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Abstract
McCormick envelopes are a standard tool for deriving convex relaxations of optimiza-
tion problems that involve polynomial terms. Such McCormick relaxations provide
lower bounds, for example, in branch-and-bound procedures formixed-integer nonlin-
ear programs but have not gained much attention in PDE-constrained optimization so
far. This lack of attention may be due to the distributed nature of such problems, which
on the one hand leads to infinitely many linear constraints (generally state constraints
that may be difficult to handle) in addition to the state equation for a pointwise for-
mulation of the McCormick envelopes and renders bound-tightening procedures that
successively improve the resulting convex relaxations computationally intractable.
We analyze McCormick envelopes for a model problem class that is governed by a
semilinear PDE involving a bilinearity and integrality constraints.We approximate the
nonlinearity and in turn the McCormick envelopes by averaging the involved terms
over the cells of a partition of the computational domain on which the PDE is defined.
This yields convex relaxations that underestimate the original problem up to an a priori
error estimate that depends on the mesh size of the discretization. These approximate
McCormick relaxations can be improved by means of an optimization-based bound-
tightening procedure. We show that their minimizers converge to minimizers to a limit
problem with a pointwise formulation of the McCormick envelopes when driving the
mesh size to zero.We provide a computational example, for which we certify all of our
imposed assumptions. The results point to both the potential of the methodology and
the gaps in the research that need to be closed. Ourmethodology provides a framework
first for obtainingpointwise underestimators for nonconvexities and second for approx-
imating them with finitely many linear inequalities in an infinite-dimensional setting.
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1 Introduction

We are interested in the global optimization of mixed-integer PDE-constrained opti-
mization problems (MIPDECOs) that feature nonconvex terms. MIPDECOs arise in
many real-world applications such as topology optimization [4, 25, 30] and supply
network optimization [20, 41]. A prototypical problem class is

min
u,w

j(u, w) + αR(w)

s.t. Au + N (u, w) = 0

w ∈ C

w(x) ∈ Z for almost every (a.e.) x ∈ �,

(MIPDECO)

where w : � → R is a measurable input function (generally also called control) on a
computational domain � ⊂ R

d , d ∈ N. The function w needs to lie in a convex set C ,
for example, satisfy bound constraints or volume restrictions in topology optimization,
and additionally satisfies the nonconvex pointwise integrality restriction w(x) ∈ Z in
�. The control function w enters the problem as an input of the state equation (PDE)
Au + N (u, w) = 0, which we assume to have a unique solution u for a given w. The
operator A could be an elliptic differential operator that includes appropriate boundary
conditions and N (u, w) a term with a lower differentiability index on u than Au that
may involve a nonlinearity. The pair of w and the implied solution u to the state
equation will minimize an objective term j , which is often a quadratic fidelity term on
u. Moreover, desired structures on w can be promoted by means of the regularization
term αR(w) for some α > 0. A formal setting is provided in Sect. 2.1.

A beneficial choice for R in the context of mixed-integer PDE-constrained opti-
mization has been the regularization R = TV, where TV denotes the total variation
seminorm on the space of integrable functions [1]. Such a regularization may be
necessary to guarantee the existence of solutions [29, 34]. The total variation of an
integer-valued function is the (d − 1)-dimensional volume of the interfaces between
its level sets weighted by the jump heights over the respective interfaces. This choice
implies that instances of (MIPDECO) admit solutions under mild assumptions; see,
for example, [11, 36]. Recent work on solving such problems to the satisfaction of the
stationarity concept has been studied in [29, 33, 36, 55]. The computation of lower
bounds for a linear PDE, thereby yielding a convex set after omitting the integral-
ity constraints, and their integration into a branch-and-bound algorithm have recently
been studied by Buchheim et al. in [6–10] for d = 1.

In this work we strive to obtain convex relaxations and thus lower bounds on
(MIPDECO) in the presence of a structured nonlinearity of the feasible set induced
by a specific choice of N . To be precise, we restrict our work to the case that A is
an elliptic operator, R = TV, and the nonlinearity N in the state equation is in fact a
bilinearity, specifically

N (u, w)(x) := u(x)w(x) for a.e. x ∈ �.
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We replace the nonlinear state equation by a linear state equation and linear inequali-
ties based on McCormick envelopes that have been introduced for finite-dimensional
nonconvex optimization problems in [38]. Our aim is to obtain valid and (ideally) tight
lower bounds for instances of (MIPDECO). McCormick envelopes and relaxations
have already been studied in the context of global optimization with ODEs finite-
dimensional control inputs in [39, 47, 48, 52–54, 56, 61, 62]. These articles develop and
analyze arguments to show the existence and computation of solutions to ODEswhose
solution trajectories are convex and concave lower and upper bounds on the solution
trajectories of an original ODE that is influenced by means of a finite-dimensional
parameter. In the same spirit such pointwise bounds on the resulting trajectory are
transferred to a class of parabolic PDEs in [2]. In the context of infinite-dimensional
control inputs for ODE-constrained optimization, the use of McCormick envelopes
was proposed in [27] and [51]. The latter generalizes ideas from the aforementioned
literature to functions varying pointwise in time. The authors obtain the existence of
convex and concave trajectories that over- and underestimate the trajectories for the
parameterized ODE when over- and underestimations exist pointwise a.e.

We consider a setting, where the existence of such envelopes is straightforward
and provide a possibility to on the one hand only have an approximate relaxation on
the original problem but which on the other hand allows for a way to accelerate an
optimization-based bound-tightening procedure in order to improve the approximate
relaxations. Generally, such a bound-tightening procedure can become very compute-
intensive, it is called one of the most expensive bound tightening procedures in [21].
Moreover, state-constrained optimal control problems, in particular with infinitely
many state constraints, are notoriously hard to analyze and solve.

Therefore, we introduce an approximation scheme that allows us to work with a
finite number of linear inequalities and variables that is substantially smaller than the
number of variables used for the discretization of the PDE. To this end, we partition
the computational domain into finitely many grid cells and replace the product uw by
a product of local averages (Phu)(Phw), where Ph denotes the local averaging defined
in (1) below. This enables us to derive approximateMcCormick relaxations that can be
described by finitely many linear inequalities. Using beneficial regularity or continuity
properties of the solution to the underlying PDE, specifically that its solution attains
relatively close values in grid cells that are spatially close to each other, we expect that
a moderate mesh size may already yield a good approximation of the lower bound.
In this way we strive for a much faster computation in order to obtain approximate
lower bounds on (MIPDECO), which are required for our goal of solving instances
of (MIPDECO) to global optimality. We highlight that the computation of such lower
bounds is also interesting for global optimization in its own right even without the
context of integer-valued input functions.

We believe that our restrictions on the setting are sensible. First, R = TV is a useful
regularization forMIPDECOs because it results in crisp designs (level sets of the input
function). Moreover, the analytical properties of the TV-regularization term also help
streamline our analysis although the general strategy can also be carried out for many
other choices of R. Similarly, higher-order multilinear terms for N (u, w) involving
u, for example, ukw, k ≥ 2, would make the PDE analysis, namely, the existence of
solutions and their regularity, considerably more complicated. In this regard many of

123



S. Leyffer, P. Manns

our arguments are streamlined and do not distract from the analysis and approximation
of the McCormick relaxation. Consequently, this article will be read as a recipe to first
obtain a pointwise generalization of underestimators for nonconvexities as are known
from finite-dimensional nonconvex optimization and then approximate this pointwise
generalization with finitely many linear inequalities using approximation properties
that are due to the PDE setting.

Contribution

We provide a formal definition of an optimal control problemwith the aforementioned
features and derive McCormick envelopes using pointwise constraints. We then intro-
duce a grid that discretizes the computational domain �, and we approximate the
inequalities defining the McCormick envelope by a local averaging over the grid cells.
In a second step, we discretize the control input function on the same grid, thereby
reducing the complexity of the problem further. We prove the existence of solutions to
the approximate convex relaxations and an estimate on the lower bound for the optimal
control problem depending on the mesh size of the grid. Moreover, we prove that min-
imizers of the approximate convex relaxations converge to minimizers of the convex
relaxation obtained by imposing the McCormick envelopes by means of pointwise
constraints when driving the mesh size to zero.

We introduce and analyze the aforementioned optimization-based bound-tightening
procedure that allows us to tighten given bounds on the state variable u and in turn to
increase the objective value of the (approximate) McCormick relaxation and thus to
tighten the induced lower bounds on the optimal objective value of the optimal control
problem.

We then verify all assumptions imposed on our analysis for an exemplary optimal
control problem that is governed by an elliptic PDE that is defined on � ⊂ R. In
particular, this example allows us to provide tight values for all constants in the esti-
mates we impose. We then give details on how we discretize the PDE and set up a
computational experiment where we insert the aforementioned constants.We compute
and compare the approximate lower bounds with and without the bound-tightening
procedure applied with each other to upper bounds with and without an integrality
restriction on the controls in order to assess the quality of the analyzed methodol-
ogy. We also provide computational results for a second example that is defined on
a two-dimensional domain. The observations confirm those of the one-dimensional
example.

Structure of the remainder

We continue with a brief introduction to our notation. In Sect. 2 we introduce
McCormick envelopes for optimal control problems with semilinear state equations
that feature a bilinear term. The McCormick envelopes are first introduced and ana-
lyzed in a pointwise fashion. Then a local averaging is introduced in to approximate the
pointwise inequalities by finitely many linear inequalities. Then employ a piecewise
constant control function ansatz, as is desired in our motivating application of integer
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optimal control, to obtain a further approximationwith the state variable u still remain-
ing in function space. In Sect. 3 we introduce an elliptic PDE that we use as a showcase
to verify all of the assumptions that are imposed for the well-definedness and approx-
imation properties of the different McCormick settings from Sect. 2. We describe the
finite-element discretization of the state equation for our guiding example, imple-
ment the bound-tightening procedure, and perform our computational experiments in
Sects. 4 (1D) and 5 (2D). We draw a conclusion in Sect. 6.

Notation

Let � ⊂ R
d , d ∈ N, be a bounded domain. The projection in the space of integrable

functions L1(�) to piecewise constant functions on a partition Qh = {Q1
h, . . . , Q

Nh
h }

of � is denoted by Ph ; specifically

Ph : L1(�) � f �→
Nh∑

i=1

1

|Qi
h |

∫

Qi
h

f (x) d xχQi
h

∈ L1(�). (1)

For a measurable set A ⊂ R
d , d ∈ N, we denote its d-dimensional Lebesgue measure

by |A|. We say that a function w ∈ L1(�) is of bounded variation if its total varia-
tion seminorm TV(w) is finite. The Banach space of functions in L1(�) of bounded
variation with norm ‖ · ‖BV = ‖ · ‖L1 + TV(·) is then denoted by BV(�); see [1] for
details on functions of bounded variation. We recall that the total variation seminorm
for w ∈ L1(�) is defined as

TV(w) := sup

{∫

�

w(x) div φ(x) d x

∣∣∣∣φ ∈ C1
c (�,Rd), max

x∈�
‖φ(x)‖ ≤ 1

}
,

where‖·‖denotes theEuclideannormonRd .Onone-dimensional domains� = (a, b)
for a, b ∈ R, every element of BV(�) has a left-continuous representative, and the
total variation is the sum of the jump heights of the left-continuous representative (this
interpretation also works for the right-continuous representative or other so-called
good representatives; see [1]).

2 McCormick envelopes for optimal control problems with state
equations that have bilinear terms

In this section we derive and analyze McCormick envelopes and relaxations for a
class of nonconvex optimal control problems where the nonconvexity stems from
bilinear terms in the state equation. We first introduce a prototypical optimal control
problem in Sect. 2.1. We then derive pointwise a.e. McCormick envelopes in Sect. 2.2
and, subsequently, provide a local averaging in two stages that yields approximate
lower bounds but implies problems, still in function space, which feature only finitely
many additional linear inequalities in Sect. 2.3. In Sect. 2.4 we prove the validity of
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a bound-tightening procedure that may improve (increase) the (approximate) lower
bounds.

2.1 Optimal control problemwith nonconvex bilinearity

We consider the following prototypical setting with a nonconvexity induced by a bilin-
ear term in the state equation, but note that the strategy we develop can be transferred
to many other settings with lower or slightly different regularity assumptions with a
small amount of modifications.

Let � be a bounded domain. Let U be a reflexive Banach space that is compactly
embeded into H := L2(�), that is, U ↪→c H , so that we may work with the triple
U ↪→c H ∼= H∗ ↪→c U∗ of compact embeddings and the isometric isomorphic
identification H ∼= H∗. In optimal control terminology, U is the state space. For the
control space, we consider the spaceW := BV(�) of functions of bounded variation,
which is motivated by the compactness and approximation properties it provides in the
control space and our intended application in the context of integer optimal control.
Specifically, BV(�)-regularity allows us to approximate a function by its average on
a partition of the domain with an error that is bounded by a scalar multiple of the mesh
size. Note that other spaces like the Sobolev space H1(�) also provide this property.

The optimal control problem is

min
u,w

j(u, w) + α TV(w)

s.t. Au + uw = f in U∗,
w ∈ C, u ∈ U

(OCP)

for a nonempty, bounded, closed, and convex setC ⊂ H , an objective j : U×H → R

that is Lipschitz continuous on bounded sets and a linear and bounded differential
operator A : U → U∗ with bounded inverse A−1 : U∗ → U . The nonconvexity of
the problem stems from the bilinear term uw in the state equation.

Note that the assumptions on C imply that it is a weakly sequentially compact
subset of H so that we obtain the regularity w ∈ H for all feasible w. Together with
the TV-seminorm in the objective, we obtain the regularity w ∈ W for all feasible w

with finite objective value and the assumed structure j : U × H → R is well-defined.
Moreover, we note that the continuous embedding W ↪→ H holds for d ∈ {1, 2}
so that we can equivalently consider W or W ∩ H as control space. For d ≥ 3,
defining W ∩ H as control space here is slightly more specific but not necessary
for our analysis and would complicate our notation later. The vector f ∈ U∗ is a
fixed datum that parameterizes the optimization problem, and we assume that the
product uw is a measurable function that is (also) an element of U∗ for all tuples
(u, w) ∈ U ×W . This follows, for example, if C is bounded in L∞(�), too. The term
TV(w) denotes the total variation seminorm of w that enforces its required BV(�)-
regularity, and α > 0 is a positive scalar. Assuming that the state equation and the
original optimal control problem admit unique solutions, the presence of the term uw

123



McCormick envelopes in mixed-integer PDE-constrained…

implies a nonlinear dependence of the solution to the state equation on w, which in
turn implies that (OCP) is generally nonconvex even if j is convex.

2.2 Pointwise McCormick envelopes

McCormick envelopes have been introduced for finite-dimensional nonconvex opti-
mization problems in [38]. The key idea for the case of (OCP) is to derive a new
optimal control problem, the so-called McCormick envelope, by relaxing the state
constraints. Specifically, the bilinear term is replaced by a new variable z, which is a
measurable function that is also an element of U∗, and a set of linear inequalities on
z, u, and w that preserve the feasibility of the state equation; that is, if u and w satisfy
Au = uw + f , then the choice z = uw satisfies all of the newly introduced linear
inequalities. Here, we make the following assumption.

Assumption 2.1 Let there be bounds u�, uu ∈ H and w�, wu ∈ L∞(�) so that
u� ≤ u ≤ uu and w� ≤ w ≤ wu hold pointwise a.e. for all (u, w) ∈ U ×W that solve
Au + uw = f and satisfy w ∈ C .

Clearly, the multiplication of these bounds, u�w�, u�wu , uuw�, uuwu ∈ H by
Hölder’s inequality. We note that the assumption of bounds on the state is quite strong,
but we emphasize that such bounds are generally required only in the subset of the
computational domain� onwhich N actually acts. For example, terms like N (u, w) =
χAuw for compact subsets A ⊂⊂ � may occur in topology optimization problems
like in [25] because the control design may be restricted to A and is extended by zero
to the complement of A. Consequently, higher interior regularity of the PDE solutions
can help to establish implementable (i.e., generally uniform) bounds. For rich classes
of PDEs that are governed by an elliptic operator like in our setting, L∞(�)-bounds
on u can be established by following of the strategy and results in Appendix B in [28]
under assumptions on f and the coefficients of the elliptic operator, see also Theorem
4.5 and its proof in [58].

We note that the different parts of the proofs do not require the full assumed regu-
larity here, but again we prefer this slightly more restrictive setting in the interest of
a cleaner presentation. Under Assumption 2.1, the McCormick relaxation of (OCP)
can be derived pointwise a.e. in a similar way as for finite-dimensional problems; see
[38]:

min
u,w,z

j(u, w) + α TV(w)

s.t. Au + z = f in U∗,
z ≥ u�w + uw� − u�w� a.e.,

z ≥ uuw + uwu − uuwu a.e.,

z ≤ uuw + uw� − uuw� a.e.,

z ≤ u�w + uwu − u�wu a.e.,

u ∈ U , u� ≤ u ≤ uu a.e.,

w ∈ C, w� ≤ w ≤ wu a.e.

(McC)
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We obtain that (McC) is a relaxation of (OCP) with a convex feasible set in the
proposition below. As mentioned in the introduction, (generalized [54]) McCormick
relaxations have been studied for ODEs with finite-dimensional inputs to obtain con-
cave and convex upper and lower bounds for their solution trajectories [39, 47, 48,
52–54, 56, 61, 62]. This implies analogous relaxation results for their settings. In the
context of ODE-constrained optimal control, such a result was shown for a pointwise
(that is infinite-dimensional) control for nonlinearities given by factorable functions
and appropriate Lipschitz assumptions, see Lemma 1, Assumption 3, and Theorem 1
in [51]. Their observations can likely be used to transfer some of our ideas to more
general nonlinearities than present in (OCP). We stress that the analysis of the PDE
becomes increasingly difficult when higher-degree monomials are present and gener-
ally requires a study of the specific case to determine if the PDE has a solution and
if yes if it lies in a function space that provides enough regularity for the analysis
below. Using McCormick relaxations for such infinite-dimensional control settings
and envelopes around solution trajectories was also proposed in [27].

Proposition 2.2 Let Assumption 2.1 hold.

1. If (u, w) is feasible for (OCP), then (u, w, z) with z = uw is feasible for (McC).
In particular, the infimum (McC) is a lower bound on the infimum of (OCP).

2. The feasible set of (McC) is convex and bounded in U × H × H.

Proof Regarding feasibility, the state equation, the inclusion in C , and the two last
pointwise inequalities are immediate. The satisfaction of the four additional point-
wise inequalities for the choice z = uw follows as in the finite-dimensional case by
rearranging them. For example, we obtain (u − u�)w ≥ (u − u�)w� a.e. for the first
inequality. The state equation in (McC) and the additional inequalities are affine in
(u, w, z). Moreover, C is assumed to be convex so that (McC) has a convex feasible
set. The feasible w are bounded in H . In combination with the pointwise bounds on
u, we obtain boundedness of the feasible z in H from the McCormick inequalities. In
turn, the continuous invertibility of A and the embedding H ∼= H∗ ↪→c U∗ imply the
boundedness of the feasible u in U . ��
Remark 2.3 Because PDE-constrained optimization problems generally feature a large
number of variables after discretization due to their distributed nature, the pointwise
McCormick inequalities add many linear constraints—on the order of six times the
number of discretization cells—to a later fully discretized problem if one enforces them
on every degree of freedom of a finite-element discretization of the state variable.

Without any additional constraints, we do not know whether we can actually bound
z uniformly in H , however, so we add these bound constraints on u, which are again
satisfied by all feasible points for (OCP).

Remark 2.4 For the product xy of a binary-valued variable x and a fractional-valued
variable y with y� ≤ y ≤ yu , as is present in our guiding MIPDECO example, a
envelopes arises by replacing the product with a new variable z and use the so-called
big-M linearization, where y� and yu assume the roles of the big-Ms. This yields the
linear inequality system

y�x ≤ z ≤ yuz and (x − 1)yu ≤ z − y ≤ (x − 1)y�.
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Therein, the two bounds on z correspond to the first and third inequality in the
McCormick envelopes as introduced in (McC) and the bounds on z − y correspond
to the second and fourth inequality in the McCormick envelopes so that these two
approaches are equivalent for our guiding example.

Proposition 2.5 In the setting of Sect.2.1, the problems (OCP) and (McC) admit solu-
tions.

Proof The existence of solutions for (OCP) follow with standard arguments from the
direct method of calculus of variations.

By construction of (McC) as a relaxation of (OCP), its feasible set is nonempty, and
there exists a minimizing sequence (un, wn, zn)n ⊂ U × H × H of feasible points,
which has at least one accumulation point (u, w, z) ∈ H×H×H with respect to weak
convergence in H × H × H , which follows directly from Proposition 2.2. Because
A−1 is a bounded, linear operator, u satisfies the state equation and is an element of
U , too. Moreover, because H is compactly embedded in U∗ and thus zn → z holds
in U∗, we even obtain

un = A−1( f − zn) → A−1( f − z) = u in U

and in turn un → u in H and pointwise a.e. after restricting to a suitable subsubse-
quence. The pointwise a.e. convergence yields u� ≤ u ≤ uu .

The assumptions on C imply w ∈ C . Because j is bounded below, (TV(wn))n is
bounded; and again after restricting to a suitable subsubsequence, we obtain wn → w

in L1(�) and pointwise a.e. from the weak-∗ sequential compactness properties of the
TV-seminorm; see Theorem 3.23 in [1]. We obtain w� ≤ w ≤ wu .

It remains to assert that the weak limit z satisfies theMcCormick inequalities before
proving the optimality. This follows from Lemma A.1.

The continuity properties of j and the lower semi-continuity of the TV-seminorm
with respect to convergence in L1(�) and in turn also in H yield that (u, w, z) is a
minimizer. ��
Remark 2.6 In our examples, the spaceW will be (a subspace of) the space of functions
of bounded variation BV(0, 1), which is not reflexive. There are important sets C that
are subsets of such spaces and also convex, bounded, and weakly sequentially closed
in H . An example is {w ∈ BV(0, 1) | TV(w) ≤ κ} for some κ > 0; see also [8] for
such a constraint set in the context of integer optimal control.

The challenges of the pointwise McCormick envelopes for (McC) have already
been sketched in Remark 2.3. The situation is further complicated if one wants to
improve the lower bound induced by (McC). A straightforward application of a bound-
tightening procedure implies that one alternatingly picks x̃ ∈ � and solves (one of)
the optimization problems

inf
u,w,z

u(x̃) s.t. (u, w, z) is feasible for (McC)

and
sup
u,w,z

u(x̃) s.t. (u, w, z) is feasible for (McC)
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(OCP)

lower bound
(Proposition 2.2)

(McC)

approximation of z
fewer inequality constraints

(McCh)

approximation of w and TV
fewer variables

(McChh)

approx. lower bound
(Theorem 2.8)

approx. lower bound
(Theorem 2.11)Γ-convergence

(Proposition 2.14)

Fig. 1 Two-stage approximation of (McC) by reduced problems (McCh ) and (McChh ) in order to obtain
approximate lower bounds on (OCP)

in order to then update u�(x̃) and uu(x̃) to the computed values. Of course, this is
sensible only if u in C(�̄) or has a meaningful pointwise interpretation. In a practical
implementation, such optimization problems may, for example, be solved for nodes x̃
of a finite-element discretizationwith a nodal basis. Since improving the bounds yields
further possible improvements, it makes sense to repeatedly solve such problems until
no further progress is made. In total, the bound-tightening procedure can become
computationally very expensive. Therefore, in the next section we analyze a local
averaging of the nonlinearity that leads to approximate lower bounds by means of a
grid whose mesh size can then be chosen coarser than the mesh size of the grid that is
used to the discretize the state variable.

2.3 Approximate McCormick relaxations by local averaging

We propose, analyze, and assess a local averaging that modifies the problem before
introducing the variable z. Thus, the variable z and in a second approximation step
w, which only enters the relaxed PDE implicitly through z, and the bounds on the
product uw are approximated by means of a coarse grid that allows us to reduce the
size of the resulting optimization problem. We give an overview on the approximation
arguments of this subsection in Fig. 1.

Let Qh = {Q1
h, . . . , Q

N
h } be a partition of the domain � into intervals / squares /

cubes /... with mesh size h. Locally averaging the nonlinearity of the state equation
from (McC) means that Au + uw = f is replaced by the variant

Au + (Phu)(Phw) = f (2)
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with Ph being defined in (1). We define the locally averagedMcCormick relaxation
with respect to the partition Qh as

min
u,w,

z1,...,zNh

j(u, w) + α TV(w)

s.t. Au + z = f in U∗,

z =
Nh∑

i=1

ziχQi
h
,

zi ≥ ui�(Phw) + (Phu)wi
� − ui�w

i
� on Qi

h for all i ∈ {1, . . . , Nh},
zi ≥ uiu(Phw) + (Phu)wi

u − uiuw
i
u on Qi

h for all i ∈ {1, . . . , Nh},
zi ≤ uiu(Phw) + (Phu)wi

� − uiuw
i
� on Qi

h for all i ∈ {1, . . . , Nh},
zi ≤ ui�(Phw) + (Phu)wi

u − ui�w
i
u on Qi

h for all i ∈ {1, . . . , Nh},
u ∈ U , ui� ≤ Phu ≤ uiu on Qi

h for all i ∈ {1, . . . , Nh},
w ∈ C, w� ≤ w ≤ wu a.e.,

z1, . . . , zNh ∈ R.

(McCh)

Note that (McCh) is still in function space regarding u andw. In (McCh) the statement
that the four McCormick inequalities on zi hold on Qi

h might be misunderstood. We
therefore highlight that Phu and Phw are constant on the cells Qi

h so that there are
exactly four McCormick inequalities per cell Qh

i ∈ Qh . The same argument applies
for the bounds on Phu. The bounds ui� ∈ R and uiu ∈ R assume the roles of the
functions u� and uu per grid cell for the locally averaged function Phu. Specifically,
the function Phu is bounded from below by ui� and from above by uiu on the i-th grid
cell Qi

h . Similarly, the bounds wi
� and wi

u assume the roles of w� and wu .
By employing only finitely many bounds on Phu, we can circumvent the afore-

mentioned regularity problems if the number of constraints is not too large; that is, its
Lagrange multiplier may sensibly be interpreted as a vector inRn . Moreover, the local
averaging opens up possibilities for adaptive McCormick relaxations when using a
corresponding adaptive refinement of the partition Qh and will also reduce the com-
putational effort for improving the (approximate) lower bound. We can now impose
inequalities on the locally averaged state Phu and tighten them algorithmically in order
to reduce the gap between the relaxation and the original problem. We now impose an
assumption that implies that (McCh) admits a solution and is an approximate relax-
ation of (OCP). This means that the optimal objective of (OCP) is bounded from
below by the objective of (McCh) minus a bound on the approximation error.

Assumption 2.7 In addition to the setting from Sect. 2.1, we assume the following.

1. Let {Qh}h be a sequence of partitions of the domain � with mesh sizes h.
2. Let the equation (2) have a unique solution for all w ∈ BV(�).
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3. For all h and all Qi ∈ Qh , let the bounds ui�, u
i
u , wi

�, wi
u ∈ R be such that

ui� ≤ (Phu)|Qi ≤ uiu and wi
� ≤ (Phw)|Qi ≤ wi

u hold for all w ∈ C ∩ [w�,wu] and
u ∈ U that solve Au + (Phu)(Phw) = f .

We will verify all parts of Assumption 2.7 for an example in Sect. 3.

Theorem 2.8 Let Assumption 2.7 hold. Then (McCh) has a convex feasible set that is
bounded in U × H × R

Nh and admits a minimizer. Let (u, w) be feasible for (OCP).
Then the tuple (uh, wh, zh) with wh := w, uh being the unique solution to (2), and
zh := (Phuh)(Phwh) is feasible for (McCh), and the objective value satisfies

| j(uh, wh) + α TV(wh) − j(u, w) − α TV(w)| ≤ Lu‖u − uh‖U , (3)

where Lu is the Lipschitz constant of j with respect to its first argument on the feasible
set of (McCh). Moreover,

m(OCP) ≥ m(McCh ) − Lu‖ū − ūh‖U (4)

if m(McCh ) denotes the infimum of (McCh), m(OCP) denotes the infimum of (OCP),
(ū, w̄) denotes the minimizer of (OCP), and ūh the corresponding solution to (2).

Proof The convexity and boundedness of the feasible set follow as in Proposition
2.2. The feasibility of (uh, wh, zh) for (McCh) follows by construction. Because the
feasible set of (McC) is nonempty (see Proposition 2.5), there exist feasible points
of (McCh). Because the feasible set of (McCh) is bounded, the desired constant Lu

exists by assumption on j .
Consequently, we can consider a minimizing sequence {(ukh, wk

h, z
k
h)}k for (McCh)

and apply similar arguments as in the proof of Proposition 2.5 in order to prove
existence of a minimizer. The zkh have a finite-dimensional piecewise constant ansatz
and are bounded because of the boundedness of w implied by the properties of C
so that they admit a (norm-)convergent subsequence in H with limit z̄h . Because of
the continuous invertibility of A, there is a corresponding subsequence of {ukh}k that
converges to ūh = A−1(−z̄h + f ). By possibly passing to a further subsequence, the
corresponding subsequence of {wk

h}k converges weakly∗ to w̄h in W . This implies
w̄h ∈ C and w� ≤ w̄h ≤ wu . Passing to a further subsequence, we obtain pointwise
a.e. convergence for all three subsequences and in turn feasibility of the limit triple
(ūh, w̄h, z̄h) for (McCh), where we use that the projection to the piecewise constant
functions is continuous with respect to all L p-norms. For the objective, we obtain that
the first term converges because of its assumed continuity properties. Moreover, the
TV-term is lower semicontinuous with respect to convergence in H ; and, in turn, we
obtain that (ūh, w̄h, z̄h) realizes the infimal objective value and is thus a minimizer.

The approximation bound (3) follows from the Lipschitz continuity of j and the
assumed choice (uh, wh, zh).

To prove the approximate lower bound (4), let (ū, w̄) be a minimizer to (OCP), and
let w̄h = w̄. Then Assumption 2.7 2 gives a unique solution ūh to (2), and we choose
z̄h = (Phuh)(Phw). Assumption 2.7 3 yields that the triple (ūh, w̄h, z̄h) is feasible
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for (McCh). We deduce by means of w̄h = w̄ and the optimality of (ū, w̄, z̄) that

m(OCP) = j(ū, w̄) + α TV(w̄) ≥ j(ūh, w̄h) + α TV(w̄h) − Lu‖u − uh‖U
≥ m(McCh ) − Lu‖u − uh‖U .

��
We note that approximation results on the difference ‖u − uh‖U that are required to
obtain a meaningful bound can generally be obtained for broad classes of elliptic and
parabolic PDEs.

The locally averaged McCormick relaxation (McCh) has the drawback that while
only a local average ofw is required for the McCormick inequalities, the full informa-
tion is required in order to represent the total variation term correctly. To reduce
the number of optimization variables further, one is tempted to replace TV(w)

by TV(Phw). Then one could use Phw = ∑Nh
i=1 wiχQi

h
for real coefficients wi ,

i ∈ {1, . . . , Nh}, in order to replace the optimization overw in BV(�) by an optimiza-
tion over RN . The lower semicontinuity inequality TV(w) ≤ lim infh↘0 TV(Phw)

is strict in general if the dimension of � is larger than one. To make things worse,
even a 	-convergence result cannot be obtained directly because the geometries of
the functions in the limit h ↘ 0 are restricted due to the restrictions of the geometry
of the elements of the partitions Qh . This is noted at the end of section 1 in [14] with
references to [26] and [13] that employ discrete (anisotropic) approximations of the
total variation. Specifically, the isotropic unit ball that is due to the Euclidean norm
in the definition of the total variation is not recovered in the limit process for h ↘ 0,
and other limit functionals that have nonisotropic unit balls may arise for periodic
discretizations; this situation is analyzed and reported in [18].

We introduce a variant of the McCormick relaxation where both the McCormick
inequalities and the control discretization employ a local averaging with respect to
the same grid based on the following assumption. To be able to obtain the desired
approximation bound and a 	-convergence to the limit problem (McC), we assume
that a regularization of the total variation penalty, such as the L2-regularization of the
dual formulation presented in [15], is coupled to the grid used for the local averaging.

Assumption 2.9 In addition to Assumption 2.7, we assume that there is a sequence of
approximations (TVh)h of TV that is consistent with local averaging. Specifically, we
assume for all h that TVh : L1(�) → [0,∞] is lower semicontinuous, TVh ◦Ph ≤
TV, and TVh ◦Ph ≤ TVh.

Remark 2.10 In one-dimensional domains, the choice TV = TVh immediately satis-
fies Assumption 2.9, which follows from Lemma 2.15 below. On multidimensional
domains, one can, for example, choose suitable finite-element discretizations of the
total variation seminorm like a approximation with lowest-order Raviart–Thomas ele-
ments; see §4.1 in [14]. Note that a correct discretization of the TV seminorm is not
trivial in our intended context of mixed-integer PDE-constrained and we refer to the
recent article [49] for details on the difficulties and a solution based on the aforemen-
tioned lowest-order Raviart–Thomas elements.
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The variant of the McCormick relaxation that replaces TV(w) by TVh(w) is:

min
u,w1,...,wNh ,
z1,...,zNh

j(u, w) + α TVh(w)

s.t. Au + z = f in U∗,

w =
Nh∑

i=1

wiχQi
h
, z =

Nh∑

i=1

ziχQi
h
,

zi ≥ ui�wi + (Phu)wi
� − ui�w

i
� on Qi

h for all i ∈ {1, . . . , Nh},
zi ≥ uiuwi + (Phu)wi

u − uiuw
i
u on Qi

h for all i ∈ {1, . . . , Nh},
zi ≤ uiuwi + (Phu)wi

� − uiuw
i
� on Qi

h for all i ∈ {1, . . . , Nh},
zi ≤ ui�wi + (Phu)wi

u − ui�w
i
u on Qi

h for all i ∈ {1, . . . , Nh},
u ∈ U , ui� ≤ Phu ≤ uiu on Qi

h for all i ∈ {1, . . . , Nh},
w ∈ C, w� ≤ w ≤ wu a.e.,

z1, . . . , zNh ∈ R

(McChh)

Note that (McChh) is still in function space regarding u. With the help of Assumption
2.9, we can show that (McChh) is an approximate lower bound on (McCh) and in
turn on (OCP). We note that the inequalities in Assumption 2.9 are implementable in
practice and can be relaxed to approximate inequalities with an h-dependent error that
tends to zero for h ↘ 0.

Theorem 2.11 Let Assumption 2.9 hold. Then (McChh) has a convex feasible set that
is bounded in U ×R

Nh ×R
Nh and admits a minimizer. We definewh := ∑Nh

i=1 wh
i χQi

h

for a feasible point (uhh, w1
h, . . . , w

Nh
h , z1h, . . . , z

Nh
h ) of (McChh). Then the tuple

(uhh, wh, z1h, . . . , z
Nh
h ) is feasible for (McCh).

Let (uh, wh, z1h, . . . , z
Nh
h ) be feasible for (McCh). Then (uh, w1

h, . . . , w
Nh
h , z1h, . . . ,

zNh
h ) with wi

h := (Phwh)|Qi
h
, i ∈ {1, . . . , Nh}, is feasible for (McChh). Moreover,

j(ūh, wh) + α TV(wh) ≥ m(McChh ) − Lw‖wu − w�‖
1
2
L∞

√
d

1
2 TV(w̄h)

1
2 h

1
2 , (5)

where m(McChh ) is the infimum of (McChh) and w̄h is a minimizer of (McCh), ūh the
corresponding solution to (2), and Lw is the Lipschitz constant of j with respect to its
second argument on C.

Moreover,

m(OCP) ≥ m(McChh ) − Lu‖ū − ūh‖U − Lw‖wu − w�‖
1
2
L∞

√
d

1
2 TV(w̄)

1
2 h

1
2 , (6)

where m(OCP) is the infimum of (OCP), (ū, w̄) is a minimizer of (OCP), and Lu is the
Lipschitz constant of j with respect to its first argument on the feasible set of (McChh).
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Proof The convexity and boundedness of the feasible set follow as in Proposition 2.2.
The respective feasibility relations follow by construction, the definitions of (McCh)
and (McChh), and the assumed properties of C . The existence of minimizers for
(McChh) followswith the same arguments as for (McCh)with the only difference being
that the existence of a convergent subsequence in H of the control inputs w as part
of a minimizing sequence can already be deduced from the finite-dimensional ansatz.
Because the feasible set of (McCh) is bounded, the desired constant Lu exists. To
prove the approximate lower bound (5), we deduce that, for all (uh, wh, zh1 , . . . , z

h
Nh

)

that are feasible for (McCh), the estimates

m(McChh ) ≤ j(uh, Phwh) + α TVh(Phwh)

≤ j(uh, wh) + α TVh(Phwh) + Lw‖wh − Phwh‖H
≤ j(uh, wh) + α TV(wh) + Lw‖wu − w�‖

1
2
L∞‖wh − Phwh‖

1
2
L1(�)

≤ j(uh, wh) + α TV(wh) + Lw‖wu − w�‖
1
2
L∞

√
d

1
2 TV(wh)

1
2 h

1
2 ,

hold, where we have used Assumption 2.9 and the Lipschitz continuity of j with
respect to the second argument for the second inequality and (the proof of) (12.24) in
Theorem 12.26 in [31] for the third inequality.

To prove the approximate lower bound (6), we chain this estimate with the argu-
ments from Theorem 2.8. Let (ū, w̄) be a minimizer to (OCP), and let w̄h = w̄.
Then Assumption 2.7 2 gives a unique solution ūh to (2), and we choose z̄h =
(Phuh)(Phw̄). Assumption 2.7 3 gives the required feasibility, and using Phw̄ as
well as (ūh, Phw̄, z̄1h, . . . , z̄

Nh
h ) in the estimate above gives

m(McChh ) ≤ j(ūh, w̄) + α TV(w̄) + Lw‖wu − w�‖
1
2
L∞

√
d

1
2 TV(w̄)

1
2 h

1
2

≤ j(ū, w̄) + α TV(w̄) + Lu‖ū − ūh‖U
+ Lw‖wu − w�‖

1
2
L∞

√
d

1
2 TV(w̄)

1
2 h

1
2 , (7)

where the second inequality follows from the Lipschitz continuity of j in the first
argument. ��

We now employ a 	-convergence [19] argument to prove that the locally averaged
McCormick relaxations (McChh) approximate (McC) for h ↘ 0. This observation
then implies that cluster points of sequences of minimizers to (McChh) for h ↘ 0
minimize (McC). To this end, we need further compatibility conditions for the bounds
on the control and state variables.

Assumption 2.12 In addition to Assumption 2.9, we assume the following.

1. Let {Qh}h satisfy a uniform bounded eccentricity condition; that is, there exists
C > 0 such that for each Qh

i there is a ball Bh
i such that Qh

i ⊂ Bh
i and |Bh

i | ≤
C |Qh

i |. See, for example, Definition 4.3 4. in [32].
2. Let suph↘0 TVh(wh) ≤ C and suph↘0 ‖wh‖L1 ≤ C for some C > 0 imply that

there exists a subsequence {wh}h and w ∈ W such that wh → w in L1(�).
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3. Let TVh ◦Ph 	-converge to TV for h ↘ 0.
4. Let u�,h := ∑Nh

i=1 u
i
�χQi

h
, uu,h := ∑Nh

i=1 u
i
uχQi

h
satisfy u�,h → u� in H and

uu,h → uu in H .
5. Let w�,h := ∑Nh

i=1 wi
�χQi

h
, wu,h := ∑Nh

i=1 wi
uχQi

h
satisfy w�,h → w� in H and

wu,h → wu in H .
6. Let u solve Au + uw = f for some w ∈ H . Then uh → u in U holds for the

solutions uh to (2) for h ↘ 0.

Remark 2.13 We note that Assumptions 2.12, 4, and 5 can generally be ensured by
inferring suitable bounds w�,h , wu,h , u�,h , uu,h from valid bounds w�, wu , u�, uu .
The other assumptions are quite typical when approximating such problems or their
solutions.

Proposition 2.14 Let Assumption 2.12 hold. Let the {(ūhh, w̄1
h, . . . , w̄

Nh
h , z̄1h, . . . ,

z̄Nh
h )}h be solutions to the problems (McChh) for h ↘ 0. Then the sequence

{(ūhh, w̄h, z̄h)}h with w̄h := ∑Nh
i=1 w̄i

hχQi
h
and z̄h := ∑Nh

i=1 z̄
i
hχQi

h
admits an accumu-

lation point (ū, w̄, z̄) ∈ U ×W × H such that for a subsequence (for ease of notation
denoted by the same symbol)

ūhh → ū in U and w̄h
∗
⇀ w̄ in W and z̄h⇀z̄ in H .

Moreover, the point (ū, w̄, z̄) minimizes (McC).

Proof The sequence {z̄h}h is bounded in H by Assumption 2.12 4 and 5 and the
McCormick inequalities. Consequently, {ūhh}h is also bounded in U because A is
continuously invertible. In turn, after possibly passing to a subsequence, z̄h⇀z̄ holds
for some z̄ ∈ H and ūhh → ū inU for some ū ∈ U because of the compact embedding
H ↪→c U∗ and the continuous invertibility of A. This argument also implies that the
original state equation Aū + z̄ = f holds for the limit.

Let uhh solve (2) for w̄. Then (uhh, Phw̄, (Phw̄)(Phuhh)) is feasible for (McChh)
by Assumption 2.7 3. The optimality of the tuples (ūhh, w̄1

h, . . . , w̄
Nh
h , z̄1h, . . . , z̄

Nh
h )

for the problems (McChh) and Assumption 2.9 give

j(ūhh, w̄h)+α TVh(w̄h) ≤ j(uhh, Phw̄)+α TVh(Phw̄) ≤ j(uhh, Phw̄)+α TV(w̄).

Because {w̄h}h , {Phw̄}h , and in turn {uhh}h are bounded and j is Lipschitz and thus
bounded on bounded sets, this implies that {TVh(w̄h)}h is bounded in [0,∞).

The properties of the set C imply that {‖w̄h‖H }h is bounded so that {‖w̄h‖L1}h is
bounded in R, too. Thus, after passing to a subsequence (for ease of notation denoted
by the same symbol), Assumption 2.12 2 implies w̄h → w̄ in L1(�) for some w̄ ∈ W .

The pointwise a.e. bounds on Phw̄h and Phūh in the McCormick inequalities
together with Assumption 2.12 4 and 5 imply boundedness of the z̄h in H .

We are now concerned with feasibility of (ū, w̄, z̄) for (McC). The inclusion w̄ ∈ C
follows from the assumed properties of C . For the bounds on the state variable, we
first observe

‖ū − Phūhh‖H ≤ ‖ū − Phū‖H + ‖Ph‖H ,H‖ū − ūhh‖H → 0
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from the triangle inequality, the nonexpansiveness of Ph , and Lebesgue’s differenti-
ation theorem, which requires Assumption 2.12 1. Because, in addition, u�,h → u�

and uu,h → uu in H hold, we can choose a further (subsubsub)sequence such that all
three parts of the inequalities u�,h ≤ Phūhh ≤ uu,h converge pointwise a.e. In turn,
we obtain the pointwise a.e. inequalities u� ≤ ū ≤ uu for the limit.

It remains to show the feasibility of z̄ for the four pointwiseMcCormick inequalities
in (McC) and the state equation. We prove the claim only for the first one since the
others followwith an analogous argument. The feasibility of the solutions for (McChh)
gives

z̄h ≥ u�,hw̄h + ūhhw�,h − u�,hw�,h a.e. in �.

From what has been shown to this point, after passing to an appropriate subsequence,
the left-hand side converges weakly to z̄, and the right-hand side converges in H and
thus also in L1(�). We apply Lemma A.1 in order to obtain the desired inequality

z̄ ≥ u�w̄ + ūw� − u�w� a.e. in �.

It remains to show that (ū, w̄, z̄) minimizes (McC). We prove this claim by using a
	-convergence-type argument. We need to show lim inf- and lim sup-inequalities for
the objectives when the iterates are restricted to the feasible sets.

For the lim inf-inequality, let uhh → u in U , wh = ∑Nh
i=1 wi

hχQi
h

→ w in H , and

zh = ∑Nh
i=1 z

i
hχQi

h
⇀z in H with (uhh, w1

h, . . . , w
Nh
h , z1h, . . . , z

Nh
h ) being feasible for

(McChh). Then the continuity properties of j and the lower semi-continuity of the
TV-seminorm give the lim inf-inequality

j(u, w) + α TV(w) ≤ lim inf
h↘0

j(uhh, wh) + α TV(wh).

For the lim sup-inequality, let (u, w, z)be feasible for (McC).Wedefinewh := Phw
and uhh as the unique solution to (2), which exists by Assumption 2.7 2. Then the
continuity properties of j , Assumption 2.12 6, and Assumption 2.12 3 imply

j(u, w) + α TV(w) = lim
h↘0

j(uhh, wh) + α TVh(wh),

so that the lim sup-inequality holds true if we can prove that (uhh, wh, zh) is feasible
for (McChh). This follows from the compatibility assumed in Assumption 2.7 3. ��

As noted above, such a result requires amodification of the total variation functional
dependent on h for dimensions larger than one. In the one-dimensional case it is
possible prove that Ph is nonexpansive with respect to the TV-seminorm, which in
turn implies the desired 	-convergence in this case without any modification of TV
beforehand. This is shown below.

Lemma 2.15 Let Assumption 2.7 hold. Let � = (a, b) for some a < b. Let f ∈
BV(�). Then

TV(Ph f ) ≤ TV( f ).

123



S. Leyffer, P. Manns

In particular,
TV ◦Ph 	-converges to TV .

Proof The first claim can be shown by considering the intervals Qi ∈ Qh one by one
and using the equivalence of TV to the pointwise variation when a good representative
is chosen; see Definition 3.26, (3.24), and Theorem 3.28 in [1].

Let f n → f in L1. Because Ph is nonexpansive with respect to the L1-norm,
we have ‖Ph f − Ph f n‖L1 ≤ ‖ f − f n‖L1 . Moreover, Ph f → f in L1(�) holds by
means of the Lebesgue differentiation theorem. In combination, we obtain Ph f n → f
in L1(�). Consequently, the lim inf-inequality follows from the lower semi-continuity
of TV. The lim sup-inequality follows from the first claim by choosing the constant
sequence that has f in every element. ��

2.4 Optimization-based bound tightening

While Proposition 2.14 shows that solutions to the approximate relaxations (McChh)
of (OCP) approximate solutions to the true relaxation (McC), it is of higher practical
importance that the optimal objective values of (McCh) and (McChh) are as large as
possible in practice. The onlyway to influence this are the choices of the bounds ui� and
uiu , which should be as tight as possible in order to have the smallest possible feasible
set and in turn the largest possible values for the optimal objectives of (McCh) and
(McChh) such that (4) and (6) still hold.

Apowerful albeit computationally expensive technique inMI(N)LP is optimization-
based bound tightening (OBBT), which is based on the observation that a convex set
of a relaxation can be reduced (tightened) when minimizing and maximizing each
variable in it over the set and then intersecting the set with this optimized bound on
said variable. This is often used for variables arising in McCormick relaxations, see,
for example, [12, 17, 43, 44, 57]. Further references frommore general vantage points
on OBBT are [37, 42] and especially [21] regarding efficient techniques.

Inspecting the arguments in the proof of Theorem 2.11 that lead to (6) ((7) in
the proof), and similarly in Theorem 2.8, we observe that these arguments remain
valid when the feasible set of (McChh) is shrunk as long as Assumption 2.7 3 is pre-
served. Then, the typical argument for OBBT can be applied and the infimumm(McChh )
increases when the feasible set is shrunk, while the preservation of Assumption 2.7
3 yields that the approximation error bound that needs to be subtracted in order to
obtain a valid bound on m(OCP) remains unaffected from this change. Consequently,
the lower bound on m(OCP) is improved by this procedure.

Before proving this, we show the desired property that Assumption 2.7 3 is con-
served when optimizing the bounds ui�, u

i
u .

Lemma 2.16 Let Assumption 2.7 hold. Let h be fixed. Let i ∈ {1, . . . , Nh} be fixed.
Then

ũi� / ũiu := min /max {(Phu)|Qi | (u, w, z1, . . . , zNh ) is feasible for (McCh)}. (8)

are well defined.
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Moreover, ũi� ≤ (Phu)|Qi ≤ ũiu holds for all w ∈ C ∩ [w�,wu] and u ∈ U that
solve (2). In particular, Assumption 2.7 holds if ui� is replaced by ũ

i
� and u

i
u is replaced

by ũiu .

Proof We note that u �→ (Phu)|Qi is a weakly continuous operation from H to R.
Moreover, using the arguments for the existence of solutions to (McCh) in the proof of
Theorem 2.8, we obtain that the feasible set of (McCh) is nonempty and sequentially
compact with respect to weak convergence of u in H , weak convergence w in H , and
convergence of z in H (the last one has a finite-dimensional ansatz). Consequently,
(8) has a solution, and ũi� is well defined.

Inspecting Assumption 2.7 shows that it remains to prove that Assumption 2.7
3 stays valid when replacing ui� by ũi�. For all w ∈ C and u ∈ U that solve
Au + (Phu)(Phw) = f , we define zi := (Phu)|Qi

h
(Phw)|Qi

h
for i ∈ {1, . . . , Nh}.

Inspecting (McCh), we obtain that (u, w, z1, . . . , zNh ) is feasible for (McCh) by
means of Assumption 2.7 3. Consequently, all w ∈ C and u ∈ U that solve
Au + (Phu)(Phw) = f satisfy

ũi� = min{(Phu)|Qi | (u, w, z1, . . . , zNh ) is feasible for (McCh)}
≤ inf{(Phu)|Qi | (u, w) ∈ U × C, Au + (Phu)(Phw) = f },

and thus also ũi� ≤ (Phu)|Qi , which proves the first claim.
The second well-definedness and claim follow analogously. ��

A similar argument can be made for (McChh).

Lemma 2.17 Let Assumption 2.9 hold. Let h be fixed. Let i ∈ {1, . . . , Nh} be fixed.
Then

ũi� / ũiu := min /max{(Phu)|Qi | (u, w1, . . . , wNh , z1, . . . , zNh )

is feasible for (McChh)}.

are well defined.
Moreover, ũi� ≤ (Phu)|Qi ≤ ũiu holds for all w ∈ C ∩ [w�,wu] and u ∈ U. In

particular, Assumption 2.9 holds if ui� is replaced by ũi� and uiu is replaced by ũiu .

Proof The proof parallels the one of Lemma 2.16. ��
We can now state a bound-tightening procedure that successively computes new

bounds in order to improve the approximate lower bounds (4) or (6) respectively in
Algorithm 1.

Using Lemmas 2.16 and 2.17, we can prove our main bound-tightening results for
(McCh) and (McChh).

Theorem 2.18 Let Assumption 2.7 be satisfied. LetC be aweakly sequentially compact
subset of H. Then Algorithm 1 executed with the feasible set of (McCh) asF0 induces
a sequence of optimization problems

min
u,w,z1,...,zNh

j(u, w) + α TV(w) s.t. (u, w, z1, . . . , zNh ) ∈ Fn (McCn
h)
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Algorithm 1Optimization-based bound tightening (OBBT) for (McCh) (or (McChh))

Input: Feasible set F0 of (McCh) (or (McChh)).
1: for n = 1, . . . do
2: Choose i ∈ {1, . . . , Nh}.
3: Choose s ∈ {�, u}.
4: if s = � then
5: ũi� ← min{(Phuh)|Qi | (uh, wh, zh) ∈ Fn−1}.
6: else
7: ũiu ← max{(Phuh)|Qi | (uh, wh, zh) ∈ Fn−1}.
8: end if
9: Fn ← Fn−1 with uis being replaced by ũis .
10: end for

that satisfy (4) for all n ∈ N. Moreover, the sequence of optimal objective values
(m(McCn

h )
)n is monotonically nondecreasing.

Proof By assumption, the prerequisites of Lemma2.16 are satisfied in the first iteration
and thus hold inductively for all iterations n ∈ N. This implies that (4) holds for all
problems (McCn

h) because Theorem 2.8 asserts (4) under Assumption 2.7. Because
the feasible set is always a subset of the previous one, the infima are monotonically
nondecreasing. ��
Theorem 2.19 Let Assumption 2.9 be satisfied. Then Algorithm 1 executed with the
feasible set of (McChh) as F0 induces a sequence of optimization problems

min
u,w1,...,wNh ,
z1,...,zNh

j

⎛

⎝u,

Nh∑

i=1

χQi
h
wi

⎞

⎠ + α TV

⎛

⎝
Nh∑

i=1

χQi
h
wi

⎞

⎠

s.t. (u, w1, . . . , wNh , z1, . . . , zNh ) ∈ Fn

(McCn
hh)

that satisfy (5) for all n ∈ N. Moreover, the corresponding sequence of optimal objec-
tive values {m(McCn

hh )
}n is monotonically nondecreasing.

Proof The proof parallels the one of Theorem 2.19 with the applications of Lemma
2.16 and Theorem 2.8 being replaced by applications of Lemma 2.17 and Theorem
2.11. ��

3 Application to an elliptic optimal control problem

We now apply our theoretical considerations from Sect. 2 to an instance of (OCP) with
an elliptic PDE that is defined on the one-dimensional domain � = (0, 1). To this
end, let C := {w ∈ L∞(0, 1) | w� ≤ w(x) ≤ wu a.e.} and f ∈ H for real constants
−π2 < w� < wu < π2 be fixed.

For these assumptions, we outline the PDE setting in Sect. 3.1 and give ellipticity
estimates as well as bounds from above on the norm with constants that are as sharp as
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we were able to obtain them from the literature. We provide the objective in Sect. 3.2.
We then verify Assumptions 2.1, 2.7, 2.9 and 2.12 in Sect. 3.3. We prove an a priori
estimate for ‖u−uh‖U in the approximate lower bounds (4), (6) in Sect. 3.4.We prove
differentiability properties for the control-to-state operator of the PDE in Sect. 3.5. In
particular, we verify the assumptions imposed in [29].

3.1 PDE setting

For w ∈ C , we are interested in solutions u ∈ U := H1
0 (0, 1) to the PDE in weak

form

∫ 1

0
∇u∇v +

∫ 1

0
wuv =

∫ 1

0
f v for all v ∈ U . (9)

The operator form is

−�u + uw = f on (0, 1) with u(0) = u(1) = 0,

that is, A = −� with homogeneous Dirichlet boundaries and N (u, w) = uw. We
define the bilinear form B : U ×U → R by

B(u, v) :=
∫ 1

0
∇u∇v +

∫ 1

0
uwv

and obtain

B(u, u) ≥ ‖∇u‖2H + w�‖u‖2H for all u ∈ U . (10)

The existence of (unique) solutions to (9) follows from the Lax–Milgram lemma if

‖∇u‖2H + w�‖u‖2H ≥ c1(w�)‖∇u‖2H
holds for some c1(w�) > 0, which is true if w� ≥ 0. For the case w� < 0, we recall
embedding constants for the Sobolev inequalities for the one-dimensional domain
(0, 1):

π2‖u‖2H ≤ ‖∇u‖2H and (11)

4‖u‖2L∞ ≤ ‖∇u‖2H . (12)

The constant in (11) is optimal and, for example, given in (1.2) in [59] (see [40] for
a proof). The constant in (12) can be found in (13) in [50] (choose a = ∞, b = 2,
s = 1 therein). By (11), we obtain that 0 < c1(w�) := 1 + w�π

−2 because (by our
choice above)

w� > −π2. (13)
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The Lax–Milgram lemma also yields that the solution to (9) satisfies

‖∇u‖H ≤ 1

c1(w�)
‖ f ‖H and (14)

‖u‖L∞ ≤ 1

2c1(w�)
‖ f ‖H , (15)

where the second inequality follows from (12). We observe that u is also the weak
solution of the PDE

∫ 1
0 ∇u∇v = ∫ 1

0 gv for all v ∈ U with the choice g = f − wu.
Because g ∈ H , this gives the improved regularity u ∈ H2(0, 1); see, for example,
Theorem 9.53 in [46].

3.2 Objective

We consider a tracking-type objective functional j : U × W → R that is defined for
(u, w) ∈ U × W as

j(u, w) := 1

2
‖u − ud‖2H . (16)

Since our specific choice for j does not depend on w, we will abbreviate it as j(u)

in the remainder. If the norm of the input is bounded by a constant ru , we obtain that
a feasible Lipschitz constant of j on the ball Bru (0) is given by Lu := ru + ‖ud‖H .
Clearly, Lw = 0.

3.3 Verification of assumptions

We now verify Assumptions 2.1, 2.7, 2.9 and 2.12 one by one.

Assumption 2.1 Let c2(w�,wu) := 1 − max{|w�|, |wu |}π−2. We choose uu =
1

2c2(w�,wu)
‖ f ‖H and u� = − 1

2c2(w�,wu)
‖ f ‖H . Then c2(w�,wu) ≤ c1(w�) gives

|uu | = |u�| ≥ 1
2c1(w�)

‖ f ‖H so that together with the bounds w�, wu , we obtain
that Assumption 2.1 is satisfied because of (15). (We could of course choose the
tighter bounds uu = 1

2c1(w�)
‖ f ‖H and u� = − 1

2c1(w�)
‖ f ‖H here, but the relaxed

bounds using c2(w�,wu) instead of c1(w�) will be used to assert the other assump-
tions below.)

Assumption 2.7 We consider a sequence of uniform partitions {Qhn }n∈N of the
domain (0, 1) into 2n+1 intervals with hn = 2−1−n for n ∈ N and Nhn = 2n+1, which
gives Assumption 2.7 1.

Let n ∈ N, and abbreviate h := hn . For each interval I ∈ Qh , the projection PI is
defined as PI g := χI

1
h

∫
I g for g ∈ L1(0, 1). Clearly, PI is nonexpansive in L1(0, 1),

H , and L∞(0, 1); that is,

‖PI g‖L∞ ≤ ‖g‖L∞ and ‖PI g‖H ≤ ‖g‖H .
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The linear projection operator Ph from (1) satisfies Ph(g) = ∑
I∈Qh

PI g and

‖g − Phg‖H ≤ πh‖∇g‖H , (17)

where the constantπ is due to the application of the one-dimensional Poincaré inequal-
ity into the interpolation estimate for piecewise constant functions; see, for example,
§3.1 in [16]. From (12.24) in Theorem 12.26 in [31], we also obtain

‖w − Phw‖L1 ≤ h TV(w), (18)

which we have already used in the proof of Theorem 2.11.
For arbitrary, fixed w, we define the bilinear form Bh : U ×U → R as

Bh(u, v) :=
∫ 1

0
∇u∇v +

∫ 1

0
(Phw)(Phu)v

for u, v ∈ U and obtain the coercivity

Bh(u, u) ≥ ‖∇u‖2H − max{|w�|, |wu |}‖u‖H‖Ph(u)‖H
≥ ‖∇u‖2H − max{|w�|, |wu |}‖u‖2H .

Consequently, the existence of unique solutions to the PDE

∫ 1

0
∇u∇v +

∫ 1

0
(Phw)(Phu)v =

∫ 1

0
f v for all v ∈ U . (19)

follows from the Lax–Milgram lemma with analogous estimates to (14) and (15),
where c1(w�) is replaced by c2(w�,wu) = 1 − max{|w�|, |wu |}π−2 because 0 <

c2(w�,wu). Specifically, we have

‖∇u‖H ≤ 1

c2(w�,wu)
‖ f ‖H and (20)

‖u‖L∞ ≤ 1

2c2(w�,wu)
‖ f ‖H , . (21)

This proves Assumption 2.7 2. As for (9), we observe that u solves
∫ 1
0 ∇u∇v = ∫ 1

0 gv
for all v ∈ U with the choice g = f − (Phw)(Phu). Because g ∈ H , this gives the
improved regularity u ∈ H2(0, 1); see, for example, Theorem 9.53 in [46].

Because Ph is nonexpansive with respect to L∞(0, 1), we can reuse the bounds
w� and wu for wi

� and wi
u for all i ∈ {1, . . . , Nh}. With the same argument as for

Assumption 2.1, we choose uiu = 1
2c2(w�,wu)

‖ f ‖H and ui� = − 1
2c2(w�,wu)

‖ f ‖H for all
i ∈ {1, . . . , Nh}. In combination, Assumption 2.7 3 is satisfied.

Assumption 2.9 In our one-dimensional setting, Lemma 2.15 implies that Assump-
tion 2.9 holds with the choice TVh := TV.
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Assumptions 2.9 and 2.12 Assumption 2.12 1 is satisfied because of the uniform
discretization of the computational domain � = (0, 1) into intervals. Assumption
2.12 2 follows from the properties of the total variation seminorm with the choice
TVh := TV; see Theorem 3.23 in [1]. Assumption 2.12 3 follows from Lemma 2.15.
Assumption 2.12 4 follows because we have chosen ui� = u� and uiu = uu for all i
and h. Assumption 2.12 5 follows because we have chosen wi

� = w� and wi
u = wu

for all i and h. Assumption 2.12 6 follows from Lemma 3.1 that is proven in Sect. 3.4
and a bootstrapping argument / the continuous invertibility of A.

3.4 Estimate on ‖u − uh‖H and a priori estimates onm(OCP)

For our example PDE setting and the tracking-type objective in H , we are able to
obtain lower bounds on (4) and (6) that are quadratic in h because we can improve
over ‖u−uh‖U when considering ‖ · ‖H instead of ‖ · ‖U . We first show the necessary
estimates on ‖u − uh‖H and subsequently prove the lower bounds on m(OCP).

Lemma 3.1 Let Assumption 2.7 hold. Let a mesh size h be fixed. Let u solve (9) and
uh solve (19) for the same fixed w ∈ W. Then the estimates

‖u − uh‖H ≤ Ca
3/2(w�,wu, f , w)h

3
2 + Cb

3/2(w�,wu, f )h2

and

‖u − uh‖H ≤ C2(w�,wu, f , w, uh)h
2 (22)

hold for constants Ca
3/2(w�,wu, f , w), Cb

3/2(w�,wu, f ), C2(w�,wu, f , w, uh) > 0.

Proof We observe that the local averaging of w and u in the lower-order term in (19)
satisfies Galerkin-type orthogonality properties. Specifically, for given φ, ψ , θ ∈ H ,
we have

∫ 1

0
(φ − Phφ)(Phψ)(Phθ) =

Nh∑

i=1

(
1

|Qi
h |

∫

Qi
h

ψ

)(
1

|Qi
h |

∫

Qi
h

θ

)∫

Qi
h

φ − Phφ

︸ ︷︷ ︸
=0

= 0.

(23)

Thus, we use an Aubin–Nitsche duality argument in order to obtain an estimate on the
right-hand side of

‖u − uh‖H = sup
g �=0

(u − uh, g)H
‖g‖H . (24)

To this end, we consider the solution p ∈ U to the adjoint PDE

∫ 1

0
∇ p∇v +

∫ 1

0
pwv =

∫ 1

0
gv for all v ∈ U (25)
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for arbitrary g ∈ H , which has the same properties as (9) (the only difference is the
source term g instead of f ). Moreover, we observe with the choice v = p in (9) and
(19) and the insertion of a suitable zero that

∫ 1

0
∇(u − uh)∇ p = −

∫ 1

0
(u − Phuh)wp −

∫ 1

0
(Phuh)(w − Phw)p. (26)

We choose v = u − uh in (25) and apply (26) so that we obtain

(u − uh, g)H =
∫ 1

0
∇ p∇(u − uh) +

∫ 1

0
pw(u − uh)

=
∫ 1

0
(u − uh)wp −

∫ 1

0
(u − Phuh)wp −

∫ 1

0
(Phuh)(w − Phw)p.

Combining the first two terms on the right-hand side and subtracting 0 =∫ 1
0 (Phuh)(w − Phw)(Ph p), which holds because of (23), we obtain

(u − uh, g)H =
∫ 1

0
(Phuh − uh)wp −

∫ 1

0
(Phuh)(w − Phw)(p − Ph p).

Inserting another zero and applying 0 = ∫ 1
0 (Phuh)(w − Phw)(Ph p) again give

(u − uh, g)H =
∫ 1

0
(Phuh − uh)(w − Phw)p +

∫ 1

0
(Phuh − uh)(Phw)(p − Ph p)

−
∫ 1

0
(Phuh)(w − Phw)(p − Ph p).

Now, we estimate the terms on the right-hand side and obtain with the same estimates
that have been used in the preceding subsections the following estimates:

∫ 1

0
(Phuh − uh)(w − Phw)p

≤ hπ‖∇uh‖H‖w − Phw‖H‖p‖L∞ Hölder, (17)

≤ h
π

c2(w�,wu)
‖ f ‖H |wu − w�| 12 ‖w − Phw‖

1
2
L1

1

2c1(w�)
‖g‖H Hölder, (15), (20)

≤ π |wu − w�| 12
2c1(w�)c2(w�,wu)

TV(w)
1
2 ‖ f ‖Hh 3

2 ‖g‖H , (18)

∫ 1

0
(Phuh − uh)(Phw)(p − Ph p) ≤ π2 max{|wu |, |w�|}

c1(w�)c2(w�,wu)
‖ f ‖Hh2‖g‖H , Hölder, (15), (17), (20)

and

∫ 1

0
(Phuh)(w − Phw)(p − Ph p)
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≤ π |wu − w�| 12
2c1(w�)c2(w�,wu)

TV(w)
1
2 ‖ f ‖Hh 3

2 ‖g‖H . Hölder, (15), (17), (18), (20)

Combining these considerations, we obtain from (24)

‖u − uh‖H ≤ π |wu − w�| 12
c1(w�)c2(w�,wu)

TV(w)
1
2 ‖ f ‖H

︸ ︷︷ ︸
=:Ca

3/2(w�,wu , f ,w)

h
3
2 + π2 max{|wu |, |w�|}

c1(w�)c2(w�,wu)
‖ f ‖H

︸ ︷︷ ︸
=:Cb

3/2(w�,wu , f )

h2,

which is the first of the claimed estimates.
Wenext prove the second estimate.Becauseweknow thatu,uh , p are also H2(0, 1)-

functions (see again Theorem 9.53 in [46]), their derivatives are uniformly bounded,
and we can estimate them pointwise. Let (ηε)ε be a family of standard mollifiers. For
y ∈ (0, 1), we define the antiderivative N y

ε (x) := ∫ x
−∞ ηε(z − y) d z. We test (19)

with N y
ε and deduce

∫ 1

0
∇uh(x)ηε(x − y) d x =

∫ 1

0
f (x)N y

ε (x) d x −
∫ 1

0
(Phuh)(x)(Phw)(x)N y

ε (x) d x

≤
∫ 1

0
| f (x) − (Phuh)(x)(Phw)(x)|

∫ ∞

−∞
ηε(x − y) d y d x

= ‖ f − (Phuh)(Phw)‖L1 .

Driving ε ↘ 0 and supremizing over the left-hand side, we obtain

‖∇uh‖L∞ ≤ ‖ f − (Phuh)(Phw)‖L1 .

An analogous argument and applications of the triangle inequality, Hölder’s inequality,
(11), and (14) give

‖∇ p‖L∞ ≤ ‖g − pw‖L1 ≤
(
1 + max{|w�|, |wu |}

πc1(w�)

)
‖g‖H .

We also obtain for φ ∈ W 1,∞(0, 1) that

‖φ − Phφ‖L∞ ≤ 1

2
h‖∇φ‖L∞ ,

where 1
2 is the Wirtinger–Sobolev constant that can be found in (13) in [50] (choose

a = ∞, b = ∞, s = 1 therein).
Then, using Hölder’s inequality with different exponents, we can estimate the two

h
3
2 -terms similarly as above but we replace the Hölder conjugates (2, 2) by (1,∞) in

order to obtain h2-terms, specifically

∫ 1

0
(Phuh − uh)(w − Phw)p ≤ 1

2
h‖∇uh‖L∞‖w − Phw‖L1‖p‖L∞
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≤ 1

4c1(w�)c2(w�,wu)
TV(w)

× ‖ f − (Phuh)(Phw)‖L1h2‖g‖H

and

∫ 1

0
(Phuh)(w − Phw)(p − Ph p) ≤ c1(w�) + max{|w�|, |wu |}π−1

4c1(w�)c2(w�, wu))
TV(w)‖ f ‖Hh2‖g‖H .

In summary, we obtain

‖u − uh‖H ≤ C2(w�,wu, f , w, uh)h
2

with

C2(w�,wu, f , w, uh) := 1

4c1(w�)c2(w�,wu)

(
4π2 max{|wu |, |w�|}‖ f ‖H+

TV(w)‖ f − (Phuh)(Phw)‖L1 + (
c1(w�) + max{|w�|, |wu |}π−1)TV(w)‖ f ‖H

)
,

(27)

which is the second estimate. ��
We now provide a lower bound on m(OCP) in terms of h2 for our guiding example.

Lemma 3.2 Let j0 ≥ 0 be a lower bound on j(ū) if (ū, w̄) minimizes (OCP). Let
ŵ ∈ W be feasible for (OCP). Then

m(OCP) ≥ m(McChh ) − cquad(w�,wu, f , ŵ, j0, u�,h, uu,h)h
2. (28)

Proof For the objective j(u) = 1
2‖u − ud‖2H , we obtain ∇u j(u) = u − ud . Since we

have pointwise lower and upper bounds u� and uu on u, for example, from (21), we
can overestimate the Lipschitz constant of j on the feasible set with respect to the L2-
norm by setting d̃u(x) := max{|uu(x) − ud(x)|, |ud(x) − u�(x)|} for a.a. x ∈ (0, 1).
Then the Lipschitz constant can be estimated as Lu ≤ ‖d̃u‖H .

Using (22) from Lemma 3.1, we obtain

m(OCP) ≥ m(McChh ) − ‖d̃u‖HC2(w�,wu, f , w̄, ūh)h
2.

Inspecting C2(w�,wu, f , w̄, ūh) in Lemma 3.1, we observe that we can overestimate
TV(w̄) ≤ j(û)+α TV(ŵ)− j0

α
, where û denotes the unique solution to (9) for ŵ.Moreover,

using available bounds on Phūh , we can overestimate | f (x) − (Phūh)(x)(Phw̄)(x)|
pointwise by setting

d̃ f (x) := max{| f (x) − ui�w�|, | f (x) − ui�wu |, | f (x) − uiuw�|, | f (x) − uiuwu |}
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for a.a. x ∈ Qi for all Qi ∈ Qh . Thus we obtain the constant cquad(w�,wu, f , ŵ, j0,

u�,h, uu,h)by replacing‖ f −(Phūh)(Phw̄)‖L1 by‖d̃ f ‖L1 andTV(w̄)by j(û)+α TV(ŵ)− j0
α

in (27) and multiplying the resulting constant by ‖d̃u‖H . ��
Remark 3.3 We note that the estimate Lu ≤ ‖d̃u‖H can be sharpened by using a pos-
teriori information from the approximateMcCormick relaxations in order to bootstrap
improved pointwise bounds u� and uu on u.

3.5 Properties of the control-to-state operator for (19)

We denote the nonlinear control-to-state operator that maps w ∈ C to the solution of
the PDE (19) with the locally averaged state in the bilinearity as S : C → U . It is
well defined and uniformly bounded due to the considerations in Sects. 3.1 and 3.3.
We briefly state Lipschitz continuity and differentiability properties of the control-to-
state operator so that we verify the assumptions in [29]. Consequently, the algorithmic
strategy from [29, 36] can be used to obtain stationary feasible (primal points) when
additional integrality restrictions are imposed onw in (OCP)while the analysis carried
out above allows us to obtain valid (approximate) lower bounds. While the arguments
are standard by following, for example, the considerations on control-to-state operators
in [58], we provide these proofs here because we were not able to find good references
for the specific Lipschitz, embedding,... constants of the example in this article. We
believe, however, that they help make informed assessments of the possible quality
and performance of our algorithmic approaches, although some of them may not be
tight.

Lemma 3.4 S is Lipschitz continuous on the set C as a function L1(0, 1) → U.

Proof Let w1, w2 ∈ C . Let u1 = S(w1), u2 = S(w2). We subtract the weak two
formulations, insert a suitable zero, and deduce by means of Hölder’s inequality the
triangle inequality, (11), (12), and the nonexpansiveness of Ph :

‖∇(u1 − u2)‖2H = ((Phw1)(Phu1) − (Phw2)(Phu1), u1 − u2)H
+ ((Phw2)(Phu1) − (Phw2)(Phu2), u1 − u2)H

≤ ‖u1 − u2‖L∞‖u1‖L∞‖w1 − w2‖L1 + max{|w�|, |wu |}‖u1 − u2‖2H
≤

( ‖ f ‖H
4c2(w�, wu)

‖∇(u1 − u2)‖H‖w1 − w2‖L1

+max{|w�|, |wu |}
π2 ‖∇(u1 − u2)‖2H

)
.

An equivalent reformulation of this estimate gives

‖∇(u1 − u2)‖H ≤ ‖ f ‖H
4c2(w�,wu)2︸ ︷︷ ︸

=:LS

‖w1 − w2‖L1 . (29)

��
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Let u solve (19) for w ∈ C . For a given direction s ∈ L1(0, 1) so that w + s ∈ C
and with u = S(w), we denote the (weak) solution to

∫ 1

0
∇q∇v +

∫ 1

0
(Phq)(Phw)v = −

∫ 1

0
(Phu)(Phs)v for all v ∈ U

by q. We obtain that q ∈ U is uniquely defined because s ∈ C −w implies L∞(0, 1)-
bounds on s, namely, w� − wu ≤ s ≤ wu − w�. This gives ‖(Phs)(Phu)‖H ≤
‖wu − w�|‖u‖H and a similar analysis as for (19) applies.

Lemma 3.5 The operator S : C → U is Fréchet differentiable with respect to L1(0, 1)
in C. Let q be as above for a given s such that w + s ∈ C. Then S′(w)s = q. For a
fixed s ∈ C, the mapping w �→ S′(w)s is Lipschitz continuous in C with respect to
L1(0, 1).

Proof Clearly, the mapping s �→ q is a bounded linear operator. We need to show

lim‖s‖L1 →
s∈C0

‖S(w + s) + S(w) − q‖U
‖s‖L1

→ 0.

Let us = S(w + s), u = S(w). Let d := us − u − q. Then, we deduce with the
considerations above and Lemma 3.4 and the Lipschitz constant LS from (29) that

‖∇d‖2H = (
Ph(u − us)(Phs), d

)
H − (

(Phd)(Phw), d
)
H

≤ LS

2
‖∇d‖H‖s‖L1‖s‖L1 + max{|w�|, |wu |}

π2 ‖∇d‖2H ,

which yields

‖∇d‖H ≤ LS

2c2(w�,wu)
‖s‖2L1 .

Since ‖ · ‖U is equivalent to ‖∇ · ‖H with the embedding (11), this proves the claim.
For the Lipschitz continuity, let w1, w2 ∈ C , u1 = S(w1), u2 = S(w2), and

q1 = S′(w1)s, q = S′(w2)s. Then, we obtain with r = q1 − q2 that

‖∇r‖2H = (
Ph(u2 − u1)(Phs), r

)
H − (

(Phr)(Phw), r
)
H − (

(Phq2)Ph(w2 − w1), r
)
H

≤ LS

2
‖w1 − w2‖L1‖s‖L1‖∇r‖H + max{|w�|, |wu |}

π2 ‖∇r‖2H
+ 1

2
‖∇q2‖H‖w1 − w2‖L1‖∇r‖H .

With the arguments from the preceding subsections, we obtain

‖∇q2‖H ≤ 1

c2(w�,wu)
‖s‖L∞‖u2‖H ≤ |wu − w�|

πc2(w�,wu)2
‖ f ‖H ,
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so that we obtain the estimate

‖∇r‖H ≤ |wu − w�|
2c2(w�,wu)

(
LS + ‖ f ‖H

πc2(w�,wu)2

)

︸ ︷︷ ︸
=:LS′

‖w1 − w2‖L1 .

��
For given directions φ,ψ ∈ L1(0, 1) so thatw+φ,w+ψ ∈ C , we denote the (weak)
solution to

∫ 1

0
∇ξ∇v +

∫ 1

0
(Phξ)(Phw)v

= −
∫ 1

0
Ph(S

′(w)φ)(Phψ)v −
∫ 1

0
Ph(S

′(w)ψ)(Phφ)v for all v ∈ U (30)

by ξ . As above, we obtain that ξ ∈ U is uniquely defined because φ, ψ ∈ C − w

imply L∞(0, 1)-bounds on φ, ψ , that is, w� − wu ≤ φ ≤ wu − w� and w� − wu ≤
ψ ≤ wu − w�. This implies bounds on the lower-order order terms and a similar a
similar analysis as for (19) applies.

Proposition 3.6 Let φ ∈ C − w be given. The operator w �→ S′(w)φ is continuously
Fréchet differentiable with respect to L1(0, 1) in C. Its derivative in direction ψ ∈
C − w is given by S′′(w)[ψ, φ] = ξ , where ξ is the solution to (30) above. Under
these assumptions, it holds that

‖S′′(w)[ψ, φ]‖H ≤ κ‖ψ‖L1‖φ‖L1

for some κ > 0.

Proof For φ ∈ C − w and ψ ∈ C − w, let q := S′(w)φ, qψ := S′(w + ψ)φ, q̃ψ :=
S′(w)ψ , uψ = S(w + ψ), u = S(w), ξ be the solution to (30). Let r := qψ − q − ξ .
Then, we obtain from Hölder’s inequality and the embedding constants (11), (12)

‖∇r‖2H = (
Ph(u + q̃ψ − uψ)(Phφ), r

)
H + (

Ph(qψ − q)(Phψ), r
)
H − (

(Phr)(Phw), r
)
H

≤ 1

4
‖∇(uψ − u − q̃ψ)‖H‖φ‖L1‖∇r‖H + 1

4
‖∇(qψ − q)‖H‖ψ‖L1‖∇r‖H

+ max{|w�|, |wu |}
π2 ‖∇r‖2H .

Using the constants defined above and the estimates from the proof of Lemma 3.5, we
obtain

4c2(w�,wu)‖∇r‖H ≤ LS

2c2(w�,wu)
‖ψ‖2L1‖φ‖L1 + LS′ ‖ψ‖2L1 .

Consequently, we obtain

lim‖ψ‖L1 →
ψ∈C0

‖S(w + ψ) + S(w) − ξ‖U
‖ψ‖L1

→ 0,
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which proves the desired differentiability.
Testing (30) with ξ = S′′(w)[ψ, φ] and using (11) and similar computations as in

the previous arguments, we obtain

‖∇ξ‖2H ≤ max{|w�|, |wu |}
π2 ‖∇ξ‖2H + ‖ f ‖H

2c2(w�,wu)2
‖ψ‖L1‖φ‖L1‖∇ξ‖H

and in turn

‖ξ‖H ≤ ‖ f ‖H
2πc2(w�,wu)3︸ ︷︷ ︸

=:κ

‖ψ‖L1‖φ‖L1 .

The (Lipschitz) continuity ofw �→ S′′(w)[φ,ψ] can be shownwith arguments similar
to but more lengthy than that for the Lipschitz continuity of the mappingw �→ S′(w)s
in Lemma 3.5. ��

4 Computational experiments for a 1D example

We start from the example given in Sect. 3 and provide computational experiments that
will serve several purposes. We compare the approximate lower bounds obtained with
approximate McCormick relaxations before and after applying the OBBT procedure
to a feasible primal point obtained with a gradient-based optimization of (OCP) and
a primal point obtained with the SLIP algorithm from [29, 34] in the presence of an
additional integrality restriction onw. We also compare the bounds with lower bounds
on (OCP) that can be obtained with much less effort than the OBBT procedure.

We analyze how the bounds we obtain from (McChh) behave when the partitions
of the domain assumed in Assumption 2.7 1 are uniformly refined, thereby bringing
the locally averagedMcCormick relaxations closer to a pointwise limit. Moreover, we
apply the OBBT procedure Algorithm 1 to assess whether and how much the OBBT
procedure tightens the bounds for a prescribed termination tolerance as well as to
assess its computational effort.

This section is organized as follows. We describe our experiments in Sect. 4.1. In
Sect. 4.2 we describe how we approximate (9) and (19) with a very fine finite-element
discretization and use the resulting discretized equations as state equations for (OCP),
(McCh), and (McChh). We then give details on the practical implementation of the
OBBT procedure Algorithm 1 in Sect. 4.3. The results are provided in Sect. 4.4.

4.1 Experiment description

We consider the instance of (OCP) from Sect. 3 with the following choices of the
parameters and fixed inputs. The source term f of the PDEs (9) and (19) is chosen as
f (x) := 6 for all x ∈ [0, 1]. Regarding the bounds, we setw� := −4,wu := 4. For the
penalty parameter, we choose α := 2.5 ·10−4. For the function ud in the tracking-type
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objective (see (16), we choose

ud(x) := 3
(
1.5x(1 − x)χ[0,0.25](x) + 1.5x(1 − x)χ[0.75,1]

+ (0.28125 + 3(x − 0.25))χ(0.25,0.4](x)

+ (0.73125 − 3(x − 0.6))χ[0.6,0.75)(x) + 2χ(0.4,0.6)(x)
)
.

Our main object of interest is to assess the quality of the approximate McCormick
relaxations, the effect of the OBBT procedure Algorithm 1. To this end, we perform
the following computations.

• We execute a local gradient-based NLP solver (L-BFGS-B) using Scipy’s imple-
mentation [60] in order to obtain a stationary point for (OCP) and thus a low upper
bound on m(OCP). In order to be able to apply this method to the nondifferentiable
total variation seminorm, the latter is smoothed by using an overestimating Huber
regularization for the absolute value in the integrand with smoothing parameter
10−3.

• We add the additional integrality constraint w(x) ∈ Z and execute the SLIP algo-
rithm [29, 36] using the subproblem solver described in [55] in order to obtain a
low upper bound for the integrality-constrained version of (OCP).

• We use monotonicity properties of the PDE that we do not exploit in our com-
putations elsewhere in order to compute a pointwise McCormick envelope with
bounds u�, uu that are as tight as possible in order to assess the quality of the
approximate McCormick relaxations a posteriori.

• We compute approximate McCormick relaxations, that is, solutions to (McChh),
with and without bound tightening (and subsequent improvement of the involved
constants) as well as the induced lower bounds on (OCP) for decreasing values of
h using the estimates from Sect. 3.4.

All experiments were executed on a laptop computer with Intel (TM) i7-11850H CPU
clocked at 2.5 GHz and 64 GB main memory.

4.2 Baseline PDE discretization with Ritz–Galerkin ansatz

We consider conforming finite elements and thus a finite-dimensional subspaceUN ⊂
U with dimension N ∈ N. By means of the Lax–Milgram lemma, we obtain that there
exists a unique solution uN ∈ UN , the Ritz approximation, of the weak formulation
on UN of the PDEs (9):

∫ 1

0
∇uN∇vN +

∫ 1

0
wuNvN =

∫ 1

0
f vN for all vN ∈ UN . (31)

and (19)

∫ 1

0
∇uN∇vN +

∫ 1

0
(Phw)(PhuN )vN =

∫ 1

0
f vN for all vN ∈ UN . (32)
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The solutions to (31) satisfy

‖∇uN‖H ≤ 1

c1(w�)
‖ f ‖H ,

and the solutions to (32) satisfy

‖∇uN‖H ≤ 1

c2(w�,wu)
‖ f ‖H .

The whole analysis from Sects. 2 and 3 and, in particular, all of the estimates derived
for our example PDE in Sect. 3 still hold when discretizing the variational form of the
PDE with a conforming finite-element setting and using a piecewise constant control
ansatz for w on the same or a coarser grid. The only required change is to insert UN

as the state space for U . We use first-order Lagrange elements and a discretization of
(0, 1) into N = 2, 048 intervals. Regarding the additional control variable z in the state
equation Au+ z = f of the pointwise envelope in (McC), we also choose a piecewise
constant ansatz on the 2, 048 intervals, which introduces a small approximation error
because a piecewise constant function cannot completely capture the product of a
first-order Lagrange element and a piecewise constant function.

Consequently, in our implementation of (OCP) and (McC), we use following dis-
cretization that serves as a baseline and substitutes the infinite-dimensional setting in
our experiments:

• discretization of u with first-order Lagrange elements on N = 2, 048 intervals,
• discretization of w with piecewise constant functions on N = 2, 048 intervals,
and

• discretization of z with piecewise constant functions on N = 2, 048 intervals.

Remark 4.1 In this discretize-then-optimize setting, it is possible to directly employ a
branch-and-boundprocedure on the fully discretized version of (OCP)when additional
integrality restrictions are imposed on w such as w(x) ∈ Z. Then (9) is just replaced
by (31); the lower bounds are computed by means of McCormick relaxations using
(32), and the upper bounds are, for example, computed bymeans of the SLIP algorithm
[29, 34].

Remark 4.2 Since the problem considered in this section is defined on an interval,
that is in one dimension, it is possible to reformulate it as an optimal control problem
with a multiple point boundary-value problem as constraint and apply optimal con-
trol techniques like single- or multiple-shooting or collocation for discretization and
solution, see the articles [5, 45] for overviews over such techniques. Due to our focus
on applicability to PDEs, we have decided to use a finite-element discretization in this
work.

4.3 Practical implementation of OBBT / Algorithm 1

In our implementation of Algorithm 1, we first minimize the lower bounds ui� one
by one along the order of the intervals i = 1, . . . , Nh . Then we maximize the upper
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bounds uiu one by one along the order of the intervals i = 1, . . . , Nh . Then we
repeat this process. We terminate when a complete run of minimization of the ui� (or
maximization of the uiu) does not produce a tightening of any of the bounds by more
than a prescribed tolerance of 10−6.

Moreover, in order to avoid numerical problems and in turn incorrect results, addi-
tional safeguarding was necessary. Specifically, when bounds are set to the computed
value in Algorithm 1 ln. 5 or ln. 7, the value might be slightly too sharp because of the
numerical precision of the subproblem solver for the OBBT problems. This, however,
can cause the lower bounds to increase and the upper bounds to decrease to incorrect
values in further tightenings and the feasible set even contracting to an empty set
(when the lower and upper bounds cross each other). In order to avoid this situation,
the value 10−7 is added to the upper bounds and subtracted from the lower bounds
computed by the subproblem solver for the OBBT problems before they are assigned
as new bounds and Algorithm 1 moves on to tighten the next bound.

Because Algorithm 1 requires valid initial bounds, we use the bounds that can
be inferred from (15) and our choice of f . Specifically, we use the initial bounds
ui� = −5.0444 and uiu = 5.0444 for all i ∈ {1, . . . , Nh}.

4.4 Results

We first ran Scipy’s implementation [60] of L-BFGS-B on (OCP), where we used the
unique solvability of the (discretized) PDE constraint to integrate it into the objective
and used adjoint calculus in order to compute the derivative. To use this gradient-based
solver, we have smoothed the total variation seminorm using a Huber regularization
with smoothing parameter 10−3.We inserted the solution into the nonsmooth objective
and obtained an upper bound of 8.3808 × 10−2 on the optimal solution to (OCP).

Then we added the integrality constraintw(x) ∈ Z to (OCP) and executed the SLIP
algorithm [29, 36] with the subproblem solver from [55] to compute an upper bound
on the optimal solution to (OCP) with the additional integrality constraint w(x) ∈ Z.
The resulting upper bound was 8.5551 × 10−2.

Regarding the lower bounds, we first compute pointwise lower bounds for compar-
ison. For our computational example, we compute the optimal objective value for the
uniform bounds u� ≡ −5.0444 and uu ≡ 5.0444 that are enforced on the nodes of our
first-order Lagrange elements. We first compute a lower bound by omitting the total
variation term from the objective (α = 0), which also gives us an overall lower bound
on the tracking-type term in the objective. The resulting linearly constrained convex
quadratic program is solved by using Gurobi [24], and the computed lower bound is
6.7701×10−2. Then we consider (McC) with the same bounds but including the total
variation term. Again, the resulting linearly constrained convex quadratic program
is solved by using Gurobi [24], and the computed lower bound is 6.8649 × 10−2.
Moreover, we can characterize the tightest possible pointwise McCormick relaxation
exactly. Specifically, the monotonicity properties of the Laplacian yield that the dis-
cretization of (9) attains its pointwise minimum umin for the choice w(x) = wu = 4
for all x ∈ � and its pointwise maximum umax for the choice w(x) = w� = −4
for all x ∈ (0, 1). Consequently, we execute (McC) with the bounds u� = umin and
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Table 1 Exact upper and lower bounds and relative gaps (ratio of the difference between upper and lower
bound to the lower bound) for (OCP) and its counterpart with integrality restriction w(x) ∈ Z

Upper bounds Lower bounds

SLIP
(w(x) ∈ Z)

L-BFGS-B (McC)
(tightest)

(McC) (McC) (α = 0)

Value 8.555×10−2 8.381×10−2 8.368×10−2 6.865×10−2 6.770×10−2

Rel. gap
(MINLP)

2.237×10−2 2.462×10−1 2.637×10−1

Rel. gap
(NLP)

1.542×10−3 2.208×10−1 2.379×10−1

uu = umax to obtain the tightest lower bound the McCormick relaxation can possibly
achieve. We obtain a higher optimal objective value of 8.3679 × 10−2.

This means that if this perfect information on the bounds uu and u� is available
when solving (McC), the gap between upper and lower bounds gets reduced from
1.690 × 10−2 to 1.872 × 10−3 in the presence of the constraint w(x) ∈ Z (MINLP
case) and from 1.516×10−2 to 1.290×10−4 in the continuous case. In both cases, the
relative gap, which is generally computed as the difference between upper and lower
bound divided by the lower bound, gets reduced by an order of magnitude. These
results are tabulated in Table 1.

In the remaining experiments, we use these results as a baseline to compare them
with the (approximate) lower bounds obtained by solving instances of (McChh). We
executed our experiments on (McChh) on uniform partitions of the domain (0, 1) into
Nh ∈ {8, 16, 32, 64, 128, 256, 512, 1024} intervals with the corresponding values
h = 2−Nh .

We now consider the approximate lower bounds that are obtained by solving
(McChh) for the aforementioned values of h. In particular, we assess their approx-
imation quality and the running times that are required to compute them by means of
the OBBT procedure for the different values of h. To obtain a valid lower bound on
(OCP), we need to subtract cquadh2 from the optimal objective value of (McChh); see
(28). In practice, the values j0, ‖d̃u‖H , and ‖d̃ f ‖H are not knownprecisely because this
would imply that tight pointwiseMcCormick relaxations have already been computed.

We therefore use two constants in our considerations that allow us to present a
range where we expect that the a priori estimates lie when all of the other constants
are known. The larger and thus more conservative constant is obtained by choosing
j0 = 0 and computing d̃u and d̃ f with the conservative bounds u� ≡ −5.0444 and
uu ≡ 5.0444. The smaller constant is computed by choosing j0 = 6.7701 × 10−2 as
well as the optimal bounds u� = umin and uu = umax, which are of course not available
in a realistic setting. In our setting, the conservative bound is almost 50 times larger
than the tight one. Both values are given in Table 2.

For our example, the initial bounds that can be deduced from (15) are ui� = −5.0444
and uiu = 5.0444 for all i ∈ {1, . . . , Nh}. After executing our implementation of
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Table 2 Values for cquad in (28)

conservative tight

5.603 × 104 1.132 × 103

Fig. 2 a Solutions to (McC) (cyan, solid) and (McChh ) for h = 2−10, (orange, dashed) with umin, umax
(dark blue, solid), and tracking function ud (black, solid). b Initial (black) and tightened (blue) lower and
upper bounds on Phu for solutions u to (19) for h = 2−10. The area between the tightened lower and upper
bounds, where the solution of the PDE can attain values, is colored with a less intense blue

Algorithm 1, the lower bounds and upper bounds are much closer to each other and
reflect the structure of the possible PDE solutions; that is, they tend to zero toward the
boundaries of the computational domain. For the finest computed case with h = 2−10,
Nh = 1024, and a termination tolerance of 10−6 for our implementation of the OBBT
procedure, the lower bounds ui� for Phu vary between 0 and 5.280 × 10−1 and the
upper bounds uiu vary between 0 and 1.276, thereby giving a much tighter envelope in
which Phu for the solutions to (19) can lie. Moreover, the optimal solution computed
for (McChh) is close to the optimal solution computed for (McC) for fine values of h.
Both findings are visualized in Fig. 2.

Generally, the increase in compute times for the bounds is worse than linear with
decreasing values of h. The runtime for the OBBT procedure is 8.212 seconds for
h = 2−3 and increases to 1.080 × 104 seconds for h = 2−10 for (McChh) compared
with a pointwise bound computation with 2.142 × 104 seconds (mesh size 2−11) for
(McC). All running times of the OBBT algorithm are tabulated in Table 3.

Next, we assess the approximation quality of the bounds induced by the solutions to
(McChh) with and without bound tightening. In both cases we observe that the infima
converge numerically to their pointwise counterparts of (McC) that are tabulated in
Table 1. When subtracting cquadh2 from each of these values for the conservative and
tight choices of cquad from Table 2, we obtain valid lower bounds and observe that
only for the smallest grid with h = 2−10 all of the lower bounds are positive and
thus beat the trivial lower bound 0 that can be found by inspecting the objective. If
the OBBT procedure is applied and a tight choice of cquad is used, the lower bound
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Table 3 Running times (in seconds) for the OBBT algorithm for different values of h on instances of
(McChh ) and (McC) (mesh size 2−11)

(McChh ) with h = (McC)

2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

Time [s] 8.212 1.612×101 3.174×101 7.026×101 1.652×102 4.565×102 1.594×103 1.080×104 2.142×104

Table 4 Optimal objective values achieved for (McChh ) and induced bounds for (OCP) using the estimate
(28) with and without OBBT with conservative (c) and tight (t) estimate on cquad

OBBT h 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

No m(McChh ) +7.153 × 10−2 +7.028 × 10−2 +6.868 × 10−2 +6.867 × 10−2 +6.866 × 10−2 +6.865 × 10−2 +6.865 × 10−2 +6.865 × 10−2

Yes m(McChh ) +8.373 × 10−2 +8.370 × 10−2 8.368 × 10−2 +8.368 × 10−2 +8.368 × 10−2 +8.368 × 10−2 +8.368 × 10−2 +8.368 × 10−2

No LB (28) (c) −8.753 × 10+2 −2.188 × 10+2 −5.464 × 10+1 −1.361 × 10+1 −3.351 −7.862 × 10−1 −1.451 × 10−1 1.522 × 10-2

Yes LB (28) (c) −8.753 × 10+2 −2.188 × 10+2 −5.463 × 10+1 −1.360 × 10+1 −3.336 −7.712 × 10−1 −1.300 × 10−1 +3.025 × 10-2

No LB (28) (t) −1.761 × 10+1 −4.351 −1.037 −2.076 × 10−1 −4.106 × 10−4 +5.139 × 10-2 +6.433 × 10-2 +6.757 × 10-2

Yes LB (28) (t) −1.760 × 10+1 −4.337 −1.022 −1.926 × 10−1 +1.460 × 10-2 +6.641 × 10-2 +7.936 × 10-2 +8.260 × 10-2

The bounds that are able to beat the trivial bound 0 that can be directly inferred from the nonnegative objective terms are bold

Table 5 Difference and relative difference between m(McC) for u� = umin, uu = umax and m(McChh ) for
u�, uu computed using the OBBT procedure

h 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

|m(McChh ) − m(McC) | +5.106 × 10−5 +2.2474 × 10−5 +2.292 × 10−6 +5.740 × 10−7 +1.450 × 10−7 +3.820 × 10−8 +1.176 × 10−8 +3.436 × 10−8

|m(McChh )−m(McC) |
m(McC)

+6.102 × 10−4 +2.686 × 10−4 +2.738 × 10−5 +6.859 × 10−6 +1.733 × 10−6 +4.565 × 10−7 +1.405 × 10−7 +4.106 × 10−7

is positive for the choices of h ≤ 2−7, and the computed bound beats the pointwise
bound without OBBT for h = 2−9 and h = 2−10, thereby yielding the second and
third best lower bounds of all computed lower bounds. All computed values are given
in Table 4.

We assess the quality of the approximate boundsm(McChh ) after optimization-based
bound tightening with respect to m(McC). We observe that the difference as well as
the relative difference becomes very small for small values of h, in particular several
magnitudes smaller than the error margin of the a priori estimate. The obtained values
are given in Table 5.

5 Computational experiments for an example in 2D

While an analysis that verifies all of our assumptions for a PDE on amulti-dimensional
domain is beyond the scope of this article, we still present an example for which we
are certain that we can verify them by means of the techniques mentioned in Sect. 2.2.
Moreover, the techniques from Sect. 3.4 can be combined with regularity estimates
from [22] to derive a priori estimates as well. Specifically, we consider a convection-
diffusion boundary value problem that leans on the setting in [3].

This section is organized as follows. We describe our experiments in Sect. 5.1. In
Sect. 5.2 we describe how we approximate (33) and its counterpart with u and w
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replaced by Phu and Phw with a finite-element discretization and use the resulting
discretized equations as state equations for (OCP), (McCh), and (McChh). We give
details on the implementation of the OBBT procedure in Sect. 4.3. The results are
provided in Sect. 4.4.

5.1 Experiment description

Regarding the state equation, we set � = (0, 1)2 and W = {0, 1}. Let w with w(x) ∈
W a.e. be given. Then the state vector u is given by the solution to

−ε�u + c1 · ∇u + c2uw = f in �

u = 0 on {0, 1} × (0, 1) ∪ ((0, 0.25) ∪ (0.75, 1)) × {1}
u = sin(2π(x1 − 0.25)) on (0.25, 0.75) × {1}

∂nu = 0 on (0, 1) × {0},
(33)

where ε = 0.04, c2 = 4, c1(x) = (sin(πx1) cos(2πx2))T for x ∈ �, f (x) =
sin(2πx1 + 2πx2) + 3 for x ∈ �. Let S be the control-to-state operator of (33). We
choose the objective

j(u) := 1

2
‖u − ud‖2L2 ,

where we compute ud as follows. We replace the coefficient c1 in (33) by c̃1(x) =
(−x2 2x1)T and solve this modified boundary value problem for the control w =
2.5χA − 4(x1 − 0.35)3χA − 6(x2 − 0.35)3χB , where we have A = (0, 0.35)2 and
B = �\(0, 0.35)2.

Since our main object of interest is to assess the quality of the approximate
McCormick relaxations and the effect of the OBBT procedure, we perform the fol-
lowing computations, where h denotes the mesh size.

• We execute a local gradient-based NLP solver in order to obtain a stationary point
for (OCP) and thus a low upper bound on m(OCP).

• We add the additional integrality constraint w(x) ∈ Z and execute the SLIP algo-
rithm [29, 34] to obtain a low upper bound for the integrality-constrained version
of (OCP).

• Similar to the 1D experiment, we compute a pointwise McCormick envelope with
bounds u�, uu using OBBT on the nodal basis of the finest discretization we
have available. This then serves as a baseline in order to assess the quality of the
approximate McCormick relaxations.

• We compute approximate McCormick relaxations, that is, solutions to (McChh),
with and without bound tightening for decreasing values of h, where h is the mesh
size of a uniform grid of squares.

We have carried out the experiments on a node of the Linux HPC cluster LiDO3 with
two AMD EPYC 7542 32-Core CPUs and 64 GB RAM.
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5.2 Baseline PDE discretization with Ritz–Galerkin ansatz

Wedecompose the domain into a 48×48 grid of squares,which consist of four triangles
each, on which the state vector of (33) is defined. We consider conforming finite
elements and thus a finite-dimensional subspace UN ⊂ U with dimension N ∈ N,
specifically, we use first-order Lagrange elements. The term pointwise envelope refers
to the pointwise constraint bounds are enforced on the nodes of the first-order Lagrange
ansatz. Regarding the additional control variable z in the state equation of the pointwise
envelope in (McC), we also choose a piecewise constant ansatz on all triangles similar
to the one-dimensional case.

Consequently, in our implementation of (OCP) and (McC), we use following dis-
cretization that serves as a baseline and substitutes the infinite-dimensional setting in
our experiments:

• discretization of u with first-order Lagrange elements on 4 × 48 × 48 triangles,
• discretization of w with piecewise constant functions on 48 × 48 squares, and
• discretization of z with piecewise constant functions on 4 × 48 × 48 triangles.

5.3 Practical implementation of OBBT

Our implementation Algorithm 1 differs from the one described in Sect. 4.3 to be
able to parallelize over bound computations due to the very long compute times.
We initialize the lower bounds u� both for the pointwise and the locally averaged
averaged McCormick envelopes by −103 and the upper bounds uu by 103, which are
high enough for this example to safely assume that the true bounds lie within them.

For a given set of bounds, we minimize the lower bounds ui� and maximize the
upper bounds uiu for all nodes/grid cells in parallel. Then we use this set of bounds
as the new set of bounds and compute another round of tightened bounds. We repeat
this seven times so that eight rounds of bound tightening are executed in total. Again,
in order to avoid numerical problems and obtain correct results, we applied the addi-
tional safeguarding from Sect. 4.3 but note that a coarser safety tolerance of 10−2 was
necessary here and we needed to set the parameter BarHomogeneous to one in Gurobi
to prevent incorrect identification of infeasibility in a few cases that occurred in the
eighth round of OBBT on the finest discretization.

5.4 Results

We first ran the local gradient-based NLP solver, in which we employ an anisotropic
discretization of the total variation seminorm based on the piecewise constant control
function ansatz, see also Appendix B in [34] and section 2 in [35]. In the trust-region
method, we use a linear model for the first part of the objective and handle the trust-
region seminorm as in [34] so that our trust-region subproblems are linear programs
after discretization. The resulting objective value was +3.2337.

Then we added the integrality constraint w(x) ∈ Z to (OCP) and executed the
SLIP algorithm [29, 34] to compute an upper bound on the optimal solution to (OCP)
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Table 6 Upper and lower bounds and relative gaps (ratio of the difference between upper and lower bound
to the lower bound) for (OCP) and its counterpart with integrality restriction w(x) ∈ Z

Upper bounds Lower bounds

SLIP
(w(x) ∈ Z)

NLP
solver

(McC)
(OBBT)

(McC)
(initial)

Value +3.2340 +3.2337 +3.1347 +3.0255 × 10−11

Rel. gap (MINLP) +3.1689 × 10−2 +1.0689 × 10+11

Rel. gap (NLP) +3.1596 × 10−2 +1.0688 × 10+11

with the additional integrality constraint w(x) ∈ Z. The resulting upper bound was
+3.2340.

Regarding the lower bounds, we first compute pointwise lower bounds usingOBBT
as described above. Then we solve (McC) with these bounds using Gurobi [24] as well
as with the initial bounds (−103 for lower and 103 for upper bounds). The computed
lower bound for the initial bounds is +3.025510−11 and the computed lower bound
for the tightened bounds +3.1347. These results are tabulated in Table 6.

In the remaining experiments, we use these results as a baseline to compare them
with the (approximate) lower bounds obtained by solving instances of (McChh).
We executed our experiments on (McChh) on uniform partitions of the domain �

into Nh ∈ {3 × 3, 6 × 6, 12 × 12, 24 × 24, 48 × 48} squares with mesh sizes
h = {3−1, 3−12−1, 3−12−2, 3−12−3, 3−12−4}.

We now consider the approximate lower bounds that are obtained by solving
(McChh) for the aforementioned values of h. In particular, we assess their approx-
imation quality and the running times that are required to compute them by means of
the OBBT procedure for the different values of h. To obtain a valid lower bound on
(OCP), we need to subtract an a priori bound. Since the a priori analysis for this PDE
is beyond of this work, we omit this step but note that all bounds are already valid
lower bounds (see below).

Generally, the increase in compute times for the bounds is worse than linear with
decreasing values of h. The runtime for theOBBTprocedure is+2.800×10+1 seconds
for h = 3−1 and increases to +9.552 × 10+4 seconds for h = 3−12−4 for (McChh)
comparedwith a pointwise bound computationwith+4.008×10+5 seconds for (McC)
(mesh size h = 3−12−5).

Next, we assess the approximation quality of the bounds induced by the solutions to
(McChh)with andwithout bound tightening.After 8 rounds ofOBBT, the quality of the
bounds does not differ much for h ≤ 3−12−1 and are close to the pointwise/baseline
counterpart of (McC) so that a similar bound quality can be achieved with 127s of
compute time aswith 95522s and 400780s of compute time. Since they are also always
lower, they are actually true lower bounds for the baseline. Since we have used very
conservative initial guesses to prevent initializing from bounds that cut off feasible
points, the quality without bound tightening is extremely bad. It is beneficial to make
several rounds of bound tightening as is demonstrated by the quality improvement of
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Table 7 Running times (in seconds) for the OBBT algorithm and optimal objective values for different
values of h of (McChh ) and (McC) (mesh size h = 3−12−5)

(McChh ) with h = (McC)

3−1 3−12−1 3−12−2 3−12−3 3−12−4

Time (8 OBBT
rounds) [s]

+2.8 ×
10+1

+1.27 ×
10+2

+7.9 ×
10+2

+6.489 ×
10+3

+9.5522 ×
10+14

+4.0078 ×
10+5

Objective (8
OBBT
rounds)

+3.0002 +3.1314 +3.1311 +3.1301 +3.1298 +3.1347

Objective (7
OBBT
rounds)

+2.5795 +2.7020 +2.6967 +2.6923 +2.6912 +2.6999

Objective (0
OBBT
rounds)

+1.2734 +4.8655 ×
10−2

+6.5599 ×
10−4

+2.7435 ×
10−6

+8.3494 ×
10−9

+3.0255 ×
10−11

the bounds from the 7th to the 8th round. All running times of the OBBT algorithm and
the induced achieved optimal objective values for (McChh) and (McC) are tabulated
in Table 7.

6 Conclusion

We show how to replace nonlinearities that are given in a pointwise fashion in the PDE
of an (integer) optimal control problem on the example of bilinear terms by analyzing
the idea of McCormick envelopes and relaxations in the infinite-dimensional setting.
To keep the computational effort manageable, in particular with respect to a bound-
tightening procedure that tightens the convex relaxations, we introduce a two-level
approximation scheme bymeans of a grid that decomposes the computational domain,
on which the inequalities that yield the convex relaxation are averaged.

Our computational experiments for the 1D and the 2D example validate that the
computational effort of such a procedure can indeed be significantly reduced by using
coarser grids (two to three orders of magnitude for the 2D example). While an a
posteriori comparison with the baseline solution shows that the approximation quality
is very good, the a priori approximation quality of the lower bound only improves over
trivial bounds when the mesh size is already quite fine and the involved constants can
be estimatedwell. For the one-dimensional test case, theOBBTprocedure for h = 2−9

yields bounds with (relative) gaps to the upper bounds of +6.338% and +8.549% in
the NLP and MINLP case compared with theoretically optimal bounds 0.1542% and
+2.237% at +7.445% of the computational cost for the pointwise OBBT procedure.

Consequently, in order to use the McCormick relaxations together with a priori
estimates in a branch-and-bound procedure as sketched in Remark 4.1, it is necessary
to obtain estimates on ‖u − uh‖H of higher order, and a deliberate analysis of the
underlyingPDEand its discretization are crucialwhen applying thismethod. Similarly,
good estimates for the constant Lu in (6) are important, too.
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As mentioned before, we have used a priori error estimates in our analysis so far.
Because the actual optimal objective values for (McChh) were very close to a true
lower bound on (OCP) for relatively large values of h (coarser local averaging) both
in 1D and 2D, we are convinced that the analysis and integration of a posteriori error
estimates into the procedure is key for future research to be able to use relatively coarse
grids for (McChh) and scale this methodology.

One issue that might arise in practice, in particular for PDEs defined on multidi-
mensional domains, is that L∞-bounds as asserted in (12) for our example might not
readily be available. However, we believe that additional interior regularity (see, e.g.,
Theorem 9.51 in [46]) and nonstandard regularity theory (see, e.g., [23]) can help
establish such bounds.

Although this goes significantly beyond the scope of this article, we note that the
McCormick relaxations suggest defining a branch-and-bound algorithm in function
space in the spirit of the recent article [7], where—depending on current fixations and
the overlapping of the approximate upper and lower bounds—one refines the mesh
that is used for the locally averaged McCormick relaxations and the control ansatz
adaptively until an acceptable gap is reached.

For more general nonlinearities than uw, it may be possible to combine the local
averaging on the computational domain with the successive refinement procedure
(nested intervals) of the parameter space for factorable functions that is analyzed in
[54], see in particular section 7 therein for an application to obtain relaxations of
ODEs.

A Auxiliary results

Lemma A.1 Let f n → f in L1(�). Let gn⇀g in L1(�). If f n ≤ gn (or f n ≥ gn)
holds pointwise a.e. for all n ∈ N. Then f ≤ g (or f ≥ g, respectively).

Proof We prove only the case for the ≤-inequalities because the other case follows
by symmetry of the argument. By way of contradiction, we assume that there exist a
measurable set A ⊂ �, ε1 > 0, and ε2 > 0 such that |A| > ε1 and

f (x) > g(x) + ε2 for a.a. x ∈ A.

Egorov’s theorem gives that there exists a measurable set B ⊂ A and n0 ∈ N such
that |B| > ε1

2 , and for all n ≥ n0, we obtain

f n(x) > g(x) + ε2

2
for a.a. x ∈ B.

Integrating over B yields

∫

B
f n(x) >

∫

B
g(x) + |B|ε2

2
.

for all n ≥ n0. Because gn⇀g, there exists n1 ≥ n0 such that
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∫

B
f n(x) >

∫

B
gn(x) + |B|ε2

4

holds for all n ≥ n1. Consequently, there must exist a measurable subset C ⊂ B of
strictly positive measure that f n(x) > gn(x) holds for x ∈ C , which contradicts the
assumption that f n ≤ gn holds pointwise a.e. ��
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