches infeasible • depth-first search: \Rightarrow fast hot-starts back-track: warm-starts Need new fathoming rules ...

 O^{P} integer dominated feasible linear obif solve NLP

 $x_1 = 1$

... alternative: change QP approximation after back-track

Advanced Nonlinear BnB: QP-Diving

Assume MINLP is convex

New Extended Performance Profiles

Performance ratio of $t_{p,s}$ for $p \in \mathcal{P}$ of problems, $s \in S$ of solvers:

$$\hat{r}_{p,s} = \frac{t_{p,s}}{\min\{t_{p,i} \mid i \in S, i \neq s\}}$$

distribution function $ho_s(au)$ for solver $s \in S$

$$\hat{
ho}_{s}(au) = rac{\operatorname{size}\{p \in \mathcal{P} \mid \hat{r}_{p,s} \leq au\}}{|\mathcal{P}|}.$$

- $\hat{
 ho}_s(au)$ probability that solver s is at most au imes slower than best
- For $\hat{r}_{p,s} \geq 1$ get standard performance profile
- Extension: $\hat{r}_{p,s} < 1$ if solver s is fastest for instance p
- $\hat{
 ho}_s(0.25)$ probability that solver *s* is 4× faster than others

CPU-Times for MINOTAUR with Hot-Starts (IPOPT)

Hot-started QP give a huge improvement

CPU-Times for MINOTAUR with Hot-Starts (filterSQP)

Hot-started QP give a huge improvement

Typical Results

RSyn0840M02M

Solver	CPU	NLPs	CPU/100NLPs	
IPOPT	7184.91	69530	10.3335	
filterSQP	7192.54	37799	19.0284	
QP-Diving	5276.23	1387837	0.3802	
		\Rightarrow m:	a little faster	

 \Rightarrow many more nodes ... a little faster.

CLay0305H

Solver	CPU	NLPs	CPU/100NLPs	
IPOPT	1951.1	16486	11.8349	
filterSQP	849.74	16717	5.0831	
QP-Diving	97.89	24029	0.4074	
		→ cimil	lar number of nodes	much factor

 \Rightarrow similar number of nodes ... much faster!

MINOTAUR: A New Software Framework for MINLP

Mixed Integer Nonlinear Optimization Toolkit: Algorithms, Underestimators & Relaxations

Goal: Implement a Range of Algorithms in Common Framework

- Fast, usable MINLP solver.
- Flexibility for developing new algorithms.
- Ease of developing new algorithms.

MINOTAUR's Four Main Components

Interfaces for reading input

- AMPL
- $\underline{\textit{Engines}}$ to solve LP/NLP/QP
 - QP: BQPD
 - NLP: FilterSQP/IPOPT
 - LP: OSI-CLP

Algorithms to solve MINLP

- Branch-and-Bound
- Outer-Approximation
- Quesada-Grossmann
- Branch-and-Refine

• Data Structures:

Base

- Problem
- Objective & Constraints
- Functions
- Modifications
- Gradient, Jacobian, Hessian
- Tools for Search:
 - Node Processors
 - Node Relaxers
 - Branchers
 - Tree Manager
- Utilities
 - Loggers & Timers
 - Options

MINOTAUR's Four Main Components

Interfaces for reading input

- AMPL
- Your Interface Here
- $\underline{\textit{Engines}}$ to solve LP/NLP/QP
 - QP: BQPD
 - NLP: FilterSQP/IPOPT
 - LP: OSI-CLP
- Your engine here Algorithms to solve MINLP
 - Branch-and-Bound
 - Outer-Approximation
 - Quesada-Grossmann
 - Branch-and-Refine
 - Your algorithm here

- Your Data Structures:
 - Problem

Base

- Objective & Constraints
- Functions
- Modifications
- Gradient, Jacobian, Hessian
- Your Tools for Search:
 - Node Processors
 - Node Relaxers
 - Branchers
 - Tree Manager
- Utilities
 - Loggers & Timers
 - Options

Highly Customizable

Features

	Bonmin	FilmINT	BARON	Couenne	Minotaur	
Algorithms:						
NLP B&B	\checkmark	×	×	×	\checkmark	
Branch & Cut	\checkmark	\checkmark	×	×	\checkmark	
Branch & Reduce	×	×	\checkmark	\checkmark	\checkmark	
Support for Nonlinear Functions:						
Comput. Graph	×	×	\checkmark	\checkmark	\checkmark	
Nonlin. Reform.	×	×	×	×	\checkmark	
Native Derivat.	×	×	×	×	\checkmark	
Interfaces:						
AIMMS	×	×	\checkmark	×	×	
AMPL	\checkmark	\checkmark	×	\checkmark	\checkmark	
GAMS	\checkmark	×	\checkmark	\checkmark	×	
Open Source	\checkmark	×	×	\checkmark	\checkmark	

MINOTAUR Performance

CMU test-sets.

MINOTAUR's Soft-Wear Stack

... available at www.mcs.anl.gov/minotaur

Summary and Teaching Points

Nonlinear Branch-and-Bound

- Solves problem by branching globally for convex MINLPs
- Need careful implementation of
 - Branching variable & node selection
 - Software infrastructure ... build on other frameworks!
 - Interfaces to NLP and other solvers
- Exploit linearity (or QP) as much as possible
 - QP diving works really well for many MINLPs
 - Approximate tree-search reduces CPU time
- Implementation matters ... many open-source solvers

Achterberg, T., Koch, T., and Martin, A. (2004). Branching rules revisited.

Operations Research Letters, 33:42–54.

Beale, E. and Tomlin, J. (1970).

Special facilities in a general mathematical programming system for non- convex problems using ordered sets of variables.

In Lawrence, J., editor, *Proceedings of the 5th International Conference on Operations Research*, pages 447–454, Venice, Italy.

Bonami, P., Lee, J., Leyffer, S., and Wächter, A. (2011). More branch-and-bound experiments in convex nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics and Computer Science Division.

Borchers, B. and Mitchell, J. E. (1994). An improved branch and bound algorithm for mixed integer nonlinear programs. *Computers & Operations Research*, 21:359–368.

Duran, M. A. and Grossmann, I. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs.

Mathematical Programming, 36:307-339.

Geoffrion, A. M. (1972). Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4):237–260.

Hijazi, H., Bonami, P., and Ouorou, A. (2010).

An outer-inner approximation for separable MINLPs. Technical report, LIF, Faculté des Sciences de Luminy, Université de Marseille.

Leyffer, S. (2001).

Integrating SQP and branch-and-bound for mixed integer nonlinear programming.

Computational Optimization & Applications, 18:295–309.

Linderoth, J. T. and Savelsbergh, M. W. P. (1999). A computational study of search strategies in mixed integer programming. *INFORMS Journal on Computing*, 11:173–187.

Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley, New York.

Westerlund, T. and Pettersson, F. (1995). A cutting plane method for solving convex MINLP problems. *Computers & Chemical Engineering*, 19:s131–s136.

