

Global Convergence Technique GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

- 2 Line-Search Methods
- Trust-Region Methods
 - The Cauchy Point
 - Outline of Convergence Proof of Trust-Region Methods
 - Solving the Trust-Region Subproblem
 - Solving Large-Scale Trust-Region Subproblems

Global Convergence Techniques

Still consider

 $\underset{x\in\mathbb{R}^{n}}{\text{minimize }} f(x),$

where $f : \mathbb{R}^n \to \mathbb{R}$ twice continuously differentiable.

Question

How can we ensure convergence from remote starting points?

Methods can fail if step is too large ... or too small

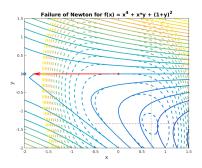
Two mechanisms restrict steps:

Q Line-Search Methods ... search along descend direction $s^{(k)}$

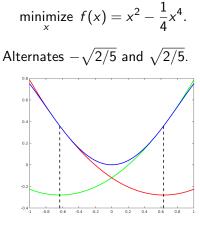
2 Trust-Region Methods ... restrict computation of step.

Both converge, because steps revert to steepest descend.

Failures of Newton's Method



Failure of Newton $f(x) = x_1^4 + x_1 x_2 + (1 + x_2)^2)$ No descend direction



Step too large

Outline

1 Introduction

2 Line-Search Methods

3 Trust-Region Methods

- The Cauchy Point
- Outline of Convergence Proof of Trust-Region Methods
- Solving the Trust-Region Subproblem
- Solving Large-Scale Trust-Region Subproblems

General Line-Search Method

Recall line-search method for minimize f(x)

General Line-Search Method

Let $\sigma > 0$ constant. Given $x^{(0)}$, set k = 0.

repeat

Find search direction $s^{(k)}$ such that $s^{(k)^T}g(x^{(k)}) < 0$.

Compute steplength α_k such that Wolfe condition holds. Set $x^{(k+1)} := x^{(k)} + \alpha_k s^{(k)}$ and k = k + 1.

until $x^{(k)}$ is (local) optimum;

Wolfe Line-Search Conditions

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{s}^{(k)}) - f^{(k)} \le \delta \alpha_k \mathbf{g}^{(k)^T} \mathbf{s}^{(k)}$$

$$g(x^{(k)} + \alpha_k s^{(k)})^T s^{(k)} \ge \sigma g^{(k)^T} s^{(k)}.$$

Illustration of Wolf Conditions

Wolfe Line-Search Conditions $f(x^{(k)} + \alpha_k s^{(k)}) \le f^{(k)} + \delta \alpha_k g^{(k)^T} s^{(k)}$ $g(x^{(k)} + \alpha_k s^{(k)})^T s^{(k)} \ge \sigma g^{(k)^T} s^{(k)}$

Slope at $x^{(k)}$ in direction $s^{(k)}$ is $s^{(k)^T}g^{(k)}$

- 1st condition requires sufficient decrease
- 2nd condition moves $x^{(k+1)}$ away from $x^{(k)}$

General Line-Search Method

Theorem (Convergence of Line-Search Methods)

- f(x) continuously differentiable and gradient
- $g(x) = \nabla f(x)$ Lipschitz continuous on \mathbb{R}^n .

Then, one of three outcomes applies:

- finite termination: $g^{(k)} = 0$ for some k > 0, or
- unbounded iterates: $\lim_{k \to \infty} f^{(k)} = -\infty$, or
- I directional convergence:

$$\lim_{k\to\infty} \min\left(\left|s^{(k)^{T}}g^{(k)}\right|, \frac{\left|s^{(k)^{T}}g^{(k)}\right|}{\left\|s^{(k)}\right\|}\right) = 0.$$

The third outcome only somewhat successful: ... in the limit there is no descend along $s^{(k)}$.

General Line-Search Method

Corollary (Convergence of Steepest Descend Method)

- f(x) continuously differentiable and gradient
- $g(x) = \nabla f(x)$ Lipschitz continuous on \mathbb{R}^n .

Then steepest descend algorithm results in:

- finite termination: $g^{(k)} = 0$ for some k > 0, or
- 3 unbounded iterates: $\lim_{k \to \infty} f^{(k)} = -\infty$, or
- convergence to a stationary point: $\lim_{k \to \infty} g^{(k)} = 0$.

Strengthen descend condition from $s^{(k)^T}g(x^{(k)}) < 0$ to

$$s^{(k)^T}g(x^{(k)}) < -\sigma \|g(x^{(k)})\|^2$$

... $s^{(k)}$ has σ component of steepest descend direction \Rightarrow any line-search method with stronger descend converges.

Outline

Introduction

2 Line-Search Methods

3 Trust-Region Methods

- The Cauchy Point
- Outline of Convergence Proof of Trust-Region Methods
- Solving the Trust-Region Subproblem
- Solving Large-Scale Trust-Region Subproblems

Trust-Region Methods

More conservative than line-search methods:

- Computation of search direction inside a trust-region
- Revert to steepest descend as trust-region is reduced
- Computationally more expensive per iteration
- ... enjoy stronger convergence properties

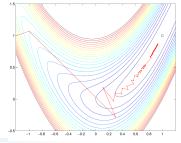
Motivation for Trust-Region Methods

- Taylor model around $x^{(k)}$ accurate in neighborhood of $x^{(k)}$
- Minimize Taylor model inside some neighborhood.

How to define neighborhood?

- Depends on function
- Shape may be very complex Use simple trust-region:

$$\|x-x^{(k)}\|_2 \leq \Delta_k$$



Trust-Region Methods

Trust-region method for minimize f(x)

Basic Idea of Trust-Region Methods

- Minimize model of f(x) inside trust-region $||x x^{(k)}||_2 \le \Delta_k$
- Ø Move to new point, if we make progress
- **(a)** Reduce radius Δ_k , if we do not make progress

Trust-Region Methods

Trust-region models for

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)}$

Trust-Region Models

• Linear model:

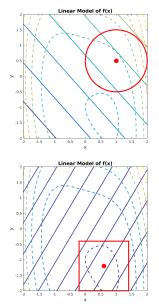
$$l_k(s) = f^{(k)} + s^T g^{(k)} \simeq f(x^{(k)} + s)$$

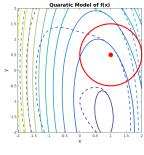
Quadratic model

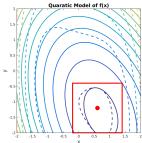
$$q_k(s) = f^{(k)} + s^T g^{(k)} + \frac{1}{2} s^T B^{(k)} s \simeq f(x^{(k)} + s)$$

where $f^{(k)} = f(x^{(k)}), \ g^{(k)} = \nabla f(x^{(k)}), \ \text{and} \ B^{(k)} \approx \nabla^2 f(x^{(k)})$

Illustration of Linear/Quadratic Trust-Region Models







Quadratic Trust-Region Subproblem

Quadratic trust-region subproblem

minimize $q_k(s) = f^{(k)} + s^T g^{(k)} + \frac{1}{2} s^T B^{(k)} s$ subject to $||s||_2 \le \Delta_k$... only needs to be solved "approximately" ... more later!

 ℓ_2 norm is natural choice for unconstrained optimization.

M-norm for positive definite matrix, M, is a useful alternative:

$$||x - x^{(k)}||_M := \sqrt{(x - x^{(k)})^T M(x - x^{(k)})} \le \Delta_k$$
 M-norm TR

- Mitigates poor scaling of variables
- Trust-region subproblem easy to solve
- Interpret M as a preconditioner for trust-region subproblem

Trust-Region Radius Adjustment

Adjust Δ_k based on agreement of actual and predicted reduction

$$r_k := rac{\operatorname{actual reduction}}{\operatorname{predicted reduction}} := rac{f^{(k)} - f(x^{(k)} + s^{(k)})}{f^{(k)} - q_k(s^{(k)})}$$

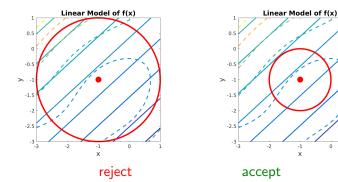
•
$$r_k \approx 1 \Rightarrow q_k(s)$$
 close to $f(x)$ accept
• $r_k < 0 \Rightarrow f(x)$ increases over step $s^{(k)}$ reject

Trust-Region Radius Adjustment

- If $r_k \geq \eta_s > 0$ then accept step & possibly increase Δ_k
- If r_k < η_s then reject step & decrease Δ_k
 ... resolve TR subproblem to get better agreement, r_k

Trust-Region Radius Adjustment

Illustration of trust-region adjustment



0

General Trust-Region Method

Let $0 < \eta_s < \eta_v$ and $0 < \gamma_d < 1 < \gamma_i$. Given $x^{(0)}$, set k = 0, initialize $\Delta_0 > 0$. repeat Approximately solve the trust-region subproblem. Compute $r_k = \frac{f^{(k)} - f(x^{(k)} + s^{(k)})}{f^{(k)} - q_k(s^{(k)})}$. if $r_k \geq \eta_v$ very successful step then Accept the step $x^{(k+1)} := x^{(k)} + s^{(k)}$. Increase the trust-region radius, $\Delta_{k+1} := \gamma_i \Delta_k$. else if $r_k > \eta_s$ successful step then Accept the step $x^{(k+1)} := x^{(k)} + s^{(k)}$. Keep the trust-region radius unchanged, $\Delta_{k+1} := \Delta_k$. else if $r_k < \eta_s$ unsuccessful step then Reject the step $x^{(k+1)} := x^{(k)}$. Decrease the trust-region radius, $\Delta_{k+1} := \gamma_d \Delta_k$. end Set k = k + 1. **until** x^(k) is (local) optimum;

General Trust-Region Method

Reasonable values for Trust-Region parameters:

- Very successful step agreement: $\eta_v = 0.9$ or 0.99
- Successful step agreement: $\eta_s = 0.1$ or 0.01,
- Trust-region increase/decrease factors $\gamma_i = 2, \gamma_d = 1/2$

Do not increase trust-region radius, unless step is on boundary

Trust-region algorithm much simpler than previous methods

- Computational difficulty hidden in subproblem solve
- Must be careful to solve TR subproblem efficiently.

The Cauchy Point & Steepest Descend Directions

Use steepest descend for minimalist conditions on TR subproblem

Definition (Cauchy Point)

Cauchy point: minimizer of model in steepest descend direction

$$\begin{aligned} \alpha_c &:= \operatorname*{argmin}_{\alpha} \ q_k(-\alpha g^{(k)}) \ \text{subject to} \ 0 \leq \alpha \|g^{(k)}\| \leq \Delta_k \\ &= \operatorname*{argmin}_{\alpha} \ q_k(-\alpha g^{(k)}) \ \text{subject to} \ 0 \leq \alpha \leq \frac{\Delta_k}{\|g^{(k)}\|}. \end{aligned}$$

then Cauchy point is $s_c^{(k)} = -\alpha_c g^{(k)}$

- Cauchy point is cheap to compute
- Cauchy point is minimalistic assumption for convergence:

$$q_k(s^{(k)}) \leq q_k(s^{(k)}_c) \hspace{0.1 cm} ext{and} \hspace{0.1 cm} \|s^{(k)}\| \leq \Delta_k$$

Outline of Convergence of Trust-Region Methods

Outline of convergence proof \ldots ideas apply in other areas

Lower bound on predicted reduction from Cauchy point:

pred. reduct.
$$f^{(k)} - q_k(s^{(k)}_c) \geq rac{1}{2} \|g^{(k)}\|_2 \min\left(rac{\|g^{(k)}\|_2}{1 + \|B^{(k)}\|}, \kappa \Delta_k
ight)$$

- Corollary TR subproblem solution s^(k), satisfies lower bound.
 TR step makes at least as much progress as s^(k)_c
- Sound agreement between objective and quadratic model:

$$\left|f(x^{(k)}+s^{(k)})-q_k(s^{(k)})
ight|\leq\kappa\Delta_k^2,$$

 $\kappa > 0$ depends Hessian bounds \ldots from Taylor's theorem.

Outline of Convergence of Trust-Region Methods

Cont. outline of convergence proof ...

O Crucial Result

Can always make progress from non-critical point $g^{(k)} \neq 0$:

If $\Delta_k \leq \|g^{(k)}\|_2 \kappa (1 - \eta_v)$, then very successful step

... and $\Delta_{k+1} \geq \Delta_k$

• Here $\kappa(1-\eta_{v})$ constant

• $\eta_{\rm s}$ threshold for very successful step

Intuitive: reducing Δ gives better agreement ... make progress with $r_k\simeq 1$

If gradient norm bounded away from zero, i.e. $\|g^{(k)}\| \ge \epsilon > 0$, ... then trust-region radius also bounded away from zero:

$$\|g^{(k)}\| \ge \epsilon > 0 \implies \Delta_k \ge \epsilon \kappa (1 - \eta_{\nu}).$$

If number of iteration finite, then final iterate is stationary.

Outline of Convergence of Trust-Region Methods

Summarize results in theorem ...

Theorem (Convergence of TR Method with Cauchy Condition)

f(x) twice continuously differentiable and Hessian matrices $B^{(k)}, H^{(k)}$ bounded. Then, TR algorithm has on of three outcomes:

- finite termination: $g^{(k)} = 0$ for some k > 0, or
- unbounded iterates: $\lim_{k \to \infty} f^{(k)} = -\infty$, or

• convergence to a stationary point: $\lim_{k\to\infty} g^{(k)} = 0.$

Remarkable Result about TR Subproblem

With $\ell_2\text{-norm}$ TR, can solve TR subproblem to global optimality.

Theorem

Global minimizer, s*, of trust-region subproblem,

minimize
$$q(s) := f + g^{\mathsf{T}}s + rac{1}{2}s^{\mathsf{T}}Bs$$
 subject to $\|s\|_2 \leq \Delta$

satisfies $(B + \lambda^* I)s^* = -g$, where

- $B + \lambda^* I$ positive definite,
- $\lambda^* \geq 0$, and
- $\lambda^*(\|s^*\|_2 \Delta) = 0.$

Moreover, if $B + \lambda^* I$ is positive definite, then s^* is unique.

Theorem

Global minimizer, s*, of trust-region subproblem,

minimize
$$q(s) := f + g^{\mathsf{T}}s + rac{1}{2}s^{\mathsf{T}}Bs$$
 subject to $\|s\|_2 \leq \Delta$

satisfies

$$(B+\lambda^*I)s^*=-g,$$

where $B + \lambda^* I$ positive definite, $\lambda^* \ge 0$, and $\lambda^* (||s^*||_2 - \Delta) = 0$. Moreover, if $B + \lambda^* I$ is positive definite, then s^* is unique.

- Necessary and sufficient conditions for global minimizer
- Optimality conditions are KKT conditions of TR subproblem.
- Suggest way to solve TR subproblem to global optimality

Divide solution of TR subproblem,

 $\underset{s}{\text{minimize }} q(s) := f + g^T s + \frac{1}{2} s^T B s \quad \text{subject to } \|s\|_2 \leq \Delta$

into two cases:

- *B* pos. def. and solution of Bs = -g, satisfies $||s|| \leq \Delta$
- **2** B not pos. def. or solution of Bs = -g, satisfies $||s|| > \Delta$
- Case 1: B positive def., and Bs = −g, satisfies ||s|| ≤ Δ
 Solution s is global solution of TR subproblem

... modern factorization routines detect positive definiteness

Trust-region subproblem

$$\underset{s}{\text{minimize }} q(s) := f + g^{\mathsf{T}}s + \frac{1}{2}s^{\mathsf{T}}Bs \quad \text{subject to } \|s\|_2 \leq \Delta$$

Case 2: *B* not pos. def. or solution of Bs = -g, satisfies $||s|| > \Delta$ Optimality conditions of TR subproblem: (s^*, λ^*) satisfies

$$(B + \lambda I)s = -g \text{ and } s^T s = \Delta^2,$$

set of (n + 1) linear/quadratic equations in (n + 1) unknowns. Methods for solving linear/quadratic equation:

- Compute Cholesky factors of $B + \lambda I$
- Eliminate *s* from quadratic equation
- Solve nonlinear equation for λ ... repeat

... need to be careful in certain difficult cases.

Trust-region subproblem

 $\underset{s}{\text{minimize }} q(s) := f + g^T s + \frac{1}{2} s^T B s \text{ subject to } \|s\|_2 \leq \Delta$

Cholesky factors are computationally impractical for large n \Rightarrow consider iterative methods for solving TR subproblem

- Conjugate gradients good choice ... first step is steepest descend consistent with Cauchy step!
- Get convergence to stationary points for "free"

Adapting Conjugate Gradient to TR constraint

- What is the interaction between iterates and the trust region?
- What do we do, if *B* is indefinite?

Trust-Region Subproblem Conjugate-Gradient Method Set $s^{(0)} = 0$, $g^{(0)} = g$, $d^{(0)} = -g$, and i = 0. repeat Exact line search: $\alpha_i = ||g^{(i)}||^2/(d^{(i)^T}Bd^{(i)})$ New iterate: $s^{(i+1)} = s^{(i)} + \alpha_i d^{(i)}$ Gradient update: $g^{(i+1)} = g^{(i)} + \alpha_i Bd^{(i)}$ Fletcher-Reeves: $\beta_i = ||g^{(i+1)}||^2/||g^{(i)}||^2$

New search direction: $d^{(i+1)} = -g^{(i+1)} + \beta_i d^{(i)}$

Set i = i + 1. until Breakdown or small $||g^{(i)}||$ found;

Breakdown: needs to be defined (reach TR or indefinite)

minimize
$$q(s) := f + g^T s + \frac{1}{2} s^T B s$$
 subject to $||s||_2 \le \Delta$

What is the interaction between iterates and the trust region?

Theorem

Apply conjugate-gradient to trust-region subproblem, assume $d^{(i)^T}Bd^{(i)} > 0$ for all $0 \le i \le k$. Then

$$\|s^{(i)}\|_2 \le \|s^{(i+1)}\|_2 \quad \forall \ 0 \le i \le k.$$

• If $||s^{(i)}|| > \Delta$ at iteration *i*,

... then subsequent iterates lie outside TR too.

• Once we pass TR boundary, then we know that $\|s^*\| = \Delta$

minimize
$$q(s) := f + g^T s + \frac{1}{2} s^T B s$$
 subject to $\|s\|_2 \leq \Delta$

Termination Conditions for TR Conjugate Gradient

Terminate CG solution of TR subproblem, if

- Find non-positive curvature: $d^{(i)^T}Bd^{(i)} \le 0$: $\Rightarrow q(s)$ is unbounded along $d^{(i)}$.
- Generate iterate outside TR
 ⇒ all subsequent iterates lie outside the TR

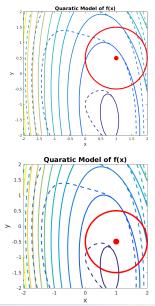
If $||s^{(i+1)}|| > \Delta$, then compute step to boundary solving for α^B :

$$\|s^{(i)} + \alpha^B d^{(i)}\|_2^2 = \Delta^2.$$

Approach OK convex case, poor for nonconvex f(x). Prefer more elaborate Lanczos method for nonconvex f(x).

Conclusions

Introduction to Trust-Region Methods



- Minimize model of f(x)inside trust-region $||x - x^{(k)}|| \le \Delta_k$
- Measure progress ratio

 $= \frac{\text{actual reduct.}}{\text{predicted reduct.}}$

- Accept step if good progress
- Reject step if poor progress
 ... and reduce Δ_k
- Solve TR subproblem to global optimality