
Tutorial 2: Unconstrained optimization
GIAN Short Course on Optimization:

Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Theory of Optimality Conditions

3.1.1 Prove Theorem 3.1.1 (necessary conditions for a local min).
Hint: Consider f (x) along lines s and use the 1D conditions.

3.1.2 Consider f (x) = 2x31 − 3x21 − 6x1x2(x1 − x2 − 1). Plot f (x) in
domain [−1, 1]2 using Matlab. Find its gradient and Hessian
matrix, and find and classify all its stationary points.

3.1.3 Consider f (x) = x2 with global minimum at x = 0. Show that
iterates, x (k+1) = x (k) + αks

(k), defined s(k) = (−1)k+1 and
αk = 2 + 3/2k+1 starting from x (0) = 2 satisfy sTg < 0 and
f (k+1) < f (k). Plot iterates using Matlab, and show that
Algorithm 6.1 does not converge to a stationary point.

2 / 1

Tutorial 2: Armijo Line Search

Write a Matlab function that implements the Armijo
line-search. Your function should be callable from other
matlab rountines, e.g.

% ArmijoLineSearch.m Implementation of Armijo line search

function [alpha, j, info]

= ArmijoLineSearch(x, dx, g, ObjFun, varargin)

% ... define the constants of the search

t = 1.0; % ... initial step size

beta = 0.5 ; % ... back-tracking factor

maxf = 10; % ... maximum number of function evals

sigma = 0.1; % ... sufficient reduction parameter

Use the Matlab function evalf and function pointers to pass
different ObjFun arguments.

3 / 1

Tutorial 2: Steepest Descend

Test the line-search using the Powell function (powell.m),
and the Rosenbrock function (rosenbrock.m), available on
the web-site. In each case display the actual and predicted
reduction for your step.

Implement the steepest descend method with an Armijo line
search in Matlab.

You can either implement your own line-search (preferred), or
use mine.
Test the method on the two example above, and the chained
Rosenbrock function.
Use Matlab’s contour function to plot the contours (in 2D),
and the progress of your method.
Starting points are x = (−1.5; 0.5) for Rosenbrock, and
x = (1; 1) for Powell, and x = (−1;−1; . . . ;−1) for chained
Rosen.

4 / 1

Tutorial 2: Newton & Quasi-Newton Methods

Inplement Newton’s method with the Hessian modification.

Use your (or mine) steepest descend code as a starting point.
Use Matlab’s eigenvalue functions, eig, to compute the
eigenvalue.
Use Matlab’s backslash operator to solve the Newton system.
Test the code again on our examples.

Implement a quasi-Newton (or limited memomry BFGS)
method.

5 / 1

Theory of Newton’s Method
4.1.1 Show that Newton’s method oscillates for

min f (x) = x2 − x4/4.
4.1.2 Prove quadratic convergence of Newton’s method (Theorem

4.1.1)
4.1.3 Show that (??) holds for a quadratic function.
4.1.4 Show that the rank-one formula terminates for a quadratic:

Show by induction that H(k+1)γ(j) = δ(j) for all j = 1, . . . , k.
Hence conclude that the method terminates after n + 1
iterations.

4.1.5 Program the limited-memory BFGS method in Matlab.
4.1.6 Apply Newton’s method to nonlinear least-squares:

minimize
x

f (x) =
m∑
i=1

ri (x)2 = r(x)T r(x) = ‖r(x)‖22.

What happens, if ri (x) are linear? Can you propose a strategy
for handling the case, where ∇2ri (x) are bounded, and
ri (x)→ 0?

6 / 1

