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SIMULTANEOUS SENSING ERROR RECOVERY AND

TOMOGRAPHIC INVERSION USING AN OPTIMIZATION-BASED

APPROACH

ANTHONY P. AUSTIN∗, ZICHAO (WENDY) DI‡ , SVEN LEYFFER‡ , AND STEFAN

M. WILD‡

Abstract. Tomography can be used to reveal internal properties of a 3D object using any pene-
trating wave. Advanced tomographic imaging techniques, however, are vulnerable to both systematic
and random errors associated with the experimental conditions, which are often beyond the capabil-
ities of the state-of-the-art reconstruction techniques such as regularizations. Because they can lead
to reduced spatial resolution and even misinterpretation of the underlying sample structures, these
errors present a fundamental obstacle to full realization of the capabilities of next-generation phys-
ical imaging. In this work, we develop efficient and explicit recovery schemes of the most common
experimental error: movement of the center of rotation during the experiment. We formulate new
physical models to capture the experimental setup, and we devise new mathematical optimization
formulations for reliable inversion of complex samples. We demonstrate and validate the efficacy of
our approach on synthetic data under known perturbations of the center of rotation.

Key words. Tomographic reconstruction, Sensing error, Self-calibration, Nonlinear optimiza-
tion
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1. Introduction. Tomographic imaging has had a revolutionary impact on med-
icine, physics, and chemistry. Even so, the problem of reconstructing an image from
tomographic data remains challenging in many interesting cases, such as when the
amount of available data is limited and/or the problem is ill posed (in the sense that
canonical metrics used to assess the discrepancy between a reconstruction and the
measured data generally possess many local minima). This ill posedness makes re-
constructions susceptible to experimental errors, in particular, to errors stemming
from mismatches between the experimental configuration and the assumptions of the
measurement process. Recovering such errors is crucial for realizing the gains from
improvements in measurement and experimental hardware, such as the improved res-
olution promised by brighter, more coherent next-generation light sources. Sample
drift [28] and beam drift [36] are two fundamental sources of error. These errors can
often arise from the drift of the center of rotation (CoR) of the imaging stage during
data acquisition [2], which is the focus of this work.

In computerized tomography, the object or sample being imaged is placed on a
stage and irradiated with parallel beams of x-rays. As the rays pass through the
object, they are partially absorbed according to the object’s composition. Radiation
that passes through the object unabsorbed is collected by a detector, producing an
x-ray “shadow” or “projection” of the object. By rotating the object and repeating
the process, one obtains projections of the object as illuminated from several different
directions. One then uses these projections to reconstruct an image of the object and
its interior [22].

Imperfections in the experimental apparatus can cause the CoR of the imaging
stage to vary slightly over the course of this process. When this happens, the projec-
tions from different angles will not be properly aligned relative to one another, and
failing to account for this misalignment during reconstruction may result in a smeared
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Fig. 1. Consequences of failing to account for CoR shift during tomographic reconstruction.
In this experiment, the CoR was displaced by 2% with respect to the size of the object domain, and
the standard reconstruction without CoR recovery (middle) looks very different from the original
spherical object (left). Our proposed reconstruction with CoR recovery is shown on the right, which
almost perfectly recovers the object.

image (loss of resolution) or, worse, an image that is completely incorrect. Moreover,
even a small error in the CoR can yield a large error in the reconstruction, as is illus-
trated by the experiment of Fig. 1. The image on the left shows the object—a small,
solid circle—and the image in the middle shows the result of a standard tomographic
reconstruction without addressing the CoR shift from a sequence of measurements in
which the CoR is perturbed by a 2% displacement relative to the size of the object
domain. The reconstructed image obtained by not correcting for this perturbation
looks very different from the true object. We also demonstrate the reconstruction
of the approach we propose in this paper on the right side, which almost perfectly
resembles the true object.

In the past, it has been possible largely to ignore errors like these, as the drifts have
been small compared with the widths of the beams used to illuminate the object. With
demand for increasingly finer resolutions leading from higher-quality light sources with
narrower beams, however, these errors can no longer be ignored. Potential approaches
to this problem include the incorporation of prior knowledge into the reconstruction
process using Bayesian frameworks [17, 33, 34] and the use of regularizers to promote
sparsity or smoothness of the reconstruction [14, 10, 23, 30, 20]. One can also collect
additional data (beyond x-ray projections) that is less sensitive to experimental errors
and use this data to help with the reconstruction [7]. Unfortunately, the improvement
in tomographic hardware has been so great that these generic approaches, which apply
more widely to problems other than CoR drift recovery, are not likely to be sufficient.
In the case of CoR drift, we show (in Sec. 5) that standard regularization approaches
fail even when the regularization parameter value is chosen in an ideal way.

Much research effort has been devoted to tackling the CoR recovery problem.
For example, a typical approach to recovering a single, unknown CoR is to use a
pair of projections that are reflections of one another to estimate a detector offset
that can be used to shift the projections into the correct positions [40, 27]. This
approach is highly sensitive to the accuracy of the mirrored alignment, and its use of
such a small number of projections to perform the correction makes it susceptible to
noise and other effects of limited data, potentially resulting in a low-contrast recovery.
Moreover, mirrored pairs of projections are not always available in practice. Azvedo
et al. [2] proposed a method to estimate the CoR based on the preservation of photon
counts passing across the sample, which requires almost perfect measurement. The
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most common technique is to compute cross correlations between projections acquired
from successive rotations [11, 1, 18]; however, this approach is limited to simple and
relatively homogeneous samples, since there is no good way to rank one feature as
“more important” than another when two projections contain very distinguishable
features. A similar approach involves manual alignment of the projections using a
known “hotspot” in the object as a reference. This process can be labor-intensive and
cannot be used if a hotspot cannot be identified. Recently, a new technique known as
iterative reprojection has been introduced in which one recovers projection alignments
and reconstructs the image simultaneously using an iterative procedure [35, 19, 39, 13].
The basic idea is to alternate between a few iterations of projection alignment and
a few iterations of reconstruction until a “forward model” of the experimental setup
and an “inverse model” of the reconstruction process are consistent with one another.
This approach can yield better accuracy, especially for noisy, limited data.

One deficiency of the iterative reprojection methods that have emerged thus far
is that the update of the projection alignment and the update of the reconstruction
are not fully coupled. As a result, some mismatch remains between the alignment
of the projections and the experimental configuration assumed by the reconstruction
process. In this work, we propose to address this problem using a novel joint inversion
framework based on optimization in which we explicitly model and recover for CoR
drift. Our proposed model is flexible, making no assumptions about when and where
the drift happens. Our new approach is easier to automate than existing approaches
and can be more robust in the context of poor data quality and limited prior knowledge
of the object being imaged.

In Sec. 2, we describe our mathematical forward models of the CoR drift error in
the experiment and show how to embed these models into the reconstruction scheme.
In Sec. 3, we describe our simultaneous reconstruction approach for recovering the
object and the experimental error, including the formulation of the objective function.
In Sec. 4, we describe the algorithm for solving the resulting optimization problem
and its complexity. In Sec. 5, we present some numerical illustrations comparing the
performance of our simultaneous inversion method with that of existing approaches
using a few synthetic examples. In Sec. 6, we summarize the proposed method and
discuss a few directions for future research.

For simplicity, we confine ourselves to reconstructing 2D images, although our
methods work just as well in 3D.

2. Mathematical Model. In this section, we describe our model for the tomo-
graphic imaging process. For further details on tomography, we refer the reader to
[21].

2.1. Radon Transform. The fundamental mathematical tool in tomography is
the Radon transform [32], defined for a compactly supported function f : R2 7→ R by

(2.1) Rf(τ, θ) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ(τ − x cos θ − y sin θ) dx dy,

where δ is the Dirac delta function. Throughout this article, we consider the restricted
domain given by τ ∈ [0,∞) and θ ∈ [0, 2π), and we assume, as will always be the case
in practice, that f is well-enough behaved that the integral makes sense. The Radon
transform of a function is frequently called its sinogram.

The projections that are measured in the tomographic x-ray imaging process
are values of the Radon transform of the object’s attenuation coefficient f(x, y), a
function that describes the propensity of the object to absorb x-rays at each point
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Fig. 2. Geometric sketch of the Radon transform, which maps f from (x, y) space to (θ, τ)
space. The purple line and the green line denote rotations of their previous position, as y-axis, with
respect to different CoR, respectively.

in the object’s support. The angle θ encodes the direction from which the beams
approach the object; and given that direction, τ encodes the position of the beam. If
the CoR shifts from the origin to (x∗

θ , y
∗
θ) ∈ R

2, as the imaging stage rotates through
the angle θ, the projections we measure come not from (2.1) but from the CoR-shifted
Radon transform

(2.2) Rf(τ, θ, x∗
θ, y

∗
θ) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ
(
τ−x∗

θ−(x−x∗
θ) cos θ−(y−y∗θ) sin θ

)
dxdy.

For a derivation of this equation, see Appendix B. As illustrated in Fig. 2, Rf(τ, θ, 0, 0)
is the integral of f along the purple line perpendicular to the direction determined
by the angle θ and at a distance τ from the origin. Alternatively, the purple line
is obtained by rotating from its previous position, which overlays with the y-axis, θ
degrees with respect to CoR (0, 0). However, if the CoR is shifted from (0, 0), denoted
by the purple dot, to the green dot, we obtain a different projection as Rf(τ, θ, x∗

θ, y
∗
θ).

To recover for the difference in CoR, we need a way to convert (2.2) back into
(2.1). This is easy: we have

(2.3) Rf(τ, θ, 0, 0) = Rf(τ − Pθ, θ, x
∗
θ , y

∗
θ),

where

(2.4) Pθ = x∗
θ(1− cos θ) + y∗θ sin θ.

The simple relationship (2.3)–(2.4) forms the basis for our algorithm. We rotate the
imaging stage through an angle θ with the intent of measuring Rf(τ, θ, 0, 0), but we
instead measure Rf(τ, θ, x∗

θ, y
∗
θ) due to drift of the CoR. The identity (2.3) shows

that all we need to do is translate (in τ) the Radon transform that we measured by
an amount Pθ, which is related to the true CoR by (2.4). As we later show, given
sufficient data, we can estimate the drift-induced Pθ using an optimization procedure.
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2.2. Discrete Tomography. In practice, we cannot recover the desired object
property (e.g., attenuation coefficient) at all points in space. Instead, we discretize the
space (containing the compact object) being imaged into N ×N pixels and vectorize
it to an array V . Let Wv be the value of the object property we intend to recover on
the pixel v ∈ V , and let WWW = {Wv : v ∈ V} denote the discretized image. Given
parameters τ and θ, we calculate a discrete Radon transform ofWWW via

Rτ,θ(WWW) =
∑

v∈V

Lτ,θ
v Wv,

where Lτ,θ
v is the length of the intersection of the beam described by τ and θ with

the pixel v, see Fig. 2. It is this relationship that we must invert to reconstruct our
image: knowing Rτ,θ(WWW), we wish to find Wv for each pixel v.

In addition to needing to consider the image discretely, we must also “discretize
the beams”: we have access only to Rτ,θ for a limited number of values of τ and
θ. The values of τ we use are fixed and equally spaced and are identical for each θ.
We denote the collection of values of τ (sometimes called “beamlets”) by T and the
collection of values of θ by Θ; accordingly, Nτ = |T | is the number of beamlets, and
Nθ = |Θ| is the number of angles. In reality, the resolution of T is decided by the
energy level of the radiation source and by the detector resolution [3].

Thus, for each angle θ ∈ Θ, our measurement apparatus ideally produces a set of
samples of Rf(τ, θ), equally spaced in τ , which we take as values of Rτ,θ(WWW). Because
of the drift in the CoR, however, our samples are actually fromRf(τ, θ, x∗

θ, y
∗
θ) instead.

We can account for this drift by recomputing the Lτ,θ
v to be consistent with the change

in CoR, but we wish to avoid doing so because calculating these values (potentially
many times) is expensive. Instead, we calculate them once, assuming that the CoR
is at the origin, and recover for the change in CoR by translating the projections.

2.3. Aligning the Projections. In principle, translating Rf(τ, θ, x∗
θ, y

∗
θ) in the

τ variable by Pθ is an easy task—the answer is just Rf(τ−Pθ, θ, x
∗
θ , y

∗
θ)—but since we

have access only to samples of Rf(τ, θ, x∗
θ, y

∗
θ) at τ ∈ T , we cannot do this. Since the

samples come from equally spaced points, a natural idea is to effect the translation by
using the discrete Fourier transform, which is mathematically equivalent to forming a
trigonometric interpolant to Rf(τ, θ, x∗

θ, y
∗
θ) through the points τ ∈ T and translating

the interpolant. This approach works, but the images recovered in this way in practice
are contaminated with ringing artifacts [4, pp. 209]. To fix this problem, we apply a
low-pass filter—a normalized Gaussian filter with standard deviation σ—to damp the
high-order Fourier coefficients.

An alternative way to understand the translation process is as follows. Translating
Rf(τ, θ, x∗

θ, y
∗
θ), viewed as a function of τ only, by Pθ is equivalent to convolving Rf

with a Dirac delta function centered at Pθ: Rf(τ − Pθ) = (Rf ∗ δPθ
)(x), where

δPθ
(τ) = δ(τ − Pθ). We regularize δPθ

by replacing it with a Gaussian,

(2.5) δPθ,σ(τ) =
1

σ
√
2π

e−
(τ−Pθ )2

2σ2 ,

and instead compute the convolution (Rf ∗ δPθ,σ)(τ), which we do by sampling Rf
and δPθ,σ on the same equally spaced grid and using the discrete Fourier transform.

How should one choose the hyperparameter σ > 0? Let R̃f(τ, θ, 0, 0) be our
approximation to (Rf ∗ δPθ,σ)(τ)

1 obtained from the discrete Fourier transform. By

1As in the preceding paragraph, the Rf in Rf ∗ δPθ,σ
in this definition is understood to be the
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Fig. 3. Approximation error incurred in the computation of the translation Rf(τ − Pθ) when
replacing the Dirac delta by the Gaussian (2.5) and carrying out the translation via the discrete
Fourier transform. The error is shown as a function of the Gaussian parameter σ and of Nτ , the
number of beamlets of data available.

the error analysis presented in Appendix C, if the (attenuation coefficient of the)
object being imaged is twice continuously differentiable, then

(2.6) R̃f(τ, θ, 0, 0) = Rf(τ, θ, 0, 0) +O(σ2) +O

(
1

σNτ

)
.

The second term on the right-hand side of (2.6) represents the error incurred in our
Gaussian regularization of the delta function, while the third term represents the
discretization error due to the limited number of measurements. A trade-off between
the two exists: a narrower Gaussian (smaller σ) implies a more faithful translation,
but it requires more measurements (greater Nτ ) to approximate accurately.

We choose to have the full width at half maximum (FWHM) of the Gaussian
regularizer to cover one unit of beamlet width. Since the FWHM for a Gaussian
with variance σ2 is given by FWHM ≈ 2.355σ, this means that we choose σ =
1/2.355 ≈ 0.42. Observe that this choice is supported by Fig. 3, which displays the
approximation error in Eqn. (2.6) in the simulated beam data from Fig. 4. For the
values of Nτ considered, the choice FWHM = 1 is roughly the point at which the
second error term in (2.6) takes over from the first.

2.4. Numerical Illustration. To illustrate the effects of the approximation
(2.6) in the context of a complete image, we perform a simulation using a standard
MRI test image. We simulate beam data from a variety of angles, assuming that
as the object rotates, it does so about a CoR (x∗

θi
, y∗θi) = (x∗

θj
, y∗θj) 6= (0, 0) where

θi ∈ 1, . . . , Nθ and θj ∈ 1, . . . , Nθ represent two different angles; in other words, there
is only one CoR drift in the beginning of the experiment. The results are displayed
in Fig. 4a, where N = 128, Nτ = ⌊

√
2N⌋, and Nθ = 30 equally spaced in [0, 2π).

CoR-shifted Radon transform. Our notation R̃f(τ, θ, 0, 0) emphasizes our hope that R̃f(τ, θ, 0, 0) ≈
Rf(τ, θ, 0, 0).
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Fig. 4. Simulated numerical illustration of recovering the sinogram using the procedure of Sec,
2.3. (a) Recovering a single CoR shift, made once at the beginning of the experiment. (b) Recovering
multiple CoR shifts, one at each angle of rotation. The red dots in the “ground truth” images show
the path of the CoR as it drifts during the data acquisition process.

The leftmost panel shows the test image; the red dot marks the CoR (x∗
θ, y

∗
θ). The

second panel shows the sinogram obtained from this data. The third panel shows the
sinogram that we would have obtained in the absence of the drift in CoR. The fourth
panel shows the sinogram that we obtain after performing the recovering translations
using the approach outlined in the preceding subsection. The drift-free and drift-
recovered sinograms are in excellent agreement, even in the presence of the errors
described by (2.6).

In Fig. 4b, we repeat the experiment of Fig. 4a except that the CoR changes each
time the object is rotated instead of just once at the beginning of the experiment;
in other words, (x∗

θi
, y∗θi) 6= (x∗

θj
, y∗θj) 6= (0, 0). The trail of red dots in the leftmost

panel shows how the CoR drifts across the image as the data is acquired. The drift-
free and drift-recovered sinograms are again in excellent agreement. From a practical
perspective, the additional “jitter” due to the multiple shifts of CoR—readily ap-
parent in the measured sinogram—complicates the alignment process significantly.
Nevertheless, the algorithm we propose next is able to handle multiple shifts.

3. Optimization-Based Reconstruction Algorithm. In the experiments of
Sec. 2.4, we assumed exact knowledge of the CoR (x∗

θ , y
∗
θ) and the corresponding

translation parameter Pθ. In practice, we must estimate these parameters from the
data. As described in Sec. 1, the best techniques used to date generally do this
iteratively by alternating between using the current parameters Pθ to reconstruct the
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image and using the reconstruction to update the parameters. Instead, we propose
to estimate the parameters and reconstruct the image concurrently.

The most straightforward approach would be to try to estimate x∗
θ and y∗θ and

obtain Pθ from these estimates using (2.4); we refer to this as the explicit approach,
since we try to find the CoR explicitly. Alternatively, we can skip the estimation of x∗

θ

and y∗θ and try to solve for Pθ directly; we call this the implicit approach. One major
difference between the explicit and implicit approaches is the different dimension of
unknown variables. In general, each Pθ corresponds to a pair of (x∗

θ, y
∗
θ), which results

in Nθ number of CoRs to be recovered. If one knows which angles have the CoR drifts,
however, the number of (x∗

θ , y
∗
θ) pairs can be reduced to the exact number of drifts.

To exploit the correlations between (x∗
θ , y

∗
θ) andWWW , we formulate the reconstruc-

tion problem as simultaneously recovering the CoR and recovering the object. There-
fore, the final explicit reconstruction problem is

(3.1) min
WWW≥0,x∗,y∗

φ(WWW ,x∗,y∗) =
1

2
||LWWW − vec (g(D,x∗,y∗))||22 ,

where x∗ = [x∗
θ ]

Nθ

θ=1, y
∗ = [y∗θ ]

Nθ

θ=1, WWW ≥ 0 is due to the physical nature of mass, D ∈
RNθ×Nτ is the measurement data, g(D,x∗,y∗) =

[
Dθ,τ ∗ δPθ(x∗

θ
,y∗

θ
),σ

]
θ,τ
∈ R

Nθ×Nτ

is the translated sinogram by (2.4), and L = [Lτ,θ
v ] ∈ R

NθNτ×N2

is determined based
on the standard 2D Radon mapping with an implied CoR of (0, 0).

As a side note, tomographic reconstruction without CoR error recovery is typically
formulated as

(3.2) min
WWW≥0

1

2
||LWWW − vec (D)||22 ,

which is equivalent to Eq. (3.1) for (x∗,y∗) = 0.
The first-order derivative of the objective function (3.1) is

(3.3)

∇φ(WWW ,x∗,y∗) =



∇WWWφ(WWW ,x∗,y∗)
∇x∗φ(WWW ,x∗,y∗)
∇y∗φ(WWW ,x∗,y∗)




=




LT

(∇x∗g(D,x∗,y∗))
T

(∇y∗g(D,x∗,y∗))T


 (LWWW − g(D,x∗,y∗)) .

In (3.3), ∇x∗g(D,x∗,y∗) and ∇y∗g(D,x∗,y∗) are

vec

([
Dθ,: ∗

(
1

σ
√
2π

exp

(−(T − Pθ)
2

2σ2

))
◦ T − Pθ

σ2
(cos θ − 1)

]

θ=1,...,Nθ

)
,

and

vec

([
Dθ,: ∗

(
1

σ
√
2π

exp

(−(T − Pθ)
2

2σ2

))
◦ T − Pθ

σ2
sin θ

]

θ=1,...,Nθ

)
,

respectively, where ◦ is the Hadamard product, and Dθ,: is the θ th row of D. A
major difference compared with the single CoR-shift case is the increased computa-
tional cost. Instead of having only two extra parameters, this case has 2Nθ extra
parameters.
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For now, we have been focusing on explicitly recovering the coordinates of the
CoRs (x∗

θ , y
∗
θ). Alternatively, we can reformulate the optimization problem as finding

the optimal shifts Pθ for each angle, which results in the implicit problem

(3.4) min
WWW≥0,P

φ(WWW ,P) =
1

2
||LWWW − g(D,P)||22 ,

where P = [Pθ]θ=1,...,Nθ
and g(D,P) = [Dθ,τ ∗ δPθ,σ]θ,τ ∈ R

Nθ×Nτ . The derivative of

the objective function in (3.4) is similar to (3.3) but simpler, so we will not describe
it here. In the case of multiple CoR shifts, the advantage of this formulation is the re-
duced number of extra parameters by a factor of 2. Notice that given a fixed CoR, the
Radon transform has the property that different transformations (e.g., translation or
rotation) of an object will result in different sinograms; see Appendix A. These prop-
erties suggest that any pair of transformed object and its corresponding sinogram is
an optimal solution of the reconstruction. Therefore, the proposed optimization prob-
lem, either explicit or implicit, will not have a unique solution. In other words, if two
objects are related by equal (up to translations and rotations), then the two objects,
together with their corresponding sinograms, are equivalent from the perspective of
the optimization problems in (3.1) and (3.4).

4. Optimization Complexity and Computational Expense. Since the com-
plexity of Eq. (2.4) is negligible, we analyze only the computational complexity of the
implicit approach (3.4). The calculation of Eq. (3.4) requires about N2Nθ flops given
the relationship Nτ = ⌊

√
2N⌋, and it includes 1 misfit calculation and 3 FFTs re-

quired in operator g. Figure 5 shows a log-log plot of the computational time of
one (function, gradient) evaluation for increased number of N , given Nθ = 1. With
a model fit to the time result, the time complexity is on the order of N2 which is
consistent with our analytical approximation considering Nθ ≪ N in general.

200 800 1400 2000
N

10 -2

10 -1

T
im

e 
(s

ec
)

Fig. 5. Time elapsed for one (function, gradient) evaluation for different measurement resolu-
tion numbers N .

The optimization solver we use in the numerical experiments is an inexact truncated-
Newton (TN) method [29] with a preconditioned conjugate gradient (PPCG) [31,
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pp. 460] subproblem solver to compute the search direction. The result, summarized
in Alg. 4.1, is a large-scale optimization solver with memory efficiency well suited for
the high computational complexity required by the resulting nonlinear, nonconvex
optimization problem.

Algorithm 4.1 Truncated Newton algorithm for the implicit problem (3.4).

1: Input
(
WWW(0),P(0)

)
and tolerance ǫ > 0; set k = 0.

2: repeat

3: Obtain search direction d(k) ← PPCG
((
WWW(k),P(k)

)
,∇2φ,∇φ,0

)
. If no descent

direction is obtained, switch to steepest descent.
4: Obtain α(k) ← Projected Line Search

(
d(k),

(
WWW(k),P(k)

)
, φ,∇φ,0

)
; see [26].

5: Update
(
WWW(k+1),P(k+1)

)
←
(
WWW(k),P(k)

)
+ α(k)d(k).

6: until The stopping criterion
∣∣∣∣∇φ

(
WWW(k),P(k)

)∣∣∣∣ ≤ ǫ is satisfied.

In our implementation, we do not form the Hessian ∇2φ; instead, we approxi-
mate the Hessian-vector product (∇2φ)T d required in PPCG by taking finite differ-
ences with ∇φ values. An estimation of the complexity of TN is provided as follows.
Each outer iteration needs the following computations with respect to the number of
unknown parameters:

• 1 infinity-norm calculation, 1 vector addition, and 2 (function, gradient) eval-
uations
• a number of PPCG iterations, with cost per inner iteration given by

– 1 (function, gradient) evaluation,
– 4 inner products, and
– 5 “vector+constant·vector” operations

In our experience, on average, 5 PPCG iterations are required per outer TN
iteration. The overall cost of one TN iteration for solving (3.4) amounts to (1 + 5 +
20 + 25 + 1)(|V| + Nθ) = 52(|V| + Nθ) floating-point operations, plus 7 (function,
gradient) evaluations, whose complexity is O(N2).

5. Numerical Results. In this section, we examine the performance of the
algorithm for both the explicit and implicit cases. The primary goal of our tests is
to measure the performance of how well we recover the CoR shift with respect to
different initializations, different objects, and different levels of noise in the data. All
numerical experiments are performed on a platform with 32 GB of RAM and two
Intel E5430 Xeon CPUs. Throughout all the numerical tests, we fix the experimental
setup for all the tests as N = 128, Nτ = ⌊

√
2N⌋, and Nθ = 30; that is, the object size

is 128×128 pixels, and the tomographic data is measured by collecting 30 projections
over a full rotation of 2π radians. We also choose the stopping criteria of TN to be
||∇φ|| < 10−5.

As indicated in Sec. 3, our proposed optimization problem does not have a unique
solution in the sense that the reconstructed object can be a translated or rotated
version of the ground truth. Therefore, the error metric we use to measure the recon-
struction quality cannot be simply the mean squared error. To resemble the human
visual system, we utilize the structural similarity (SSIM) metric from [37] to quantify
the reconstruction quality. Given two images a and b of the same dimension, the
SSIM index is a measure of the similarity between a and b and is defined by

SSIM(a, b) =
(2µaµb + c1)(2σab + c2)

(µ2
a + µ2

b + c1)(σ2
a + σ2

b + c2)
,

10



where c1 and c2 are small, positive constants; µa and σ2
a are the mean and variance,

respectively, of a; µb and σ2
b are the mean and variance, respectively, of b; and σab is

the covariance of a and b. Notice that for nonnegative a and b, SSIM(a, b) ≥ 0. The
closer the value of SSIM(a, b) is to 1, the greater is the similarity between a and b.

We emphasize that in this work our focus is on the development of a joint frame-
work to account for general CoR shifts. To isolate the contributions of our proposed
approach to the reconstruction performance, we do not consider any additional reg-
ularization technique in this work. Additionally, the nonnegative constraint on WWW
serves as a soft regularizer, which means we do not need to add a regularizer and
can instead show the benefit of our approach by itself [8, 5]. As suggested by Fig. 6,
where we test the performance of TN on various settings for the traditional tomog-
raphy problem (3.2), we observe that as long as the dimension of Null(L) is close to
the number of zeros of the object, the reconstruction quality is stable and satisfactory
based on SSIM and the objective value of problem (3.2). Since the object domain
always has a zero support to account for the field of view during the rotation, the
dimension of Null(L) typically is proportional to the number of zeros in WWW∗, and
this explains the satisfactory reconstruction result from seemingly underdetermined
system.

10 20 30 40 50 60
N

10 -3

10 -2

10 -1

10 0

N=100

50 60 70 80 90 100
N

10 -3

10 -2

10 -1

10 0

N =30

Fig. 6. Performance of TN for solving problem (3.2) for various underdetermined and overde-
termined systems.

5.1. Analysis of Initialization. In this section, we test the sensitivity of the
proposed algorithm to the initialization ofWWW .

We first consider the case of a single CoR shift that happens at the beginning of
the experiment on a standard Shepp-Logan phantom object. The CoR is denoted by
the red dot on top of the ground truth in Fig. 7 (far left). The upper left panel of Fig. 7
shows the standard reconstruction without considering the shift of the CoR, and we
observe that it is far from the ground truth. We also include reconstructions obtained
by adding standard regularizers. In particular, we consider L2- and TV -regularizers
[25, 15] on the variableWWW , respectively given by

(5.1) min
WWW≥0

1

2
||LWWW − vec (D)||22 + λ ||LWWW||22

11



and

(5.2) min
WWW≥0

1

2
||LWWW − vec (D)||22 + λ ||∇WWW||1 ,

where L ∈ R
N2×N2

is the Laplacian operator, ∇ denotes the spatial gradient, and
λ > 0 is the regularizer parameter that balances the misfit term and regularization
term. One approach to choose λ would be the L-curve method [16]. Instead, how-
ever, we choose λ ∈ [10−10, 102] to be the value that gives the best reconstruction
as measured by the SSIM index (see Fig. 8). This is an idealistic choice of λ that is
impractical. The results given in the upper middle and upper right panels demon-
strate this assertion and show that standard regularization techniques are not able to
improve the reconstruction quality in the presence of even a single CoR shift. Since
even an optimal λ performs poorly for CoR recovery, for the rest of our experiments
we do not report results from regularization techniques.

We also compare our reconstruction result with the most popular approach for the
case of a single CoR drift [27]. The basic idea is to utilize the fact that when the CoR
is the origin, the projection at angle 0◦ should be a reflection of the projection at angle
180◦. Therefore, the CoR shift can be estimated by aligning these two projections. In
our case, as is often the case in practice, exactly reflecting directions are not available;
instead, we choose the pair of angles 1◦ and 175◦ from the available 30 projections. We
align these two projections by cross-correlation [40] and use the estimated CoR shift
to translate the collected sinogram. The reconstruction from the shifted sinogram is
reported in the lower left panel. We also report the reconstruction using the true CoR
in the lower right panel. The lower middle panel shows the reconstruction obtained
by the proposed explicit approach, which clearly resembles the ground truth the best.

The next test is to optimize the explicit problem (3.1) and the implicit prob-
lem (3.4) in order to recover (x∗

θ, y
∗
θ) and P, respectively. Given an initial (x∗

θ , y
∗
θ)

as the center, left top corner (NW), left bottom corner (SW), right top corner (NE),
and right bottom corner (SE) of the object domain, respectively, and initialization
WWW∗ = 0, the performance is shown in Fig. 9. In this test, the explicit approach con-
sistently recovers objects that are better compared with the implicit approach, which
struggles for certain initializations. This observation is also reflected in the objec-
tive value and the reconstruction quality. In addition, the explicit approach takes
fewer iterations to converge to smaller objective values compared with the implicit
approach. The explicit approach also provides relatively better reconstruction quality
as measured by SSIM index.

In Fig. 10, we also show the iterative progress of the optimization problems (3.2),
(3.1), and (3.4) respectively for the single CoR-shift case. The left graph shows
the progress of the objective value for the three approaches. Standard tomographic
reconstruction, which refers to reconstruction without error recovery, converges much
more slowly than the other two with a much higher objective value, while the explicit
approach reduces the objective value even further than the implicit approach because
of the reduced number of variables. The right graph compares the progress of the SSIM
index for the three approaches, which is somewhat consistent with the function value
reduction. We observe that the explicit approach provides the best reconstruction
quality in terms of SSIM compared with the other two approaches, while the standard
approach performs the worst because it does not attempt to recover for the error in
CoR.

The next test concerns solving the reconstruction problem with multiple CoR
shifts in the sense that every rotation has its own CoR. This problem setting is

12
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standard
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L2
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TV
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explicit CoR
recon.

true CoR
recon.

Fig. 7. (First) Shepp-Logan phantom object with true CoR denoted by the red dot. (Upper left)
Without error recovery, the direct reconstruction result is far away from the ground truth. (Upper
middle) Result of direct reconstruction with L2-regularization. The regularization parameters λ for
L2 and TV regularizers are chosen to be the maximizers of SSIM. (Upper right) Result of direct
reconstruction with TV-regularization. (Lower left) Result of reconstruction by “mirror alignment.”
(Lower middle) Reconstruction with explicit CoR recovery. (Lower right) Result of reconstruction
using the true CoR.
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Fig. 8. (Left) SSIM for TV-regularized reconstruction with different λ. (Right) SSIM for
L2-regularized reconstruction with different λ.

illustrated in Fig. 12, where the ground truth is again the Shepp-Logan phantom and
the trajectory of the dynamic CoR is denoted by connected red dots. The second
panel shows the reconstruction without CoR recovery, and the third panel shows
the reconstruction with error recovery. Again, we tested the performance of the
explicit and the implicit algorithm; the results are shown in Fig. 13. This time we
observe that the reconstruction quality of the implicit approach is comparable to the
explicit approach but is more sensitive to the initialization. In the multiple CoR-
shifts case, however, the convergence of the implicit approach is faster because of its
reduced number of variables compared with explicit approach. Again, the performance
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Fig. 9. Performance of the explicit and implicit approaches for recovering single CoR shift.
Columns correspond to different initializations for CoR (x∗

θ
, y∗

θ
). The top row shows the correspond-

ing reconstructions from the explicit approach; the second row shows the corresponding reconstruc-
tions from the implicit approach; the third row shows the corresponding objective function values
from the explicit and implicit approaches, respectively, where the number labeled on each case is the
total number of iterations needed for convergence; the fourth row shows the reconstruction qualities
measured by SSIM index for the explicit and implicit approaches, respectively.
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Fig. 10. Iterative performance of three approaches—standard tomographic reconstruction, ex-
plicit reconstruction, and implicit reconstruction—for the single CoR-shift case. Left: progress of
reducing objective value φ. Right: progress of improving SSIM.
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observed
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explicitly
recovered
sinogram

implicitly
recovered
sinogram

Fig. 11. (Left) Multiple CoR shifts introduce jitters in the measurement data. (Middle) the
explicit approach provides a more clean and jitter-free sinogram. (Right) The implicit approach is
also able to recover a clean and jitter-free sinogram.

difference between the explicit and implicit approaches is reflected in the objective
value and the corresponding SSIM index. More importantly, as shown in Fig. 11,
both approaches are able to remove the jitters introduced by multiple CoR shifts and
return a clean sinogram. The consistency between the objective value φ and SSIM
index suggests that, in the case of limited knowledge about the object, the objective
value can be reliable to judge the reconstruction quality of different local minima.

We note that as long as the shift parameters P are initialized to zero, the per-
formance is relatively stable and less susceptible to the initialization of the object.
The reason is that choosing the initial shift as zeros is equivalent to providing the ini-
tialization of the object as the reconstruction without error recovery, which is closer
to the true solution than the reconstruction from a randomly perturbed sinogram.
Therefore, choosing zeros for the initial shifting parameters performs better, and this
initialization will be our choice for the rest of the tests.

ground truth

0 10 20 30 40

standard
recon.

with CoR
recon.

Fig. 12. (Left) Shepp-Logan phantom object with true CoRs connected by red dots. (Middle)
Without error recovery, a direct reconstruction result is far away from the ground truth. (Right)
Reconstruction result with error recovery, which is very close to ground truth.

Similar to the single CoR case, we compare the iterative progress provided by
the standard reconstruction, the explicit approach, and the implicit approach for
the multiple CoR-shifts case; the results are shown in Fig. 14. As expected, the
standard approach converges rapidly to a local minimum that has a high objective
value. More importantly, the implicit approach provides a better objective value than
does the explicit approach. The reconstruction quality (right panel of Fig. 14) shows
comparable performance between the explicit and the implicit approaches.

5.2. Noisy Data. In practice, the experimental data is known to be corrupted
by noise. In this section, we test the performance of our proposed approach for
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Fig. 13. For the multiple CoR-shifts case, the reconstruction qualities provided by the explicit
and the implicit approaches are comparable, but the implicit approach converges faster.
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Fig. 14. Iterative performance of three approaches—standard tomographic reconstruction, ex-
plicit reconstruction, and implicit reconstruction—for multiple CoR-shift case. Left: progress of
reducing objective value φ. Right: progress of improving SSIM.
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contaminated data with respect to different levels of (mean zero) Gaussian noise. We
start the test for the single CoR shift case as shown in Fig. 15, where the ground truth
in this case is the standard MRI image. Similarly, the second and the third panels
show the reconstructions without and with error recovery, respectively.

In this case, we compare the performance of the explicit and implicit approaches
with the state-of-the-art alignment approach [13] provided by TomoPy 1.1.3 [12], a
widely used tomographic data processing and image reconstruction library. The algo-
rithm proposed in [13] is an iterative method that alternates between the alignment of
the sinogram and the reconstruction of the object. The alignment step minimizes the
misfit between the current sinogram and the newly simulated sinogram based on the
current reconstruction. In Fig. 16, we illustrate the reconstruction results returned
by the three methods as we increase the noise level in the experimental data; the
columns represent an increase in the noise level from 4% to 22%. We observe that
the explicit and implicit approaches are comparable with each other. However, the
SSIM index for both approaches suggests that the implicit approach provides better
reconstruction quality. This observation can be explained by the fact that although
the explicit approach can provide a higher contrast image, its ability to remove noise
outside of the sample region is not as good as that of the implicit approach. Overall,
the performance of our proposed approaches outperforms the alternating algorithm
[13] provided by TomoPy.

The last study is to test the performance of our proposed approach for recovering
the multiple CoR shifts, as illustrated in Fig. 17. As measured by SSIM, the implicit
approach clearly outperforms the other two approaches while the reconstructions of
the alternating alignment do not approach the ground truth at all. In Fig. 18, we
illustrate the reconstruction results returned by the three methods respectively as
we increase the noise level in the same way as the single CoR shift case illustrated
earlier. Again, the explicit and implicit approaches are able to provide a reason-
able reconstruction, and the implicit approach in this case is able to provide a better
reconstruction for the noisier case. Similarly to the single CoR shift case, the per-
formance of our proposed approaches outperforms that of the alternating algorithm
dramatically. Therefore, in the case of limited knowledge of the CoR shifts with noisy
measurement data, the implicit approach works the best.

ground truth

0 50 100 150 200 250

standard
recon.

with CoR
recon.

Fig. 15. (Left) Object as the standard MRI image with only one CoR shift denoted by the red
dot. (Middle) Reconstruction from noise-free data without error recovery. (Right) Reconstruction
with error recovery.

6. Conclusions. In this work, we propose a simultaneous inversion framework to
address a common yet challenging experimental error in tomographic reconstruction,
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Fig. 16. Performance comparison between proposed approach and state-of-the-art approach
provided by TomoPy library for single CoR shifts when the noise level of experimental data is
increasing.

ground truth
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Fig. 17. (Left) Second test case given the MRI imaging object, with multiple CoR shifts with
its trajectory connected by red dots. (Middle) Reconstruction from noise-free data without error
recovery. (Right) Reconstruction of noisy data with error recovery.

namely, a shift of the center of rotation. We also derive an analytical model to
describe the general center-of-rotation shifts and how the sinograms with and without
such shifts relate to each other. We derive an analytical model for the reconstruction
framework to recover the center-of-rotation shifts together with the reconstruction
of the object. The resulting optimization framework can be tuned to explicitly or
implicitly reveal the true CoR locations. It is solved by a derivative-based optimization
solver such as a truncated Newton algorithm.

Our numerical results show that when limited and noisy experimental data is
available, significant improvements of the reconstruction quality can be achieved by
performing the proposed simultaneous inversion. We compare our new approach with
a state-of-the-art error reconstruction technique implemented in TomoPy and stan-
dard reconstruction techniques with a regularizer approach. For both comparisons,
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Fig. 18. Performance comparison between proposed approach and state-of-the-art approach
provided by TomoPy library for multiple CoR shifts when the noise level of experimental data is
increasing.

we observe superior results obtained by our approach. Given prior knowledge of how
center-of-rotation shifts happen, explicit and implicit approaches can be chosen to
maximize the performance, based on their different computational complexities. In
particular, the implicit approach shows a stronger capability in more general scenarios
such as noisy data.

Discussion: The simultaneous inversion we propose in this work is flexible and
does not require extensive knowledge about the experimental system or the object.
Even for the single CoR shift, the proposed approach does not require that the sample
be completely contained in the field of view or that no nonlinear effects such as
diffraction or refraction occur. It can be naturally extended to partially address more
complicated experimental error such as per-scan drift. In parallel-beam tomography,
the trajectories of the penetrating x-rays result in tomographic projections that form
a stack of parallel 2D slices. Traditionally, 3D objects are recovered by reconstructing
each slice independently [38]. Therefore, the extension of the proposed approach to
a full 3D reconstruction is trivial in parallel-beam tomography. Alternatively, since
each 2D slice shares the same CoR, the proposed approach can also be extended to a
direct 3D reconstruction without adding an extra degree of freedom. One aspect we
can further explore is to incorporate prior knowledge about the experimental system,
such as the continuous dynamic of the center-of-rotation movement, into the joint
framework as a regularizer on the error parameters. Overall, the challenge we are
facing is the increased computational complexity. One way to mitigate this difficulty
is to consider a parallel implementation that could be invoked inside a truncated-
Newton solver or at the level of processing blocks of experimental data (e.g., per
angle). A multigrid approach [24] could also benefit the computational performance.

Acknowledgments. We are grateful to Stefan Vogt, Si Chen, Doga Gursoy, and
Francesco De Carlo for introducing us to this problem and for valuable discussions in
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Appendix A. Properties of Radon Transform. We briefly describe a few
properties of the Radon transform that explain the equivalence of reconstruction via
translation and rotation.

Symmetry: Rf(τ, θ) = Rf(−τ, θ + π).
Translation: Let g(x−∆x, y −∆y) = f(x, y). Then

Rf(τ, θ) = Rg(τ ′, θ),

where τ ′ = τ −∆x cos θ −∆y sin θ.

Rf(τ, θ) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ(τ − x cos θ − y sin θ)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

g(x−∆x, y −∆y)δ(τ − x cos θ − y sin θ)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

g(x′, y′)δ(τ − (x′ +∆x) cos θ − (y′ +∆y) sin θ)dx′dy′

=

∫ ∞

−∞

∫ ∞

−∞

g(x′, y′)δ(τ ′ − x′ cos θ − y′ sin θ)dx′dy′

= Rg(τ ′, θ).

Rotation:

Let g(r, φ−∆φ) = f(r, φ) where (r, φ) is the polar coordinates of (x, y). Then,

Rf(τ, θ) = Rg(τ, θ −∆φ).

Rf(τ, θ) =

∫ ∞

−∞

∫ ∞

−∞

f(r, φ)δ(τ − r cosφ cos θ − r sinφ sin θ)|r|drdφ

=

∫ ∞

−∞

∫ ∞

−∞

f(r, φ)δ(τ − r cos(φ − θ))|r|drdφ

=

∫ ∞

−∞

∫ ∞

−∞

g(r, φ−∆φ)δ(τ − r cos(φ − θ))|r|drdφ

=

∫ ∞

−∞

∫ ∞

−∞

g(r, φ′)δ(τ − r cos(φ′ +∆φ− θ))|r|drdφ′

= Rg(τ, θ −∆φ).

Appendix B. Derivation of the CoR-Shifted Radon Transform. Here,
we present a brief derivation of (2.2). Assume, without loss of generality, that the
beam apparatus is initially positioned to measure the Radon transform along the di-
rection corresponding to θ = 0. By Fig. 2, this amounts to integrating the function f
representing our object along the vertical lines x = τ , τ ∈ R. To measure along the
direction corresponding to a general angle θ, we rotate the beam apparatus counter-
clockwise by θ.2 If the center of rotation is (x∗

θ , y
∗
θ), the line (beam) x = τ rotates to

the line

ℓ(x∗
θ, y

∗
θ) =

{
(τ − x∗

θ)

[
cos θ
sin θ

]
+

[
x∗
θ

y∗θ

]
+ s

[
− sin θ
cos θ

]
: s ∈ R

}
.

2As described earlier, in the actual experimental setup we rotate the object, not the beam; from
a mathematical point of view, it does not matter which we rotate.
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By definition, Rf(τ, θ, x∗
θ, y

∗
θ) is the integral of f along ℓ(x∗

θ, y
∗
θ). An easy calculation

shows that, ignoring sign, this line is a distance

τ ′ = τ − x∗
θ + x∗

θ cos θ + y∗θ sin θ

from the origin. From the geometry of the rotation process we see that the line
perpendicular to ℓ(x∗

θ, y
∗
θ) is inclined at an angle θ above the (positive) horizontal

axis. Hence,

Rf(τ, θ, x∗
θ, y

∗
θ) =

∫

ℓ(x∗

θ
,y∗

θ
)

f |ds| =
∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ(τ ′ − x cos θ − y sin θ) dx dy,

from which (2.2) follows immediately upon substituting in for τ ′.

Appendix C. Error Analysis for the Projection Alignment Process. In

this section, we consider the error in the approximation Rf(τ, θ, 0, 0) ≈ R̃f(τ, θ, 0, 0)

described in Sec. 2.3. Recall that R̃f(τ, θ, 0, 0) incorporates both the Gaussian regu-
larization of the Dirac delta and the discretization of the convolution integral using
the discrete Fourier transform.

Moving to a more abstract setting, the question is fundamentally one of assessing
the error in the approximation f(x− P ) ≈ (f ∗ δP,σ)(x), where f is some compactly
supported function on R and where we evaluate the right-hand side by discretizing
the convolution integral in a particular way. We lose no generality in assuming that
P = 0, so we can actually analyze f(x) ≈ (f ∗ δσ)(x), where we use the shorthand
δσ = δ0,σ. Since we wish to measure the error with respect to the uniform norm, we
need only to consider the error at a single point x. We lose no generality in assuming
that point is x = 0, so we are led to the problem of understanding the error in

(C.1) f(0) ≈
∫ ∞

−∞

f(x)δσ(x) dx,

again, under a specific discretization of the integral on the right-hand side, which in
particular includes truncating the domain of the Gaussian δσ.

Thus, we assume that supp f ⊂ [−L,L] for some L > 0, and we define

δTσ (x;A) =

{
δσ(x) |x| ≤ A

0 |x| > A,

which is δσ with its support truncated to [−A,A]. Our goal is to understand the error
E(σ,A,K) in the approximation to f(0) obtained by using the K-point (composite)
trapezoid rule to discretize the integral in (C.1) on the interval [−M,M ], where M =
L+A:

E(σ,A,K) = f(0)− 2M

K

N∑

k=−N

f(xk)δ
T
σ (xk;A),

whereK = 2N+1 is odd3 and xk = k(2M/K), −N ≤ k ≤ N . (This is mathematically
equivalent to evaluating the convolution at one of the points xk using the discrete
Fourier transform.) In particular, we want to know how E(σ,A,K) depends on σ and
K.

3We make this choice solely for notational convenience. Everything we do applies for even K as
well.
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E(σ,A,K) comprises three sources of error. The first is the regularization error

that we incur because σ 6= 0:

ER(σ) = f(0)−
∫ ∞

−∞

f(x)δσ(x) dx.

The second is the truncation error that comes from our limiting the support of the
Gaussian:

ET(σ,A) =

∫ ∞

−∞

f(x)δσ(x) dx−
∫ ∞

−∞

f(x)δTσ (x;A) dx.

The third is the discretization error due to our quadrature rule:

ED(σ,A,K) =

∫ ∞

−∞

f(x)δTσ (x;A) dx−
2M

K

N∑

k=−N

f(xk)δ
T
σ (xk;A).

We have

(C.2) E(σ,A,K) = ER(σ) + ET(σ,A) + ED(σ,A,K).

We will bound E(σ,A,K) by bounding each of the terms on the right-hand side of
(C.2) in turn.

Assume that f is twice continuously differentiable. Then, Taylor’s theorem (with
Lagrange’s form of the remainder) enables us to write

f(x) = f(0) + f ′(0)x+
1

2
f ′′
(
ξ(x)

)
x2

for x ∈ R, where ξ(x) is some function that satisfies 0 ≤ ξ(x) ≤ x for x > 0 and
x ≤ ξ(x) ≤ 0 for x < 0. From symmetry of xδσ(x), it thus follows that

∫ ∞

−∞

f(x)δσ(x) dx = f(0) +
1

2

∫ ∞

−∞

f ′′
(
ξ(x)

)
x2δσ(x) dx,

and hence we have

(C.3) |ER(σ)| ≤
1

2
σ2‖f ′′‖∞

for the regularization error.
The truncation error is even easier to handle. We have

ET(σ,A) =

∫ −A

−∞

f(x)δσ(x) dx+

∫ ∞

A

f(x)δσ(x) dx,

and so

(C.4) |ET(σ,A)| ≤ 2‖f‖∞
∫ ∞

A

δσ(x) dx ≤ ‖f‖∞e−
A2

2σ2 ,

by one of the many available bounds for the complementary error function [6].
The discretization error is trickier. Because δTσ is discontinuous on [−M,M ],

we cannot apply most standard results, since these results assume continuity of the
integrand. Instead, we appeal to the following result from [9], which bounds the error
in the trapezoid rule approximation to the integral of a function of bounded variation.
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Proposition C.1 ([9, Theorem 2.1]). If f : [a, b] → R is of bounded variation,

then ∣∣∣∣∣

∫ b

a

f(t) dt− b− a

2

(
f(a) + f(b)

)
∣∣∣∣∣ ≤

b− a

2
V (f)

where V (f) is the total variation of f over [a, b].

This result immediately yields a bound of (h/2)V (f) on the error in the composite
trapezoid rule, where h is the spacing between the grid points.

Because f is twice continuously differentiable, it is of bounded variation, and so
is δTσ . Hence, their product is of bounded variation as well. Moreover, we have

V (fδTσ ) ≤ ‖f‖∞V (δTσ ) + ‖δTσ ‖∞V (f).

(The norms and total variations are taken over [−M,M ].) Since

‖δTσ ‖∞ = δTσ (0;A) =
1

σ
√
2π

and

V (δTσ ) = 2δTσ (0;A) =
2

σ
√
2π

,

it follows that

V (fδTσ ) ≤
1

σ
√
2π

(
2‖f‖∞ + V (f)

)
.

The grid spacing in our trapezoid rule approximation is h = 2M/K. It follows that

(C.5) |ED(σ,A,K)| ≤ L+A

σK
√
2π

(
2‖f‖∞ + V (f)

)
.

Combining (C.2)–(C.5), we arrive at the bound

|E(σ,A,K)| ≤ 1

2
σ2‖f ′′‖∞ + ‖f‖∞e−

A2

2σ2 +
L+A

σK
√
2π

(
2‖f‖∞ + V (f)

)
.

This shows that

|E(σ,A,K)| = O(σ2) +O

(
1

σK

)
,

the implied limits in the big-O symbols being σ → 0 and K → ∞. This is sufficient
to yield the desired qualitative understanding of the results presented in Sec. 2.3.
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