

Optimality Conditions for Nonlinear Optimization

GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

- 1 Preliminaries: Definitions and Notation
- First-Order Conditions
 - Equality Constrained Nonlinear Programs
 - Inequality Constrained Nonlinear Programs
 - The Karush-Kuhn-Tucker Conditions
- Second-Order Conditions
 - Second-Order Conditions for Equality Constraints
 - Second-Order Conditions for Inequality Constraints

Preliminaries: Definitions and Notation

Seek optimality conditions for (local) minimizer ...

Definition (Nonlinear Optimization Problem)

```
minimize f(x)

subject to c_i(x) = 0, \quad i \in \mathcal{E}

l_i \leq c_i(x) \leq u_i \quad i \in \mathcal{I}

l_i \leq x_i \leq u_i \quad j = 1, \dots, n
```

where

- f(x) and $c_i(x)$ twice continuously differentiable.
- ullet indexes equality, ${\cal I}$ indexes inequality constraints
- Bounds l_i, u_i, l_i, u_i can be finite or infinite

Also referred to as nonlinear program (NLP).

Often, have additional structure, that can be exploited by solver

Preliminaries: Definitions and Notation

Simplify notation ... other NLPs can be expressed like this.

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & c_i(x) = 0 \quad i \in \mathcal{E} \\ & c_i(x) \geq 0 \quad i \in \mathcal{I}. \end{array}$$

Notation

 $c_{\mathcal{E}}(x) = 0$, $c_{\mathcal{I}}(x) \geq 0$ denotes equality, inequality constraints.

For
$$\mathcal{E} = \{1, \ldots, m\}$$
 $c_{\mathcal{E}}(x) = \begin{pmatrix} c_1(x) \\ \vdots \\ c_m(x) \end{pmatrix}$

Preliminaries: Definitions and Notation

Nonlinear optimization problem

minimize
$$f(x)$$

subject to $c_i(x) = 0$ $i \in \mathcal{E}$
 $c_i(x) \ge 0$ $i \in \mathcal{I}$.

Definition (Feasible Set)

Feasible set of NLP is set of x that satisfy all constraints

$$\mathcal{F}:=\left\{x|c_{\mathcal{E}}(x)=0, \text{ and } c_{\mathcal{I}}(x)\geq 0
ight\}$$

Definition (Local and Global Minimizers)

- $x^* \in \mathcal{F}$ is global minimizer, iff $f(x^*) \leq f(x)$ for all $x \in \mathcal{F}$.
- $x^* \in \mathcal{F}$ is local minimizer, iff there exists neighborhood $\mathcal{N}(x^*)$ of x^* such that $f(x^*) \leq f(x)$ for all $x \in \mathcal{F} \cup \mathcal{N}(x^*)$.

Local versus Global Minimizers

Notation.

Gradient of f(x) is $g(x) = \nabla f(x)$, Jacobian of c(x) is $A(x) = \nabla c(x)$.

Remark (Limitations of Optimality Conditions)

- Optimality conditions only provide local optimality.
- Limited to smooth finite-dimensional problems. ... extend to nonsmooth problems using subdifferential $\partial f(x)$

Remark (Importance of Optimality Conditions)

- Guarantee that candidate solution is local optimum
- Indicate when point is not optimal (necessary conditions)
- Guide development of optimization methods

Outline

- Preliminaries: Definitions and Notation
- Pirst-Order Conditions
 - Equality Constrained Nonlinear Programs
 - Inequality Constrained Nonlinear Programs
 - The Karush-Kuhn-Tucker Conditions
- Second-Order Conditions
 - Second-Order Conditions for Equality Constraints
 - Second-Order Conditions for Inequality Constraints

First-Order Conditions

Theorem (Unconstrained First-Order Conditions)

 x^* unconstrained local minimizer $\Rightarrow g^* = 0$.

State this condition equivalently as

$$g^* = 0 \quad \Leftrightarrow \quad s^T g^* = 0, \ \forall s \quad \Leftrightarrow \quad \left\{ s \mid s^T g^* < 0 \right\} = \emptyset,$$

i.e. there are no strict descend directions at x^*

Generalize these conditions

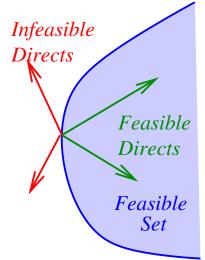
- Must classify feasible directions
- Derive easy-to-check conditions for

$$\left\{ s \mid s^{\mathsf{T}} g^* < 0, \ \forall s \text{ feasible directions} \right\} = \emptyset,$$

i.e. there exist no feasible descend directions.

Concept of Feasible Directions

Feasible directions play central role in optimality ...



Distinguish two cases:

- Equality constraints only.
- Inequality constraints.

... equality constraints easier

Equality Constrained Nonlinear Programs

Consider equality constraints only:

minimize
$$f(x)$$
 subject to $c_{\mathcal{E}}(x) = 0$.

Take infinitesimal step δ from x^* , look at Taylor series expansion:

$$c_i(x^* + \delta) = c_i(x^*) + \delta^T a_i^* + o(\|\delta\|) = \delta^T a_i^* + o(\|\delta\|),$$

because $c_i(x^*) = 0$, where $a_i^* = \nabla c_i(x^*)$

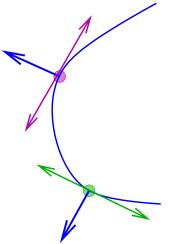
Recall: a = o(h) means $\frac{a}{h} \to 0$ as $h \to 0$

Sufficient Condition for Feasible $x^* + \delta$

$$\delta^T a_i^* + o(\|\delta\|) = 0 \implies s^T a_i^* = 0$$
 feasible directions

Graphical Interpretation of Feasible Directions

Feasible directions, s such that $s^T a_i^* = 0$ are tangent directions



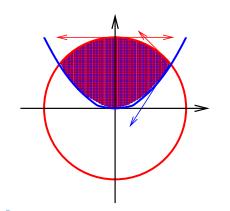
Feasible directions at two different points.

Graphical Interpretation of Feasible Directions

Feasible directions, s such that $s^T a_i^* = 0$ are tangent directions

How to derive feasible directions:

$$\mathcal{F} = \left\{ x \mid x_1^2 - x_2 \le 0, \ x_1^2 + x_2^2 \le 1 \right\}$$



$$\nabla c_1(x) = \begin{pmatrix} 2x_1 \\ -1 \end{pmatrix}$$

$$\nabla c_2(x) = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}$$

At
$$x = (0; 1)$$
 get $s = (\pm 1; 0)$:

$$(\pm 1; 0)^T (0; 2) = 0$$

At x = (0.7861; 0.6180) get two directions

$$\begin{pmatrix} -0.5367 \\ -0.8438 \end{pmatrix}$$
 $\begin{pmatrix} -0.6180 \\ 0.7861 \end{pmatrix}$

Regularity Assumptions

To derive stationarity conditions, need regularity assumption: "linearized feasible set", looks like nonlinear feasible set

Assumption (Linear Independence of Constraint Normals)

 $a_i^* = \nabla c_i(x^*)$, for $i = 1, \dots, m_e$, are linearly independent.

An alternative assumption is that all constraints are linear

- Any linearization of a linear constraint is perfect approx.
- Hence, do not need regularity assumptions for LPs and QPs.

Necessary Condition for Equality Constraints

minimize
$$f(x)$$
 subject to $c_{\mathcal{E}}(x) = 0$

Necessary condition: under linear independence assumption:

$$x^*$$
 is a local minimizer \Rightarrow $\left\{ s \mid s^T g^* < 0, \ s^T a_i^* = 0, \ \forall i \in \mathcal{E} \right\} = \emptyset$

... very difficult to check

Lemma (Necessary Condition for Equality Constraints)

Assume linear independence holds, and x^* is local minimizer, then the following conditions are equivalent:

- **2** There exist Lagrange multipliers, y_i^* , for $i \in \mathcal{E}$ such that

$$g^* = \sum_{i \in \mathcal{E}} y_i^* a_i^* = A^* y.$$

Graphic Interpretation of FO Conditions

Lemma (Necessary Condition for Equality Constraints)

Assume linear independence holds, and x^* is local minimizer, then the following conditions are equivalent:

- **②** There exist Lagrange multipliers, y_i^* , for $i \in \mathcal{E}$ such that

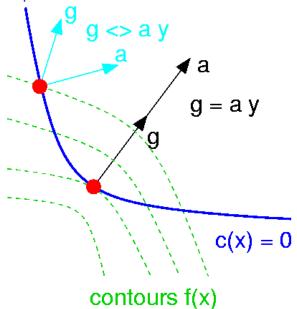
$$g^* = \sum_{i \in \mathcal{E}} y_i^* a_i^* = A^* y.$$

- Can write g^* as linear combination of constraint gradients, a_i^* .
- Linear-independence Assumption implies $rank(A^*) = m_e$ i.e. A^* has full $rank \Rightarrow$ generalized inverse, A^+ , exists

$$y^* = A^{*^+} g^*, \text{ where } A^{*^+} = (A^{*^T} A^*)^{-1} A^{*^T},$$

unique multipliers, y^* , also solve min $||A^*y - g^*||_2^2$

Graphic Interpretation of FO Conditions



Method of Lagrange Multipliers

Restate conditions in Lemma as system of equations in (x, y):

$$g(x) = A(x) y$$
 first-order condition $c(x) = 0$ feasibility.

Define Lagrangian function, $\mathcal{L}(x, y) := f(x) - y^T c(x)$

Method of Lagrange Multipliers

First-order optimality conditions equivalent to

$$\nabla_x \mathcal{L}(x,y) = 0$$
, and $\nabla_y \mathcal{L}(x,y) = 0$.

Can apply Newton's method to nonlinear system in (x, y)

Finding stationary points ⇔ finding stationary point of Lagrangian

Effect of Perturbations: Sensitivity Analysis

Express effect of perturbation to constraint, $c_i(x) = \epsilon_i$ on optimum Let $x(\epsilon)$ and $y(\epsilon)$ denote optimal values after perturbation

$$f(x(\epsilon)) = \mathcal{L}(x(\epsilon), y(\epsilon)) = f(x(\epsilon)) - y(\epsilon)^{T} (c(x) - \epsilon)$$

Chain rule implies

$$\frac{df}{d\epsilon_i} = \frac{d\mathcal{L}}{d\epsilon_i} = \frac{\partial x^T}{\partial \epsilon_i} \nabla_x \mathcal{L} + \frac{\partial y^T}{\partial \epsilon_i} \nabla_y \mathcal{L} + \frac{\mathcal{L}}{\partial \epsilon_i}$$

Observe, that $\nabla_x \mathcal{L}(x,y) = 0$ and $\nabla_y \mathcal{L}(x,y) = 0$, hence

$$\frac{\mathcal{L}}{\partial \epsilon_i} = -y_i \implies \frac{df}{d\epsilon_i} = -y_i.$$

Sensitivity Interpretation of Multipliers

Multiplier, y_i , gives rate of change in objective to perturbation right-hand-side of constraint i.

Inequality Constrained Nonlinear Programs

Now consider both equality and inequality constraints

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & c_i(x) = 0 \quad i \in \mathcal{E} \\ & c_i(x) \geq 0 \quad i \in \mathcal{I}. \end{array}$$

only need to consider active constraints

$$\mathcal{A}^* := \mathcal{A}(x^*) := \{i \in \mathcal{E} \cup \mathcal{I} \mid c_i(x^*) = 0\}$$
 active set.

... includes all equality constraints

Again, looking for feasible directions ... now for inequalities.

Inequality Constrained Nonlinear Programs

Now consider both equality and inequality constraints

minimize
$$f(x)$$

subject to $c_i(x) = 0$ $i \in \mathcal{E}$
 $c_i(x) \ge 0$ $i \in \mathcal{I}$.

Let δ be small incremental step for active inequality, $i \in \mathcal{I} \cap \mathcal{A}^*$:

$$c_i(x^* + \delta) = c_i(x^*) + \delta^T a_i^* + o(\|\delta\|) = \delta^T a_i^* + o(\|\delta\|).$$

Now require step to remain feasible only wrt one side:

$$c_i(x^* + \delta) \ge 0 \iff \delta^T a_i^* + o(\|\delta\|)$$

Hence, δ lies in direction s:

feasible directions
$$s^T a_i^* \ge 0, \ \forall i \in \mathcal{I} \cap \mathcal{A}^*, \quad s^T a_i^* = 0, \ \forall i \in \mathcal{E}.$$

... again need a regularity assumption ...

Regularity Assumption for Inequality Constraints

Need regularity assumption to ensure that linearized analysis captures nonlinear geometry

Assumption (Linear Independence Constraint Qualification)

The linear-independence constraint qualification (LICQ) holds at x^* for the NLP, iff $a_i^* = \nabla c_i(x^*)$, for $i \in \mathcal{A}^*$, are linearly independent.

The next assumption is slightly weaker, and implies the LICQ.

Assumption (Mangasarian-Fromowitz Constraint Qualification)

The Mangasarian-Fromowitz constraint qualification (MFCQ) holds at x^* for the NLP, iff $a_i^* = \nabla c_i(x^*)$, for $i \in \mathcal{E}$, are linearly independent, and there exists $s \neq 0$ such that

$$s^T a_i^* > 0, \ \forall i \in \mathcal{I} \cap \mathcal{A}^*.$$

Why We Need Regularity Assumptions

Consider the NLP

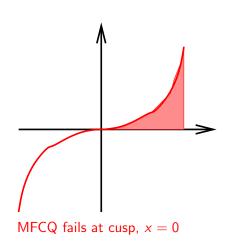
$$\begin{array}{ll} \underset{x}{\text{minimize}} & x_1 \\ \text{subject to} & x_2 \leq x_1^3 \\ & x_2 \geq 0 \end{array}$$

Has optimum at cusp

$$x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

... but constraints violate MFCQ⇒ bogus "feasible" direction

$$s = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$



Regularity Assumption for Inequality Constraints

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & c_i(x) = 0 \quad i \in \mathcal{E} \\ & c_i(x) \geq 0 \quad i \in \mathcal{I}. \end{array}$$

Assumption (Mangasarian-Fromowitz Constraint Qualification)

The Mangasarian-Fromowitz constraint qualification (MFCQ) holds at x^* for the NLP, iff $a_i^* = \nabla c_i(x^*)$, for $i \in \mathcal{E}$, are linearly independent, and there exists $s \neq 0$ such that

$$s^T a_i^* > 0, \ \forall i \in \mathcal{I} \cap \mathcal{A}^*.$$

MFCQ is stronger than needed:

$$\left\{s|s^Tg^*<0,\ s^Ta_i^*=0,\ \forall i\in\mathcal{E},\ s^Ta_i^*\geq0,\ \forall i\in\mathcal{I}\cap\mathcal{A}^*\right\}=\emptyset$$

... but this condition really difficult to check.

Necessary Condition for Nonlinear Optimization

Lemma (First-Order Conditions for Optimality)

Assume that LICQ or MFCQ hold, and that x^* is local minimizer, then the following two conditions are equivalent:

• There exist no feasible descend direction:

$$\left\{s|s^Tg^*<0,\ s^Ta_i^*=0,\ \forall i\in\mathcal{E},\ s^Ta_i^*\geq0,\ \forall i\in\mathcal{I}\cap\mathcal{A}^*\right\}=\emptyset$$

② There exist so-called Lagrange multipliers, y_i^* , for $i \in A^*$:

$$g^* = \sum_{i \in A^*} y_i^* a_i^* = A^* y$$
 where $y_i^* \ge 0, \ \forall i \in \mathcal{I} \cap \mathcal{A}^*$.

Necessary Condition for Nonlinear Optimization

$$g^* = \sum_{i \in \mathcal{A}^*} y_i^* a_i^* = \mathcal{A}^* y \quad \text{where } y_i^* \geq 0, \ \forall i \in \mathcal{I} \cap \mathcal{A}^*.$$

Remark (Towards an Algorithms for NLP)

Assume at non-stationary point with

- Multiplier $y_q < 0$ for some $q \in \mathcal{I}$ e.g. least-squares multiplier
- Have direction s with $s^T a_q = 1$

Then reduce objective by step in this feasible direction s.

Basis for active-set methods for linear and quadratic programming!

The Karush-Kuhn-Tucker Conditions

minimize
$$f(x)$$

subject to $c_i(x) = 0$ $i \in \mathcal{E}$
 $c_i(x) \ge 0$ $i \in \mathcal{I}$.

Theorem (Karush-Kuhn-Tucker (KKT) Conditions)

 x^* local minimizer of NLP and assume LICQ or MFCQ hold at x^* . Then there exist Lagrange multipliers, y^* such that

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \mathbf{y}^*) = 0$$
 first order condition (1)

$$c_{\mathcal{E}}(x^*) = 0$$
 feasibility (2)

$$c_{\mathcal{I}}(x^*) \ge 0$$
 feasibility (3)

$$y_{\mathcal{I}}^* \geq 0$$
 dual feasibility (4)

$$y_i^* c_i(x^*) = 0$$
 complementary slackness. (5)

Interpretation of KKT Conditions

Remark (Stationarity Conditions and Algorithms)

Take standard NLP & linearize about stationary point, x^* , then: KKT conditions are the FO conditions of linearized problem:

minimize
$$f(x^*) + d^T \nabla f(x^*)$$

subject to $c_i(x^*) + d^T \nabla c_i(x^*) = 0, i \in \mathcal{E}$
 $c_i(x^*) + d^T \nabla c_i(x^*) \geq 0, i \in \mathcal{I},$

- Motivates algorithms such as SLP, SQP, SLQP, SQQP, ...
- Extends FO conditions to structured NLP, e.g. MPECs, ...
 ... and hence defines new structured algorithmic approaches

Outline

- Preliminaries: Definitions and Notation
- 2 First-Order Conditions
 - Equality Constrained Nonlinear Programs
 - Inequality Constrained Nonlinear Programs
 - The Karush-Kuhn-Tucker Conditions
- Second-Order Conditions
 - Second-Order Conditions for Equality Constraints
 - Second-Order Conditions for Inequality Constraints

Second-Order Conditions

KKT conditions are first-order necessary conditions.

Goal

Extend second-order from the unconstrained case

Remark

Important to include second-order effects from constraints

• Can replace objective:

$$\underset{x}{\textit{minimize}} \ f(x) \quad \Leftrightarrow \quad \underset{x,\eta}{\textit{minimize}} \ \eta \quad \textit{subject to} \ \eta \geq f(x)$$

• Need to consider $\nabla^2 c_i(x)$, not just $\nabla^2 f(x)$.

Again convenient to distinguish equality and inequality constraints.

Second-Order Conditions for Equality Constraints

Let x^* is KKT point, and a_i^* for $i \in \mathcal{E}$ linearly independent Let δ be an incremental step along feasible direction, s.

$$f(x^* + \delta) = \mathcal{L}(x^* + \delta, y^*) = \mathcal{L}(x^*, y^*) + \delta^T \nabla_x \mathcal{L}(x^*, y^*) + \frac{1}{2} \delta^T W^* \delta + o(\|\delta\|^2) = f(x^*) + \frac{1}{2} \delta^T W^* \delta + o(\|\delta\|^2),$$

where Hessian of Lagrangian is:

$$W^* = \nabla^2 \mathcal{L}(x^*, y^*) = \nabla^2 f(x^*) + \sum_{i \in \mathcal{E}} y_i^* \nabla^2 c_i(x^*)$$

Optimality of x^* implies

$$s^T W^* s \ge 0, \ \forall s : s^T a_i^* = 0.$$

i.e. Lagrangian has nonnegative curvature for all feasible directions

Second-Order Conditions for Equality Constraints

Proposition (Second-Order Necessary Condition)

 x^* local minimizer, and if constraint qualification holds, then

$$s^T \nabla^2 \mathcal{L}(x^*, y^*) s \geq 0 \ \forall s : s^T a_i^* = 0.$$

Can also state sufficient condition for local minimizer.

Proposition (Second-Order Sufficient Condition)

If
$$\nabla_x \mathcal{L}(x^*, y^*) = 0$$
, if $c(x^*) = 0$, and if
$$s^T \nabla^2 \mathcal{L}(x^*, y^*) s > 0, \ \forall s \neq 0 : s^T a_i^* = 0,$$

then x^* is a local minimizer.

Note: \exists gap between necessary and sufficient conditions.

Second-Order Conditions for Inequality Constraints

To derive second-order conditions consider active constraints, \mathcal{A}^* .

 \Rightarrow NLP equivalent to equality NLP, if $y_i^* > 0$, $\forall i \in \mathcal{I} \cap \mathcal{A}^*$,

Simplifying Assumption

Assume strict complementarity: $y_i^* > 0$, $\forall i \in \mathcal{I} \cap \mathcal{A}^*$,

Proposition (Second-Order Sufficient Condition)

If $\nabla_x \mathcal{L}(x^*, y^*) = 0$, if $c(x^*) = 0$, if strict complementarity holds, i.e. $y_i^* > 0$, $\forall i \in \mathcal{I} \cap \mathcal{A}^*$, and if

$$s^T \nabla^2 \mathcal{L}(x^*, y^*) s > 0, \ \forall s \neq 0 : s^T a_i^* = 0, \ \forall i \in \mathcal{A}^*,$$

then it follows that x^* is a local minimizer.

Second-Order Conditions for Inequality Constraints

More rigorous results without strict complementarity possible needs Hessian $\nabla^2 \mathcal{L}$ positive definite over cone impractical

Check sufficient conditions by finding inertia of KKT matrix,

$$\begin{bmatrix} W^* & A^* \\ {A^*}^T & 0 \end{bmatrix}.$$

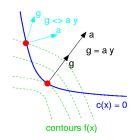
Theorem

If inertia of KKT matrix is [n-m,0,m], then second order conditions are satisfied, where $m=|\mathcal{A}^*|$.

KKT matrix with inertia is [n - m, 0, m] is second-order sufficient

Matrix inertia: triple of positive, zero, and negative eigenvalues.

Summary and Take-Aways



Derived Optimality Conditions for NLPs

- Intuitive geometric interpretation
- Motivate algorithmic approaches (soon)

Optimality Conditions Require Regularity

- Not easy to check a priori (LICQ is OK)
- What happens if regularity does not hold?
- Algorithms often detect lack of regularity
 ... fail "gracefully" ...

