Tutorial 2: Unconstrained optimization

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

Theory of Optimality Conditions

(1) Prove Theorem 3.1.1 (necessary conditions for a local min). Hint: Consider $f(x)$ along lines s and use the 1D conditions.
(1) Consider $f(x)=2 x_{1}^{3}-3 x_{1}^{2}-6 x_{1} x_{2}\left(x_{1}-x_{2}-1\right)$. Plot $f(x)$ in domain $[-1,1]^{2}$ using Matlab. Find its gradient and Hessian matrix, and find and classify all its stationary points.
(1) Consider $f(x)=x^{2}$ with global minimum at $x=0$. Show that iterates, $x^{(k+1)}=x^{(k)}+\alpha_{k} s^{(k)}$, defined $s^{(k)}=(-1)^{k+1}$ and $\alpha_{k}=2+3 / 2^{k+1}$ starting from $x^{(0)}=2$ satisfy $s^{T} g<0$ and $f^{(k+1)}<f^{(k)}$. Plot iterates using Matlab, and show that Algorithm 6.1 does not converge to a stationary point.

Tutorial 2: Armijo Line Search

- Write a Matlab function that implements the Armijo line-search. Your function should be callable from other matlab rountines, e.g.
\% ArmijoLineSearch.m Implementation of Armijo line search function [alpha, j, info]
= ArmijoLineSearch (x, dx, g, ObjFun, varargin)

```
% ... define the constants of the search
t = 1.0; % ... initial step size
beta = 0.5 ; % ... back-tracking factor
maxf = 10; % ... maximum number of function evals
sigma = 0.1; % ... sufficient reduction parameter
```

- Use the Matlab function evalf and function pointers to pass different ObjFun arguments.

Tutorial 2: Steepest Descend

- Test the line-search using the Powell function (powell.m), and the Rosenbrock function (rosenbrock.m), available on the web-site. In each case display the actual and predicted reduction for your step.
- Implement the steepest descend method with an Armijo line search in Matlab.
- You can either implement your own line-search (preferred), or use mine.
- Test the method on the two example above, and the chained Rosenbrock function.
- Use Matlab's contour function to plot the contours (in 2D), and the progress of your method.
- Starting points are $x=(-1.5 ; 0.5)$ for Rosenbrock, and $x=(1 ; 1)$ for Powell, and $x=(-1 ;-1 ; \ldots ;-1)$ for chained Rosen.

Tutorial 2: Newton \& Quasi-Newton Methods

- Inplement Newton's method with the Hessian modification.
- Use your (or mine) steepest descend code as a starting point.
- Use Matlab's eigenvalue functions, eig, to compute the eigenvalue.
- Use Matlab's backslash operator to solve the Newton system.
- Test the code again on our examples.
- Implement a quasi-Newton (or limited memomry BFGS) method.

Theory of Newton's Method

(1) Show that Newton's method oscillates for $\min f(x)=x^{2}-x^{4} / 4$.
(3) Prove quadratic convergence of Newton's method (Theorem 4.1.1)
(1) Show that (??) holds for a quadratic function.
(3) Show that the rank-one formula terminates for a quadratic:

- Show by induction that $H^{(k+1)} \gamma^{(j)}=\delta^{(j)}$ for all $j=1, \ldots, k$.
- Hence conclude that the method terminates after $n+1$ iterations.
(3) Program the limited-memory BFGS method in Matlab.
(1) Apply Newton's method to nonlinear least-squares:

$$
\underset{x}{\operatorname{minimize}} f(x)=\sum_{i=1}^{m} r_{i}(x)^{2}=r(x)^{T} r(x)=\|r(x)\|_{2}^{2}
$$

What happens, if $r_{i}(x)$ are linear? Can you propose a strategy for handling the case, where $\nabla^{2} r_{i}(x)$ are bounded, and $r_{i}(x) \rightarrow 0$?

