Tutorial 2: Unconstrained optimization

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

ssssssssssss

Theory of Optimality Conditions

@ Prove Theorem 3.1.1 (necessary conditions for a local min).
Hint: Consider f(x) along lines s and use the 1D conditions.

@ Consider f(x) = 2x3 — 3x% — 6x1x2(x1 — x2 — 1). Plot f(x) in
domain [—1,1]? using Matlab. Find its gradient and Hessian
matrix, and find and classify all its stationary points.

@ Consider f(x) = x? with global minimum at x = 0. Show that
iterates, x(kt1) = x(k) 1 ¢ s(F) | defined s(¥) = (—1)k*+! and
oy = 2 + 3/2Kt1 starting from x(0) = 2 satisfy s" g < 0 and
f(kt1) < £(K) Plot iterates using Matlab, and show that
Algorithm 6.1 does not converge to a stationary point.

Tutorial 2: Armijo Line Search

@ Write a Matlab function that implements the Armijo
line-search. Your function should be callable from other
matlab rountines, e.g.
% ArmijoLineSearch.m Implementation of Armijo line search
function [alpha, j, infol

= ArmijoLineSearch(x, dx, g, ObjFun, varargin)

% ... define the constants of the search

t =1.0; % ... initial step size

beta = 0.5 ; % ... back-tracking factor

maxf = 10; % ... maximum number of function evals
sigma = 0.1; % ... sufficient reduction parameter

o Use the Matlab function evalf and function pointers to pass
different ObjFun arguments.

Tutorial 2: Steepest Descend

@ Test the line-search using the Powell function (powell.m),
and the Rosenbrock function (rosenbrock.m), available on
the web-site. In each case display the actual and predicted
reduction for your step.

@ Implement the steepest descend method with an Armijo line
search in Matlab.

e You can either implement your own line-search (preferred), or
use mine.

o Test the method on the two example above, and the chained
Rosenbrock function.

o Use Matlab's contour function to plot the contours (in 2D),
and the progress of your method.

o Starting points are x = (—1.5;0.5) for Rosenbrock, and
x = (1;1) for Powell, and x = (=1; —1;...; —1) for chained
Rosen.

Tutorial 2: Newton & Quasi-Newton Methods

@ Inplement Newton's method with the Hessian modification.
o Use your (or mine) steepest descend code as a starting point.
e Use Matlab’s eigenvalue functions, eig, to compute the

eigenvalue.
o Use Matlab's backslash operator to solve the Newton system.

o Test the code again on our examples.

e Implement a quasi-Newton (or limited memomry BFGS)
method.

Theory of Newton's Method

Q

Q

4

(=3 =)

Show that Newton's method oscillates for

min f(x) = x*> — x*/4.

Prove quadratic convergence of Newton's method (Theorem
4.1.1)

Show that (?77?) holds for a quadratic function.
Show that the rank-one formula terminates for a quadratic:
o Show by induction that Hk+D~U) = §0) for all j =1,..., k.
o Hence conclude that the method terminates after n + 1
iterations.

Program the limited-memory BFGS method in Matlab.
Apply Newton's method to nonlinear least-squares:

minimize f(x) =Y ri(x)> = r(x)7r(x) = |r(x)[l5.
X i=1
What happens, if ri(x) are linear? Can you propose a strategy
for handling the case, where V?r;(x) are bounded, and
ri(x) — 0?

6

