
Introduction to Nonlinear Optimization
GIAN Short Course on Optimization:

Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

1 Objective Function and Constraints

2 Classification of Optimization Problems
Classification by Type of Constraints
Classification by Type of Variables
Classification by Functional Forms

3 Optimization Software Eco-System

4 Course Outline

2 / 35

Objective Function and Constraints

Optimization

Art of finding a best solution from collection alternatives.

Everyone optimizes: application in ...

Science: design of experiments

Engineering: power-grid control and design

Finance: pricing of options, optimal portfolio selection.

Medicine: optimal radiation dose design

Economics: optimal transition to clean energy

Big data: machine learning ... training of neural nets

... more details tomorrow.

3 / 35

The Most Important Slide of the Course

Please Ask Questions!!!

There are no stupid question ...
... there are only stupid teachers!

If YOU have a question, then
YOUR neighbor has the same!

If you all ask question,
then I know you are interested!

4 / 35

The Most Important Slide of the Course

Please Ask Questions!!!

There are no stupid question ...
... there are only stupid teachers!

If YOU have a question, then
YOUR neighbor has the same!

If you all ask question,
then I know you are interested!

4 / 35

Objective Function and Constraints

Ingredients of Optimization

Decision Variables, x , model decisions.

Constraints model acceptable values of x .

Objective(s) model our goals / performance measure.

minimize
x

f (x) objectve function

subject to lc ≤ c(x) ≤ uc nonlinear constraints

lA ≤ AT x ≤ uA linear constraints

lx ≤ x ≤ ux simple bounds

x ∈ X structural constraints

5 / 35

Objective Function and Constraints

minimize
x

f (x) objective function

subject to lc ≤ c(x) ≤ uc nonlinear constraints
lA ≤ AT x ≤ uA linear constraints
lx ≤ x ≤ ux simple bounds

x ∈ X structural constraints

Basic Blanket Assumptions

We make the following blanket assumptions:

1 x ∈ Rn finite dimensional.

2 Functions, c : Rn → Rm and f : Rn → R are smooth.

3 Bounds, lc , uc , lA, uA, lx , ux can be infinite.

4 Set X ⊂ Rn imposes structural restrictions x (later).

6 / 35

Objective Function and Constraints

minimize
x

f (x) objective function

subject to lc ≤ c(x) ≤ uc nonlinear constraints
lA ≤ AT x ≤ uA linear constraints
lx ≤ x ≤ ux simple bounds

x ∈ X structural constraints

To Minimize or To Maximize?

max f (x) equivalent to −min (−f (x))

... wlog only consider minimization

7 / 35

Notation

Subscripts denote components of (column) vectors:

a ∈ Rn has components a = (a1, . . . , an)T.

For a, b ∈ Rn vectors: a ≤ b means that ai ≤ bi ∀i .
Use upper case letters for matrices:

A ∈ Rn×m, x ∈ Rn then
[
AT x

]
i

=
n∑

j=1

[
AT

]
ij
xj =

n∑
j=1

Ajixj

Calligraphic type indicates finite or infinite sets, e.g.

X ⊂ Rn, or A ⊂ {1, . . . , n}.

Programming vs. Optimization

Optimization Problems also called “Program” ... WWII.

8 / 35

Example: Design of Reinforced Concrete Beam

Variables:
x1 = area of re-inforcement,

e.g. x1 ∈ {40, 45, . . . , 75}

x2 = width of beam,
x3 = depth of beam.

Objective: minimizing cost of reinforced beam

Constraints:
Support minimum amount of load.
Bounds on width/depth ratio and variables (positivity).

minimize
x

f (x) = 29.4x1 + 0.6x2x3 cost of beam

subject to c(x) = x1x2 − 7.735
x21
x2
≥ 180 load constraint

x3 − 4x2 ≥ 0 width/depth ratio
40 ≤ x1 ≤ 77, x2 ≥ 0, x3 ≥ 0 simple bounds,

In practice, area of reinforcement, x1, is discrete ... include in X .

9 / 35

Example: Design of Reinforced Concrete Beam

Variables:
x1 = area of re-inforcement, e.g. x1 ∈ {40, 45, . . . , 75}
x2 = width of beam,
x3 = depth of beam.

Objective: minimizing cost of reinforced beam

Constraints:
Support minimum amount of load.
Bounds on width/depth ratio and variables (positivity).

minimize
x

f (x) = 29.4x1 + 0.6x2x3 cost of beam

subject to c(x) = x1x2 − 7.735
x21
x2
≥ 180 load constraint

x3 − 4x2 ≥ 0 width/depth ratio
40 ≤ x1 ≤ 77, x2 ≥ 0, x3 ≥ 0 simple bounds,

In practice, area of reinforcement, x1, is discrete ... include in X .

9 / 35

Outline

1 Objective Function and Constraints

2 Classification of Optimization Problems
Classification by Type of Constraints
Classification by Type of Variables
Classification by Functional Forms

3 Optimization Software Eco-System

4 Course Outline

10 / 35

Classification of Optimization Problems

minimize
x

f (x) objective function

subject to lc ≤ c(x) ≤ uc nonlinear constraints
lA ≤ AT x ≤ uA linear constraints
lx ≤ x ≤ ux simple bounds

x ∈ X structural constraints

Classify optimization problems by

Type/class of objective function(s).

Type/class of constraint functions.

Structure of constraints like AT x .

Type of variables.

11 / 35

NEOS Optimization Tree

12 / 35

Classification by Type of Constraint
Assume X = Rn, and f (x), c(x) twice continuously differentiable

Unconstrained Optimization all x ∈ Rn feasible:

minimize
x∈Rn

f (x).

Special Case: Least-Squares Problem

minimize
x∈Rn

f (x) =
m∑
j=1

(rj(x))2 ,

Bound Constrained Optimization only bounds constraints:

minimize
x∈Rn

f (x) subject to l ≤ x ≤ u,

where l , u ∈ Rn can be infinite.
Special case: f (x) = cT x solved trivially.

... studied in Part II of this course.
13 / 35

Classification by Constraint Type
Assume X = Rn, and f (x), c(x) twice continuously differentiable

Linearly Constrained Optimization nonlinear objective and
linear constraints

minimize
x

f (x) objective function

subject to lA ≤ AT x ≤ uA linear constraints
lx ≤ x ≤ ux simple bounds

Important Special Cases:
Linear Programming Objective function is linear:

f (x) = cT x

Quadratic Programming Objective function is quadratic:

f (x) = xTGx/2 + gT x + a

wlog assume a = 0 Why???

... studied in in Part III of this course.
14 / 35

Classification by Constraint Type

Assume X = Rn, and f (x), c(x) twice continuously differentiable

Equality Constrained Optimization all constraints are
equations:

minimize
x∈Rn

f (x)

subject to c(x) = 0.

Special Case: Only linear equality constraints: AT x = b.

... studied in Part III of this course.

15 / 35

Classification by Constraint Type

Assume X = Rn, and f (x), c(x) twice continuously differentiable

Nonlinearly Constrained Optimization

minimize
x

f (x) objective function

subject to lc ≤ c(x) ≤ uc nonlinear constraints
lA ≤ AT x ≤ uA linear constraints
lx ≤ x ≤ ux simple bounds

x ∈ X structural constraints

Programming vs. Optimization

This problem is also called a Nonlinear Programming Problem.

16 / 35

Classification by Type of Variables

Variable type is encoded in x ∈ X :

Continuous Variables are variables with x ∈ Rn

... leverage classical calculus.

Discrete Variables X is discrete subset:

Binary Variables X = {0, 1}n model logic.
Integer Variables X = Zn model numbers of equipment.
Discrete Variables from discrete set, e.g.
X = {1/4, 1/2, 1, 2, 4, ...}
... can be modeled with binary variables.

⇒ Integer or discrete programming problems

Often have mixture of continuous and discrete variables, called
mixed-integer programs (MIPs).

... study MIPs in Part IV of this course.

17 / 35

Classification by Type of Variables

Additional classes of variables:

State and Control Variables arise in control problems:

Infinite-dimensional variables.
x(t) control, or u(t, x , y , z) PDE-constrained optimization.

Random Variables arise in robust or stochastic optimization:
also called second-stage variables ... optimize expect cation

Infinite-dimensional optimization problems ... over function spaces.

Must be discretized on mesh, or by drawing random samples
⇒ discretized problem is standard NLP.

18 / 35

Classification by Type of Variables

New classes of constraints have emerged in practical applications:

Semi-Definite Optimization involve matrix variables:
X ∈ Rn×n, such that X positive semi-definite (psd): X � 0.

Recall Positive Definiteness

A symmetric matrix X ∈ Rn×n is psd, iff all eigenvalues are
nonnegative.

Second-Order Cone Constraints special class of quadratic
constraint:

{(x0, x) ∈ R× Rn | x0 ≥ ||x ||2} ,

also known as the ice-cream cone.

... constraints generalize nonnegativity, and form a cone.

19 / 35

Classification by Functional Forms

Distinguish problems by their functional forms:

Smooth f (x), c(x) twice continuously differentiable

Nonsmooth if f (x) or c(x) Lipschitz continuous:
e.g. f (x) = ‖AT x − b‖22 + ‖x‖1 in compressed sensing

Multi-Objective Optimization more than one goal:

f (x) = (f1(x), . . . , fq(x))

models trade-offs (fuel consumption vs. take-off weight).
Can be transformed into single-objective using:

minimize
x

q∑
i=1

wi fi (x) for some weights wi ≥ 0

... here, concentrate on smooth, single-objective problems.

20 / 35

Outline

1 Objective Function and Constraints

2 Classification of Optimization Problems
Classification by Type of Constraints
Classification by Type of Variables
Classification by Functional Forms

3 Optimization Software Eco-System

4 Course Outline

21 / 35

Optimization Software Eco-System

Optimization Solvers

Commercial Packages: Cplex, GuRoBi, XPRESS, Knitro, ...

Open-Source Solvers: Cbc, Scip, Ipopt, Minotaur, ...

... written in C/C++, Fortran, ... interface to Python, Matlab.

Optimization Modeling Languages

Express optimization problems in high-level language.

Interfaces to commercial & open-source solvers

Commercial Languages: AMPL, GAMS,

Open-Source Languages: Zimpl, JuMP (Julia for MP), ...

... easy & efficient modeling of various optimization problems.

22 / 35

Introduction to AMPL Modeling Language

We have a full (temporary) license of AMPL for the course

Optimization Problem

min
x

exp(−x1) +
3∑

i=2

x2i

s.t. x1 log(x2) + x32 ≥ 1

5 ≥ x1, x2, x3 ≥ 0

AMPL Formulation

var x{1..3} >=0, <=5; # ... variables

minimize # ... objective functn

f: exp(-x[1]) + sum{i in 2..3} x[i]^2;

subject to # ... constraints

con: x[1]*log(x[2]) + x[2]^3 >= 1;

Beware: x2 > 0 ... log(x2) undefined for x2 ≤ 0!

23 / 35

Running & Trouble Shooting an AMPL Model

1 Create a *.mod model file (see file)
2 Start ampl; load model (e.g. Model1.mod); select solver:

ampl: reset; model Model1.mod;

ampl: option solver ipopt;

ampl: solve;

3 Display the answer or trouble shoot

ampl: display _varname, _var.lb, _var, _var.ub;

ampl: display _conname, _con.lb, _con.body, _con.ub;

ampl: expand;

... list variable/constraint name, lower bnd, body, upper bnd

... shows all constraints and objective functions
4 We forgot to ensure x2 > 0 so that log(x2) defined:

ampl: let x[2] := 1;

ampl: solve;

... assigns an initial value to x2 (different from default, 0).

24 / 35

Running & Trouble Shooting an AMPL Model

1 Create a *.mod model file (see file)
2 Start ampl; load model (e.g. Model1.mod); select solver:

ampl: reset; model Model1.mod;

ampl: option solver ipopt;

ampl: solve;

3 Display the answer or trouble shoot

ampl: display _varname, _var.lb, _var, _var.ub;

ampl: display _conname, _con.lb, _con.body, _con.ub;

ampl: expand;

... list variable/constraint name, lower bnd, body, upper bnd

... shows all constraints and objective functions

4 We forgot to ensure x2 > 0 so that log(x2) defined:

ampl: let x[2] := 1;

ampl: solve;

... assigns an initial value to x2 (different from default, 0).

24 / 35

Running & Trouble Shooting an AMPL Model

1 Create a *.mod model file (see file)
2 Start ampl; load model (e.g. Model1.mod); select solver:

ampl: reset; model Model1.mod;

ampl: option solver ipopt;

ampl: solve;

3 Display the answer or trouble shoot

ampl: display _varname, _var.lb, _var, _var.ub;

ampl: display _conname, _con.lb, _con.body, _con.ub;

ampl: expand;

... list variable/constraint name, lower bnd, body, upper bnd

... shows all constraints and objective functions
4 We forgot to ensure x2 > 0 so that log(x2) defined:

ampl: let x[2] := 1;

ampl: solve;

... assigns an initial value to x2 (different from default, 0).

24 / 35

Other Components of an AMPL Model

We can define sets in AMPL & have set operations

set Orig := { ’ORD’,’HAM’,’TXL’,’BOM’, ’JLR’ };

set Dest := { ’ORD’,’HAM’,’TXL’,’BOM’, ’JLR’ };

set Trips within Orig cross Dest;

Defines sets of origins, O, destinations, D
Defines subset and Trips, T ⊂ O ×D
Now we can fill Sven’s travel itinerary

let Trips := { (’ORD’,’BOM’), (’BOM’,’JLR’),

(’JLR’,’BOM’), (’BOM’,’ORD’),

(’ORD’,’TXL’), (’HAM’,’ORD’) };

... clearly Sven is maximizing discomfort!

We can define parameters (constants) with attributes:

param N integer, >0, default 32;

param h := 1/N;

... means that N is a positive integer with default value 32.

25 / 35

Model and Data Files

Often run same model with different data

Model & Data Files

Model files define the structure of the problem.

Data files define the data/instance of the problem.

Example, the famous diet problem

reset; model diet.mod; data diet.dat; solve;

... loads a problem file, it’s data, and solves it.

Run files can be useful, e.g. diet.ampl:

reset; model diet.mod; data diet.dat; solve;

display Buy, Diet;

... can add for loops, etc.

Best way to learn computing is to code!

26 / 35

Model and Data Files

Often run same model with different data

Model & Data Files

Model files define the structure of the problem.

Data files define the data/instance of the problem.

Example, the famous diet problem

reset; model diet.mod; data diet.dat; solve;

... loads a problem file, it’s data, and solves it.

Run files can be useful, e.g. diet.ampl:

reset; model diet.mod; data diet.dat; solve;

display Buy, Diet;

... can add for loops, etc.

Best way to learn computing is to code!

26 / 35

Good Coding Practices (Language Independent)

Good Coding Practices

Good coding practices make for better software.

Use consistent naming scheme
(e.g. Upper case for sets, lower case for variables, ...)

Use consistent indentation

Add lot’s of comments to the program!

Consider using CamelCode to name variables etc.

Limit line length.

Organize your files and folders consistently.

... it all helps YOU understand YOUR code in 2 months!

27 / 35

Good Coding Practices

Bill Gropp on Writing Code

Take pride in your software!

University of Illinois Urbana-Champaign,
Thomas M. Siebel Chair in CS

Awarded Blue Waters Professorship

Acting Director of National Center for
Supercomputing Applications (NCSA)

28 / 35

NEOS Server for Optimization

How do we use AMPL once the course is over?

NEOS Server: https://neos-server.org/neos/

NEOS Server Features

State-of-the-art solvers (AMPL, GAMS, ...)

Case studies & optimization guide

It’s all free!

Free demo license for AMPL, limited in size

29 / 35

https://neos-server.org/neos/

NEOS Server for Optimization

How do we use AMPL once the course is over?

NEOS Server: https://neos-server.org/neos/

NEOS Server Features

State-of-the-art solvers (AMPL, GAMS, ...)

Case studies & optimization guide

It’s all free!

Free demo license for AMPL, limited in size

29 / 35

https://neos-server.org/neos/

Test Problem Libraries

We have many optimization test problem libraries:

The CUTEr/st Test Problem Set (SIF) ... in AMPL
http://orfe.princeton.edu/~rvdb/ampl/nlmodels/

GAMS World, www.gamsworld.org/

MacMINLP, My AMPL Collection of MINLPs
http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP

Global Optimization,
http://titan.princeton.edu/TestProblems

... and many more

Test problem libraries are good place to start to learn AMPL!

30 / 35

http://orfe.princeton.edu/~rvdb/ampl/nlmodels/
www.gamsworld.org/
http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP
http://titan.princeton.edu/TestProblems

Test Problem Libraries

We have many optimization test problem libraries:

The CUTEr/st Test Problem Set (SIF) ... in AMPL
http://orfe.princeton.edu/~rvdb/ampl/nlmodels/

GAMS World, www.gamsworld.org/

MacMINLP, My AMPL Collection of MINLPs
http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP

Global Optimization,
http://titan.princeton.edu/TestProblems

... and many more

Test problem libraries are good place to start to learn AMPL!

30 / 35

http://orfe.princeton.edu/~rvdb/ampl/nlmodels/
www.gamsworld.org/
http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP
http://titan.princeton.edu/TestProblems

Course Outline

Part I: Introduction to Optimization

1 Optimization problems, classification, simple methods.

2 Optimization models, algebraic modeling languages.

Part II: Unconstrained Optimization

1 Optimality conditions.

2 Numerical methods & convergence analysis.

Goals

Preview of key algorithmic ingredients.

Modeling optimization problems.

31 / 35

Course Outline

Part III: General Nonlinear Optimization problems

1 Optimality conditions.

2 Special problems: linear and quadratic optimization.

3 Methods: local step & global convergence.

4 Optimization problems with equilibrium constraints.

Part IV: Mixed-Integer Nonlinear Optimization

1 Modeling with integer variables.

2 Methods for convex and nonconvex problems

3 Mixed-Integer PDE Constrained Optimization

Goals

Modern methods for nonlinear optimization.

Mixed-integer optimization models and techniques.

32 / 35

Course Software

Course Website: http://wiki.mcs.anl.gov/leyffer/

See Course & Lectures on right
Contains pdf of lecture notes, slides, software, tutorials,
solutions

AMPL modeling language

See course website for downloads & book
Student version available (up to 300 vars/cons)

COIN-OR solvers (started by IBM and CMU)
http://projects.coin-or.org/CoinBinary

See instructions for svn and installation
Needs C++ compiler, e.g. GNU’s g++

Needs BLAS, see www.netlib.org/blas/

Troubleshoot: run get.AllThirdParty

Easy Install: Ask Prashant for package!

33 / 35

http://wiki.mcs.anl.gov/leyffer/
http://projects.coin-or.org/CoinBinary
www.netlib.org/blas/

Course Software

AMPL mode for emacs, and vim editors http://github.

com/dpo/ampl-mode/blob/master/emacs/ampl-mode.el

Set up a bin directory for binaries & add it to your path:

cd ~

mkdir bin

Collect all binaries in bin/ ... or symbolic link to them

Tell your system where to find the binaries:

export PATH=~/bin:\$PATH

... now you can call your binaries from anywhere.

34 / 35

http://github.com/dpo/ampl-mode/blob/master/emacs/ampl-mode.el
http://github.com/dpo/ampl-mode/blob/master/emacs/ampl-mode.el

Summary and Take-Away Points

Defined optimization problem & its ingredients:
1 Objective ... goal that we optimize
2 Variables ... decision variables
3 Constraints ... restrictions on choices

Classified optimization problems by these components

Introduced optimization software eco-system

Brief introduction to AMPL
Online resources & open-source software

Course Outline & Course Software

35 / 35

	Objective Function and Constraints
	Classification of Optimization Problems
	Classification by Type of Constraints
	Classification by Type of Variables
	Classification by Functional Forms

	Optimization Software Eco-System
	Course Outline

