

Tutorial 2: Unconstrained optimization GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Theory of Optimality Conditions

- Prove Theorem 3.1.1 (necessary conditions for a local min).
 Hint: Consider f(x) along lines s and use the 1D conditions.
- Consider f(x) = 2x₁³ 3x₁² 6x₁x₂(x₁ x₂ 1). Plot f(x) in domain [-1, 1]² using Matlab. Find its gradient and Hessian matrix, and find and classify all its stationary points.
- Consider $f(x) = x^2$ with global minimum at x = 0. Show that iterates, $x^{(k+1)} = x^{(k)} + \alpha_k s^{(k)}$, defined $s^{(k)} = (-1)^{k+1}$ and $\alpha_k = 2 + 3/2^{k+1}$ starting from $x^{(0)} = 2$ satisfy $s^T g < 0$ and $f^{(k+1)} < f^{(k)}$. Plot iterates using Matlab, and show that Algorithm 6.1 does not converge to a stationary point.

Tutorial 2: Armijo Line Search

• Write a Matlab function that implements the Armijo line-search. Your function should be callable from other matlab rountines, e.g.

% ArmijoLineSearch.m Implementation of Armijo line search function [alpha, j, info]

= ArmijoLineSearch(x, dx, g, ObjFun, varargin)

%	define the	constants of the search
t	= 1.0;	% initial step size
beta	= 0.5 ;	% back-tracking factor
maxf	= 10;	% maximum number of function evals
sigma	= 0.1;	% sufficient reduction parameter

• Use the Matlab function evalf and function pointers to pass different ObjFun arguments.

Tutorial 2: Steepest Descend

- Test the line-search using the Powell function (powell.m), and the Rosenbrock function (rosenbrock.m), available on the web-site. In each case display the actual and predicted reduction for your step.
- Implement the steepest descend method with an Armijo line search in Matlab.
 - You can either implement your own line-search (preferred), or use mine.
 - Test the method on the two example above, and the chained Rosenbrock function.
 - Use Matlab's contour function to plot the contours (in 2D), and the progress of your method.
 - Starting points are x = (-1.5; 0.5) for Rosenbrock, and x = (1; 1) for Powell, and x = (-1; -1; ...; -1) for chained Rosen.

Tutorial 2: Newton & Quasi-Newton Methods

• Inplement Newton's method with the Hessian modification.

- Use your (or mine) steepest descend code as a starting point.
- Use Matlab's eigenvalue functions, eig, to compute the eigenvalue.
- Use Matlab's backslash operator to solve the Newton system.
- Test the code again on our examples.
- Implement a quasi-Newton (or limited memomry BFGS) method.

Theory of Newton's Method

- Show that Newton's method oscillates for min f(x) = x² - x⁴/4.
- Prove quadratic convergence of Newton's method (Theorem 4.1.1)
- Show that (??) holds for a quadratic function.
- Show that the rank-one formula terminates for a quadratic:
 - Show by induction that $H^{(k+1)}\gamma^{(j)} = \delta^{(j)}$ for all j = 1, ..., k.
 - Hence conclude that the method terminates after n + 1 iterations.
- Program the limited-memory BFGS method in Matlab.
- Apply Newton's method to nonlinear least-squares:

minimize
$$f(x) = \sum_{i=1}^{m} r_i(x)^2 = r(x)^T r(x) = ||r(x)||_2^2.$$

What happens, if $r_i(x)$ are linear? Can you propose a strategy for handling the case, where $\nabla^2 r_i(x)$ are bounded, and $r_i(x) \rightarrow 0$?