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Abstract Maturing distributed generation (DG) technologies have promoted
interest in alternative sources of energy for commercial building applications
due to their potential to supply on-site heat and power at a lower cost and
emissions rate compared to centralized generation. Accordingly, we present
an optimization model that determines the mix, capacity, and operational
schedule of DG technologies that minimize economic and environmental costs
subject to the heat and power demands of a building and to the performance
characteristics of the technologies. The technologies available to design the sys-
tem include lead-acid batteries, photovoltaic cells, solid oxide fuel cells, heat
exchangers, and a hot water storage tank. Modeling the acquisition and op-
eration of discrete technologies requires integer restrictions, and modeling the
variable electric efficiency of the fuel cells and the variable temperature of the
tank water introduces nonlinear equality constraints. Thus, our optimization
model is a nonconvex, mixed-integer nonlinear programming (MINLP) prob-
lem. Given the difficulties associated with solving large, nonconvex MINLPs to
global optimality, we present convex underestimation and linearization tech-
niques to bound and solve the problem. The solutions provided by our tech-
niques are close to those provided by existing MINLP solvers for small problem
instances. However, our methodology offers the possibility to solve large prob-

K. Pruitt · A. Newman
Division of Economics and Business, Colorado School of Mines, Golden, CO 80401
E-mail: kpruitt@mines.edu
E-mail: anewman@mines.edu

S. Leyffer
Mathematics and Computer Science Division, Argonne National Lab, Argonne, IL 60439
E-mail: leyffer@mcs.anl.gov

R. Braun
Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401
E-mail: rbraun@mines.edu



lem instances that exceed the capacity of existing solvers and that are critical
to the real-world application of the model.

Keywords global optimization · mixed-integer nonlinear programming ·
distributed generation · combined heat and power
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1 Introduction

Distributed generation (DG) has gained interest as an alternative source of
power for new and existing buildings in the residential, commercial, and in-
dustrial sectors. Rather than solely purchasing electricity from a centralized
utility, a building owner can invest in an on-site system to supply power using
non-renewable technologies such as reciprocating engines, microturbines, and
fuel cells, and renewable technologies such as photovoltaic (PV) cells and wind
turbines. When integrated with heat exchangers, solar thermal collectors, and
absorption chillers, on-site systems can also supply some of the heating and
cooling demands. In addition to generation, DG systems can include electric
and thermal storage technologies to address the uncertainty in the supply avail-
able from renewable generators or to take advantage of time periods in which
utility prices are low. Our research considers the integration of technologies
such as these with existing commercial buildings.

There are a number of reasons why DG systems should be considered for
commercial building applications. Between 2005 and 2009, the commercial
sector accounted for 36% of electricity consumption across all sectors, which
resulted in an average annual cost of roughly $127 billion (see [7]). Gumerman
et al. [10] list benefits to the owner of DG systems, which have the potential to
reduce this economic burden. These benefits include a lower cost of electricity
(in some markets), protection from utility price volatility, more reliable power,
and greater energy efficiency. The authors further describe potential benefits
of DG to the local community. When composed of “clean” natural gas-fed or
renewable technologies, DG systems emit less carbon dioxide than most cen-
tralized power plants. Smaller, on-site generation also addresses much of the
opposition in local communities to the construction of large power plants and
transmission lines. Yet, based on Department of Energy projections for elec-
tricity consumption and DG market penetration, on-site systems will supply
a mere 2% of commercial sector electricity demand in 2035 (see [6]).

This disparity between the noted operational benefits of DG systems and
the modest prediction for future market penetration exists for a variety of
reasons. From a purely economic standpoint, many power utilities maintain
low prices for electricity while the capital costs for DG technologies remain
high. This discrepancy has discouraged building owners from investing in DG
systems. However, due to their lower emissions rates compared to centralized
power plants, some DG technologies afford lower environmental costs which
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building owners often have no economic incentive to internalize. Properly con-
sidering all of the costs associated with generation, which include environmen-
tal costs and other externalities, effectively increases the price of electricity
from the utility and may make DG more economically viable. Finally, DG has
experienced limited implementation simply due to a lack of understanding re-
garding how to design (i.e., configure and size) and dispatch (i.e., operate) such
mixed-resource systems. The objective of our research is to address this lack
of understanding with an optimization model that determines how to design
and dispatch a DG system at minimum economic and environmental cost.

Previous research regarding DG focuses on various aspects of the optimal
system design and dispatch. Many studies address the optimal performance of
an individual DG technology, but do not resolve the system-level design and
dispatch problem of integrating, sizing, and operating multiple technologies.
Other research seeks the optimal dispatch of an existing system, but does not
consider the optimal system design. Our research focuses on the optimal de-
sign and dispatch of a DG system. Similarly focused research in the literature
applies simulation models, evolutionary algorithms (EAs), or more traditional
mathematical programming algorithms, such as branch-and-bound, to the de-
sign and dispatch problem (e.g., [8], [2], [22], and [20]). In general, studies
that apply simulation or EAs cannot guarantee the global optimality of their
solutions. The existing applications of branch-and-bound to the design and dis-
patch problem provide the guarantee of global optimality, but fail to consider
many of the detailed performance characteristics of the technologies that are
required to realistically model the system operation. Our research contributes
to the literature by providing techniques for determining the provably glob-
ally minimum cost DG system design and dispatch without sacrificing realistic
operation of the technologies.

Modeling the operation of such a complex system requires constraints to
control the operational status (i.e., on or off), capacity, ramping (i.e., increas-
ing or decreasing power output), and variable efficiency of the generators,
as well as constraints to control the state-of-charge (i.e., inventory) of elec-
tric storage technologies and the temperature of thermal storage technologies.
These constraints can include integer variables in each time period, connec-
tions between consecutive time periods, and nonlinear equalities. Given all
of these characteristics, the resulting model is a large, nonseparable, noncon-
vex, mixed-integer, nonlinear programming (MINLP) problem. The algorithms
suitable for solving large, nonconvex MINLPs are limited and dependent on
the problem structure. The application of a nonlinear branch-and-bound al-
gorithm requires methods to obtain global upper and lower bounds on the
objective value at each node in order to converge at the optimal solution.
However, these bounds can be difficult to obtain for large, nonconvex prob-
lems. Thus, we develop problem-specific convex underestimation techniques,
motivated by our engineering insight, to obtain global lower bounds on the
objective value of our MINLP. We also develop a linearization heuristic to ob-
tain integer-feasible solutions, and thus global upper bounds, for our MINLP.
These bounding techniques can be applied as part of a nonlinear branch-and-
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Fig. 1 Combined heat and power (CHP), distributed generation (DG) system consisting
of photovoltaic (PV) cells, power-only and CHP solid-oxide fuel cells (SOFCs), lead-acid
batteries, and a hot water storage tank.

bound algorithm to solve large instances of the DG system design and dispatch
problem to global optimality.

The remainder of this paper is organized as follows: Section 2 presents the
formulation of the MINLP. In Section 3, we discuss the problem structure, the
convex underestimation of the MINLP, and our linearization heuristic. Section
4 compares the solutions provided by our techniques with those provided by
existing solvers. Finally, Section 5 presents concluding remarks.

2 Model

The specific system addressed in this research is depicted in Figure 1. We
consider the retrofit of an existing commercial building with a combined heat
and power (CHP), DG system. Prior to DG acquisition, the building receives
electricity from the power utility (i.e., macrogrid) and heat from a natural
gas-fired boiler. The cooling demand is met by existing vapor-compression air
conditioning units and is included as part of the power demand. The heat
demand includes space and water heating, both of which are met with hot
water (i.e., space heat is provided by hot water radiators). The DG system be-
ing considered for acquisition generates power with fixed-tilt PV cells and/or
natural gas-fed solid oxide fuel cells (SOFCs) which, according to Greene and
Hammerschlag [9], provide lower carbon emissions than other DG-scale gen-
erators. The CHP SOFCs are integrated with heat exchangers and a water
tank, which allow for the storage of thermal energy in the form of hot water.
The system also includes the option for electric storage using lead-acid batter-
ies. We do not consider other non-renewable generators, wind turbines, solar
thermal, or absorption chillers. However, our model can be adapted to include
these technologies. Next, we provide a general description of the system model
followed by the detailed mathematical formulation.
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2.1 Model Description

Our model includes parameters for the time fidelity and horizon being con-
sidered, the heat and power demands of the building, the pricing and carbon
emissions rates of the utilities, and the capital and operational costs, carbon
emissions rates, and performance characteristics of all the technologies in the
system. All of these parameters are treated as deterministic.

The model includes two types of variables: design and dispatch. The de-
sign variables establish the configuration and capacity of the DG system. In
other words, these variables determine how many of each DG technology in
Figure 1 to acquire. Since generators and batteries can only be purchased in
discrete sizes, their associated design variables are restricted to integer values.
However, the acquisition of CHP SOFCs includes a hot water storage tank,
the volume of which can be increased by a continuous number of gallons. If
none of the DG technologies is acquired, then the system is reduced to the
existing configuration, which consists of only the macrogrid and the boiler.

The dispatch variables prescribe the distribution of energy across the sys-
tem in each time period. In other words, these variables determine the flow of
power, heat, and natural gas along the arrows depicted in Figure 1. If none
of the DG technologies is acquired, the system dispatch consists of supplying
all of the power demand with the macrogrid and all of the heat demand with
the boiler. However, if some DG technologies are acquired, then our model
determines the share of demand supplied by these technologies.

The objective of our model is to determine the DG system design and
dispatch which minimizes the total cost incurred by the building owner to
meet demand over the time horizon of interest. We assume the building owner
and system owner are the same entity. The total cost includes the capital and
operational costs of the acquired technologies, as well as the operational costs
from the macrogrid and boiler. The operational costs include operations and
maintenance (O&M) costs, the cost of purchased natural gas and electricity,
and the taxes paid for the carbon emissions from both the on-site system and
the macrogrid’s centralized generation. The cost of purchased electricity is a
net cost, which considers the sale of electricity (i.e., net-metering) back to the
macrogrid.

Our model includes constraints on the power and heat demands of the
building, restrictions imposed by the utilities, and limits on the performance
of the technologies. The power demand must be supplied in each time period
by the macrogrid and/or by any acquired DG technologies. According to typ-
ical net-generation regulations imposed by the utility, the total DG-generated
power which is sold to the macrogrid in each billing period cannot exceed the
total power purchased from the macrogrid. The heat demand must be supplied
by the boiler and/or by the water storage tank. In supplying power and heat,
the DG system is constrained by the minimum and maximum capacities of all
the acquired technologies. The SOFCs are additionally constrained by their
operating status and by their ability to ramp power output between time peri-
ods. The model also limits increases and decreases to the inventories of electric
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and thermal energy for the batteries and water storage tank, respectively. Fi-
nally, we include a number of constraints to control the complex interactions
between the technologies which are acquired and operated within the system.

2.2 Mathematical Formulation

We now present the mathematical formulation of our problem, henceforth
referred to as (P). In general, we use lower-case letters for parameters and
upper-case letters for variables. However, we also use lower-case letters for
indices and upper-case script letters for sets. Superscripts and accents distin-
guish between parameters and variables that utilize the same base letter, while
subscripts identify elements of a set. Some parameters and variables are only
defined for certain set elements, which are listed in each definition. The units
of each parameter and variable are provided in brackets after its definition.
Throughout the definitions, “technology” is abbreviated as “tech.”, “average”
is abbreviated as “ave.”, and “respectively” is abbreviated as “resp.”

Sets

n ∈ N : set of all months

t ∈ Tn : set of all hours in month n (T =
⋃
n Tn)

i ∈ I : set of all cost elements

j ∈ J : set of all techs.

Note: To avoid verbosity, we define the elements of J numerically as
1=Battery, 2=PV, 3=Power SOFC, 4=CHP SOFC, 5=Storage Tank, 6=Boiler.

Time and Demand Parameters

δ = demand time increment [hours]

dPt , d
H
t = ave. power and heat demand, resp., in hour t [kW]

Cost and Emissions Parameters

cj = amortized capital cost of each tech. j = 1, ...5 [$/kWh, $/kW, or $/gal]

mj = ave. O&M cost of each tech. j = 2, 3, 4, 6 [$/kWh]

pt, gt = price of power and gas, resp., from the utility in hour t [$/kWh]

pmax
n = peak demand price of power from the utility in month n [$/kW/month]

z = tax on carbon emissions [$/kg]

zp, zg = ave. carbon emissions rate for power and gas, resp. [kg/kWh]

Power Generation and Storage Parameters

koutj , kinj = power rating out of and into, resp., each tech. j = 1, ...4 [kW]

smax
j , smin

j = max and min, resp., storage capacity of tech. j = 1 [kWh]

ajt = ave. availability of tech. j = 2 based on weather in hour t [fraction]

µj = max turn-down (i.e., min power output) of each tech. j = 3, 4 [fraction]

σj = start-up time for each tech. j = 3, 4 to reach µj [hours]

rupj , rdown
j = max ramp-up and down rate, resp., for each tech. j = 3, 4 [kW/hr]
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ηmax
j , ηmin

j = max and min, resp., electric efficiency of each tech. j = 1, 3, 4
[fraction]

Heat Generation and Storage Parameters

vmax
j , vmin

j = max and min, resp., storage capacity of tech. j = 5 [gallons]

ηj = ave. thermal efficiency of each tech. j = 5, 6 [fraction]

αj = mean ambient heat loss of water stored in tech. j = 5 [fraction]

γj = ave. exhaust gas output from tech. j = 4 per natural gas input [kg/kWh]

hj = specific heat of fluid output from each tech. j = 4, 5 [kWh/(kg ◦C) or
kWh/(gal ◦C)]

τoutj , τ inj = ave. fluid temperature out of and into, resp., each tech. j = 4, 5, 6
[◦C]

τmax, τmin = max and min, resp., temperature of water in the system [◦C]

System Design Variables

Ci = total cost of cost element i over the time horizon [$]

Aj = number of each tech. j = 1, ...5 acquired [integer]

Vj = water storage capacity of tech. j = 5 [gallons]

Power Dispatch and Storage Variables

Uout
t , U in

t = power purchased from and sold to the utility, resp., in hour t [kW]

Umax
n = max power purchased from the utility in month n [kW]

P out
jt = aggregate power output from each tech. j = 1, ...4 in hour t [kW]

P in
jt = aggregate power input to tech. j = 1 in hour t [kW]

Sjt = aggregate state-of-charge of tech. j = 1 at the start of hour t [kWh]

Njt = number of each tech. j = 3, 4 operating in hour t [integer]

Ńjt = increased number of each tech. j = 3, 4 operating from t−1 to t [integer]

Ejt = electric efficiency of each tech. j = 3, 4 operating in hour t [fraction]

Heat Dispatch and Storage Variables

Gjt = aggregate natural gas input to each tech. j = 3, 4, 6 in hour t [kW]

F out
jt = flowrate of water out of tech. j = 5 in hour t [gal/hr]

F in
jt = flowrate of exhaust gas into tech. j = 5 in hour t [kg/hr]

Tjt = temperature of water stored in technology j = 5 in hour t [◦C]

Bin
jt = 1 if water in tech. j = 5 is above (τ in5 +ε) in hour t, 0 otherwise [binary]

Bout
jt = 1 if water in tech. j = 5 is above τout6 in hour t, 0 otherwise [binary]

Problem (P)
(see §2.3.1 Minimum Total Cost)

Minimize ∑
i∈I

Ci (1)

subject to
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(see §2.3.2 Power and Heat Demand)

(ηmax
1 P out

1t − P in
1t ) +

∑
j=2..4

P out
jt + (Uout

t − U in
t ) = dPt ∀t ∈ T (2a)

h5(τout6 − τ in5 )F out
5t

[(
1−

[
1− τout6 − τmin

T5t − τmin

]
Bout

5t

)−1]
= dHt ∀t ∈ T (2b)

(see §2.3.3 Utility Restrictions)

Umax
n ≥ Uout

t ∀n ∈ N , t ∈ Tn (3a)∑
t∈Tn

U in
t ≤

∑
t∈Tn

Uout
t ∀n ∈ N (3b)

(see §2.3.4 Power Capacity)

P out
1t ≤ kout1 A1 ∀t ∈ T (4a)

P in
1t ≤ kin1 A1 ∀t ∈ T (4b)

P out
2t ≤ a2tkout2 A2 ∀t ∈ T (4c)

µjk
out
j Njt ≤ P out

jt ≤ koutj Njt ∀j = 3, 4, t ∈ T (4d)

Njt ≤ Aj ∀j = 3, 4, t ∈ T (4e)

(see §2.3.5 Electric Efficiency)

Ejt =

(
ηmax
j − µjηmin

j

1− µj

)
−
(
ηmax
j − ηmin

j

koutj (1− µj)

)(
P out
jt

Njt

)
∀j = 3, 4, t ∈ T (5a)

(see §2.3.6 Natural Gas Consumption)

Gjt =
P out
jt

Ejt
∀j = 3, 4, t ∈ T (6a)

G6t =
h5F

out
5t (τout6 − T5t)(1−Bout

5t )

η6
∀t ∈ T (6b)

(see §2.3.7 Start Up and Ramping)

Nj,t+1 −Njt ≤ Ńj,t+1 ∀j = 3, 4, t < |T | (7a)

−δrdown
j Njt ≤ P out

j,t+1 − P out
jt ≤ δr

up
j Nj,t+1 ∀j = 3, 4, t < |T | (7b)

(see §2.3.8 Power Storage)

S1,t+1 − S1t = δ(ηmax
1 P in

1t − P out
1t ) ∀t < |T | (8a)

smin
1 A1 ≤ S1t ≤ smax

1 A1 ∀t ∈ T (8b)

S1,1 = S1,|T | (8c)

(see §2.3.9 Heat Capacity)

F in
5t ≤ γ4G4t ∀t ∈ T (9a)
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(see §2.3.10 Heat Storage)

T5,t+1 − (1− α5B
in
5t)T5t =

δη5h4F
in
5t (τ

out
4 − T5t)− δh5F out

5t (T5t − τ in5 )

h5V5
∀t < |T | (10a)

T5t − τ in5 ≤ (τmax − τ in5 )A5 ∀t ∈ T (10b)

εBin
5t ≤ T5t − τ in5 ≤ ε+ (τmax − τ in5 − ε)Bin

5t ∀t ∈ T (10c)

(τ in5 − τout6 )(1−Bout
5t ) ≤ T5t − τout6 ≤ (τmax − τout6 )Bout

5t ∀t ∈ T (10d)

T5,1 = T5,|T | (10e)

(see §2.3.11 Heat Storage Acquisition)

A5 ≤ A4 ≤

⌈
max
t∈T
{dPt }

kout4

⌉
A5 (11a)

vmin
5 ≤ V5 ≤ vmax

5 (11b)

(see §2.3.12 Non-negativity and Integrality)

P out
jt , P in

jt , Sjt, Ńjt, Ejt, Gjt, F
out
jt , F in

jt , Tjt, Vj ≥ 0 ∀j ∈ J , t ∈ T (12a)

Uout
t , U in

t , U
max
n ≥ 0 ∀n ∈ N , t ∈ T (12b)

Aj , Njt ≥ 0, integer ∀j 6= 5, t ∈ T (12c)

Aj , B
in
jt , B

out
jt binary ∀j = 5, t ∈ T (12d)

2.3 Detailed Discussion of Formulation

Next, we discuss the objective function and constraints of (P) in more detail.

2.3.1 Minimum Total Cost

The objective is to minimize the total cost over the entire time horizon. The
total cost expressed in the objective function (1) includes the capital and op-
erational costs of the acquired technologies, as well as the existing operational
costs resulting from demand met by the macrogrid and boiler.

The fixed capital cost, C1, consists of the total amortized cost of all the
DG technologies that are acquired:

C1 = c1s
max
1 A1 +

∑
j=2..4

cjk
out
j Aj + c5(V5 − vmin

5 ).

The capital cost of the CHP SOFCs is greater than that of the power-only
SOFCs in order to account for the acquisition of the water storage tank and
heat exchangers. The water tank’s initial size (vmin

5 ) is based on the building
heating load. However, the tank size can be increased for an additional cost
per gallon.
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The initial capital cost for each of the technologies can be amortized in
a number of different ways. One method of amortization uses the parameters
and general equation that follow:

ρ = interest rate [% (fraction) per time horizon]

λj = average lifetime of technology j [number of time horizons]

κj = initial capital cost of technology j [$/kWh, $/kW, or $/gal]

cj =
κje

ρλj

λj
. (13)

The numerator of Equation (13) calculates what κj is eventually worth after
investment at interest rate ρ over the average lifetime λj of technology j (see
[16]). Thus, the numerator represents the lifetime opportunity cost of acquiring
the technology rather than investing the initial capital cost at the current rate
of return. The lifetime opportunity cost is then divided by λj to determine
the opportunity cost per time horizon, which we call the amortized capital
cost cj . Ultimately, the primary focus of this research is not on the method
of amortization. Rather, the final amortized cost (cj) is the value of interest.
Equation (13) is just one method for calculating that cost, without loss of
generality.

The variable operational costs of the DG system consist of O&M costs for
the PV cells and SOFCs, the cost of natural gas to fuel the SOFCs, the cost
of the carbon emissions associated with the combustion of natural gas, and
the negative cost (i.e., revenue) from the sale of power to the macrogrid. The
O&M costs, C2, for the PV cells and SOFCs increase with the energy output:

C2 =
∑

j=2..4,t

mjδP
out
jt .

The O&M cost for the CHP SOFCs is greater than for the power-only SOFCs
to account for the additional operational costs of the water tank and heat
exchangers. Due to the limited need for variable maintenance on lead-acid
battery systems, the O&M costs for the batteries are assumed fixed and are
treated as part of the capital cost. The parameter δ is included to appropriately
convert units of power (kW) to units of energy (kWh).

Fuel and emissions costs, C3, are incurred both to start up the SOFCs (i.e.,
to reach operating temperature) and to operate them within their performance
limits. These costs depend on the price (gt) of natural gas from the local
utility, the price (zzg) of carbon emissions, as determined by the tax rate
and the emissions rate, and the total amount of gas required for start up and
operation:

C3 =
∑

j=3..4,t

(gt + zzg)
[σjµjkj

2ηmin
j

Ńjt + δGjt

]
.

Our formulation assumes a carbon tax exists where the building is located and
that the tax is paid by the building owner. We further assume that the SOFCs
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consume natural gas with the same fixed electric efficiency during start up
as at maximum power output. Thus, the amount of gas required for a single
SOFC to reach operating temperature is treated as a fixed value. The variable
Ńjt determines how many SOFCs start up in a given time period, which allows
for the calculation of the total amount of gas required. Once a SOFC reaches
operating temperature, the amount of natural gas (Gjt) consumed depends on
the power output and the electric efficiency as defined in constraint (6a).

The final operational cost for the DG technologies is the negative cost, C4,
associated with the sale of power to the macrogrid:

C4 = −
∑
t

ptδU
in
t .

We assume that net-metering is available with the local power utility and that
the utility can purchase power from the building owner in any hour at the
prevailing market rate. However, the total power purchased by the utility in
each billing cycle is subject to the restrictions imposed by constraint (3b).

In addition to the capital and operational costs of the acquired DG tech-
nologies, the system incurs the cost of electricity purchased from the macrogrid
and the operational costs for the boiler. If DG technologies are not acquired,
then the macrogrid and boiler costs are the only costs. The macrogrid charges
both hourly and peak monthly rates, which determine the total electricity cost,
C5:

C5 =
∑
t

(pt + zzp)δUout
t +

∑
n

pmax
n Umax

n .

Depending on the rate schedule dictated by the power utility for the building
and location of interest, the charges pt and pmax

n could vary by time-of-day
and/or season. We must also consider the cost of the carbon emitted by the
generation sources employed by the macrogrid. Our formulation applies an
average carbon emissions rate (zp) for all of the macrogrid’s generation sources
and assumes that the building owner is taxed for the emissions associated with
the purchased electricity. For both natural gas and power utilities, the fixed
monthly customer charge for service is not included in the formulation since
this cost is constant and therefore does not impact the optimal solution.

Finally, the total cost includes the O&M, fuel, and emissions costs, C6, for
the existing boiler:

C6 =
∑
t

(η6m6 + gt + zzg)δG6t.

Similar to the SOFCs, the fuel and emissions costs depend on the price of
natural gas and the price of carbon emissions. In contrast to the SOFCs, the
average thermal efficiency (η6) of the boiler is treated as fixed. The amount of
natural gas (G6t) consumed depends on whether the temperature of the water
flowing to the boiler is above or below the required delivery temperature. The
relationship between the water temperature and the amount of natural gas
consumed by the boiler is defined in constraint (6b).
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2.3.2 Power and Heat Demand

Constraint (2a) ensures the hourly demand for power is met by the net dis-
charge of the batteries (after accounting for the discharge efficiency ηmax

1 ),
the PV cells, the power-only and CHP SOFCs, and the net supply from the
macrogrid. Constraint (2b) dictates that the hourly demand for heat must be
met by a mix of hot and cold water flow. The demanded hot water, which is
heated by the CHP SOFC exhaust and/or by the boiler, must be delivered
at a fixed temperature (τout6 ). If the temperature of the hot water is above
delivery temperature (i.e., Bout

5t = 1), then the hot water must be mixed with
cold water at the main supply temperature (τmin). As the temperature of the
tank water increases, the required flow of cold water for mixing increases, and
the required flow of hot water from the tank decreases.

2.3.3 Utility Restrictions

Constraint (3a) establishes the peak power load supplied by the macrogrid in
each monthly billing cycle as the largest hourly load supplied by the macrogrid
each month. Constraint (3b) dictates that the DG system cannot be a “net-
generator” of power in each monthly billing cycle. Accordingly, the total power
sold to the macrogrid each month cannot exceed the total power purchased
from the macrogrid each month.

2.3.4 Power Capacity

Constraints (4a) and (4b) limit the rate at which power is discharged from
and charged to, respectively, all of the acquired batteries. If batteries are not
acquired, then the charge and discharge rates are set equal to zero. Constraint
(4c) ensures that only a fraction (a2t) of the nameplate power capacity of the
acquired PV cells is available in each hour, based on the prevailing weather
conditions. Because the solar radiation is often low enough that the available
power from PV cells is zero (e.g., during the night), there is no minimum
power output enforced for PV cells. Constraint (4d) limits the maximum and
minimum power output of all operating SOFCs in a given hour. The maximum
turn-down (µj) results from the minimum operating temperature necessary
for the SOFCs to produce power. Constraint (4e) dictates that the number of
SOFCs operating in a given hour cannot exceed the number acquired. Power
supplied by the macrogrid in each hour is unconstrained in this formulation.

2.3.5 Electric Efficiency

Constraint (5a) demonstrates that the average electric efficiency across all
SOFCs is a function of the number (Njt) of SOFCs operating and the to-
tal power (P out

jt ) they produce. Our formulation assumes that each operating
SOFC provides an equal share of the total power produced in a given hour.
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Using the maximum (ηmax
j ) and minimum (ηmin

j ) electric efficiencies as end-
points, we treat the average electric efficiency of all SOFCs as a decreasing
linear function of the share of total power provided by a single SOFC.

2.3.6 Natural Gas Consumption

Constraint (6a) dictates that the total amount of natural gas consumed by all
of the operating power-only or CHP SOFCs in each hour is the quotient of
their total power output and their average electric efficiency. Constraint (6b)
calculates the amount of natural gas consumed by the boiler in each hour as
the quotient of its heat output and its average thermal efficiency. The amount
of heat the boiler must provide depends on the temperature (T5t) of the water
from the storage tank, if one is acquired. We assume the hot water must
be delivered to the building’s faucets and radiators at a fixed temperature
(τout6 ). If the temperature of the water from the storage tank is below τout6

in a given hour (i.e., Bout
5t = 0), then the boiler must provide the additional

heat to increase the water temperature to τout6 . In this case, the amount of
heat is calculated as the product of the specific heat of the tank water (h5),
the flowrate of the tank water (F out

5t ), and the difference (τout6 − T5t) between
the delivery temperature and the tank water temperature. If the temperature
of the water from the storage tank is at or above τout6 in a given hour (i.e.,
Bout

5t = 1), then no additional heating from the boiler is required. If a storage
tank is not acquired, then the boiler must provide all of the heat demand,
which entails heating all of the water from the average return temperature
(τ in5 ) up to delivery temperature (τout6 ).

2.3.7 Start Up and Ramping

Constraint (7a) establishes the number of SOFCs that start up between time
periods t and t+ 1. If there is an increase in the number of operating SOFCs
between time periods (i.e., Nj,t+1 > Njt), then a positive number (Ńj,t+1)
of SOFCs incur the cost of fuel for start up. The cost-minimizing objective
induces any solution to set Ńj,t+1 to the smallest value allowable, given the

constraints. Thus, in each hour t, Ńj,t+1 is set equal to Nj,t+1 − Njt when

Nj,t+1 > Njt and zero otherwise (i.e., Ńj,t+1 = max{Nj,t+1 −Njt, 0}). Given
this equality and the integrality restrictions on Njt, we obtain integer values

for Ńjt without including such a constraint in the model.

According to constraint (7b), if SOFC power output increases from hour
t to hour t + 1 (i.e., P out

j,t+1 > P out
jt ), then it cannot increase by more than

the total ramp-up capacity of all the SOFCs that are operating in hour t+ 1.
Similarly, if SOFC power output decreases between consecutive hours (i.e.,
P out
j,t+1 < P out

jt ), then it cannot decrease by more than the total ramp-down
capacity of the SOFCs operating in hour t. The parameter δ is included to
properly convert units from kW/hr to kW.
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2.3.8 Power Storage

Constraint (8a) demonstrates that the change in the inventory of energy in
the acquired batteries from the start of hour t to the start of hour t + 1 is
determined by the net power added to the batteries in hour t (after accounting
for the charge efficiency ηmax

1 ). The parameter δ is included to convert units
from kW to kWh. According to constraint (8b), the energy in all of the acquired
batteries at the start of any hour must remain within the total minimum and
maximum state-of-charge. If batteries are not acquired, then the total state-
of-charge is set equal to zero in all hours. Constraint (8c) requires the batteries
to attain the same state-of-charge in the final time period as in the initial time
period.

2.3.9 Heat Capacity

The water in the storage tank is heated with the exhaust gas from the CHP
SOFCs. Thus, constraint (9a) limits the maximum flowrate of hot exhaust gas
into the water tank in each hour to the exhaust gas output by the CHP SOFCs.
The exhaust gas output depends on the flow of natural gas into the CHP
SOFCs, which is calculated in constraint (6a). For time periods in which the
use of all of the available exhaust gas would cause the tank water temperature
to exceed its maximum, we assume the excess exhaust gas is vented. We further
assume that the boiler is sized to meet the peak heat load of the building. Thus,
the maximum capacity of the boiler is unconstrained in our formulation.

2.3.10 Heat Storage

Constraint (10a) demonstrates that the change in the temperature of the tank
water from the start of hour t to the start of hour t + 1 (after accounting
for heat loss to the ambient) is determined by the net thermal energy added
to the water in hour t and the heat capacity of the water. Though in reality
the ambient heat loss is a function of the temperature difference between
the tank water and the ambient, we apply a fixed heat loss factor (α5) for
simplicity. However, the ambient heat loss factor only applies if the tank water
temperature is above the average temperature of the water upon return to the
tank (i.e., Bin

5t = 1). The thermal energy added to the tank is the product of
the time increment (δ), the heat exchanger efficiency (η5), the specific heat
(h4) and flowrate (F in

5t ) of the CHP SOFC exhaust gas, and the temperature
difference (τout4 −T5t) between the exhaust gas and the tank water. The thermal
energy removed from the tank is the product of the time increment (δ), the
specific heat (h5) and flowrate (F out

5t ) of the tank water, and the temperature
difference (T5t − τ in5 ) between the tank water and the return water. The net
thermal energy added to the water is divided by the heat capacity (h5V5) of
the volume of water to determine the net temperature change.

Constraint (10b) demonstrates the impact of not acquiring a storage tank.
If a tank is not acquired (i.e., A5 = 0), then the “tank” water is reduced to the
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temperature of the return water in every hour. As a result, all of the water must
be heated to delivery temperature by the boiler. If a tank is acquired, then the
water in the tank is limited to the maximum temperature (τmax) in all hours.
Constraint (10c) determines whether the tank water temperature is arbitrarily
close (within ε) to the return water temperature. This constraint establishes
the value of the binary variable (Bin

5t) which controls the temperature decay
due to heat loss to the ambient. Constraint (10d) determines whether the tank
water is above or below the hot water delivery temperature. This constraint
establishes the value of the binary variable (Bout

5t ) which controls the need for
additional heating from the boiler or for mixing with cold water. Constraint
(10e) requires the tank water to attain the same temperature in the final time
period as in the initial time period.

2.3.11 Heat Storage Acquisition

Constraint (11a) ensures that a water tank is acquired if and only if at least
one CHP SOFC is acquired. We use a conservative upper bound on the number
of CHP SOFCs acquired to control this if-and-only-if relationship between the
binary variable A5 and the integer variable A4. Constraint (11b) bounds the
selected capacity for the water storage tank based on the heat demands of the
building of interest. The lower bound on the tank size is the initial capacity,
the cost of which is included in the acquisition of CHP SOFCs.

2.3.12 Non-negativity and Integrality

Finally, constraints (12a) - (12d) ensure all of the variables in our formulation
assume non-negative values. In addition to non-negativity restrictions, con-
straints (12c) and (12d) establish the integrality of the appropriate variables.

3 Solving the MINLP

In this section, we discuss the mathematical structure of (P), as well as the
lower and upper bounding techniques we develop to solve instances of (P).

3.1 Mathematical Structure

(P) has a linear objective, 22|T |+ |N |+ 4 variables (2|T |+ 4 general integer,
2|T | + 1 binary), and 33|T | + |N | − 2 constraints (7|T | − 1 nonlinear), not
including non-negativity and integrality restrictions. Table 1 lists the number
of variables and constraints contained in (P) for various time horizons at the
hourly level of fidelity.

Upon expanding and rearranging nonlinear constraints (2b), (5a), (6a),
(6b), and (10a), and suppressing the linear terms, we find that all of the non-
linearities in (P) consist of bilinear and trilinear terms in equality constraints
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Table 1 Size of (P) instances for time horizons of interest.

Time Horizon Number of Variables Number of Constraints
(Hours) (Integer/Binary) (Nonlinear)

One Day (24) 533 (52/49) 791 (167)
Two Days (48) 1,061 (100/97) 1,583 (335)
Four Days (96) 2,117 (196/193) 3,167 (671)
One Week (168) 3,701 (340/337) 5,543 (1,175)
One Month (744) 16,373 (1,492/1,489) 24,551 (5,207)
One Year (8,760) 192,736 (17,524/17,521) 289,090 (61,319)

(see below). Thus, the constraint set is nonconvex.

Linear + h5(τout6 − τ in5 )F out
5t T5t + dHt T5tB

out
5t = 0

Linear +NjtEjt = 0

Linear +GjtEjt = 0

Linear + (h5/η6)(τout6 F out
5t B

out
5t + F out

5t T5t − F out
5t T5tB

out
5t ) = 0

Linear + h5(V5T5,t+1 − V5T5t + α5V5T5tB
in
5t + δF out

5t T5t) + δη5h4F
in
5tT5t = 0

Ultimately, in order to support long-term capital investment decisions, we
wish to determine a DG system design and dispatch that meets the demands
of a building for a typical year at the globally minimum total cost. However,
the application of a nonlinear branch-and-bound algorithm to solve such a
problem requires methods for determining global upper and lower bounds on
the objective value. When applied to an integer-restricted minimization prob-
lem, branch-and-bound generates a non-increasing sequence of global upper
bounds on the objective value and a non-decreasing sequence of global lower
bounds on the objective value which eventually converge (within some tol-
erance) to provide the optimal solution. In general, global upper bounds are
provided by integer-feasible solutions obtained with local solvers and global
lower bounds are provided by solutions to continuous relaxations of the integer
problem. Both types of bounds can be difficult to obtain for large, noncon-
vex MINLPs. Our testing indicates few existing MINLP solvers are capable
of finding solutions to one-day instances of (P), and none of those tested can
provide solutions for time horizons of one week or greater. Additionally, the
nonconvex nature of (P) dictates that solutions to continuous relaxations do
not necessarily provide global lower bounds. Accordingly, the next two sec-
tions discuss our techniques to obtain lower and upper bounds which can be
applied in a nonlinear branch-and-bound algorithm.

3.2 Lower Bounding: Convex Underestimation

A lower bound for a mixed-integer linear programming (MILP) minimiza-
tion problem is obtained by relaxing the integrality restrictions and solving
the resulting continuous problem. A lower bound for an MINLP minimization
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problem can also be obtained in this manner as long as the problem is con-
vex. However, nonconvex problems provide no guarantee of obtaining a global
lower bound when solving the NLP relaxation. Thus, we formulate a convex
underestimation problem, henceforth referred to as (U), to obtain a global
lower bound on (P).

Convex underestimation methods similar to those suggested by McCormick
[14] are still applied in the literature today. According to Equations (3) and (4)
of Adjiman and Floudas [1], bilinear and trilinear terms, respectively, are un-
derestimated by their convex envelope. The convex envelopes are constructed
by replacing each of the nonlinear terms with a new variable and adding linear
inequality constraints that bound the new variable. Bilinear terms require four
constraints on the new variable while trilinear terms require eight constraints.
Considering some of our nonlinear terms are repeated across constraints, (P)
contains 9|T | − 1 distinct bilinear terms and 2|T | − 1 distinct trilinear terms
that must be replaced with new variables. Accordingly, the (U) formulation is
identical to (P) with the exceptions of adding 11|T | − 2 new continuous vari-
ables, replacing each of the bilinear and trilinear terms with the appropriate
new continuous variable, and adding 52|T |−12 new linear constraints. Hence,
(U) is an MILP, the solution to which provides a global lower bound on the
optimal solution to (P).

The formulation of the convex envelopes in (U) requires the following upper
and lower bounds on each of the original variables in the bilinear and trilinear
terms:

Variable bounds applied in (U)

0 ≤ Njt ≤

⌈
max
t∈T
{dPt }

koutj

⌉

0 ≤ Gjt ≤
( koutj

ηmin
j

)⌈max
t∈T
{dPt }

koutj

⌉

0 ≤ F in
5t ≤ γ4

( kout4

ηmin
4

)⌈max
t∈T
{dPt }

kout4

⌉
ηmin
j ≤ Ejt ≤ ηmax

j (14)(
τout6 − τmin

τmax − τmin

)(
dHt

h5(τout6 − τ in5 )

)
≤ F out

5t ≤
(

dHt
h5(τout6 − τ in5 )

)
τ in5 ≤ T5t ≤ τmax

0 ≤ Bin
5t ≤ 1

0 ≤ Bout
5t ≤ 1

vmin
5 ≤ V5 ≤ vmax

5 .

The number of SOFCs operating (Njt) in any hour is bounded above by the
number of SOFCs acquired, according to constraint (4e). We apply a con-
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servative upper bound on the number of SOFCs acquired by assuming the
building owner never buys more SOFCs than what is required to supply the
peak power load without assistance from the macrogrid. This upper bound
on the number of SOFCs acquired also limits the maximum amount of nat-
ural gas (Gjt) fed to the SOFCs in any hour, according to constraints (4d),
(5a), and (6a), and the maximum flowrate (F in

5t ) of CHP SOFC exhaust heat
into the water tank, according to constraint (9a). The electric efficiency (Ejt)
of the SOFCs is bounded above and below by the maximum and minimum
efficiencies, respectively, according to constraint (5a). The flowrate (F out

5t ) of
heated water out of the tank is bounded above by the demand flowrate with
no cold water mixing and bounded below by the demand flowrate with the
maximum cold water mixing, according to constraints (2b) and (10d). The
temperature (T5t) of the water in the tank is bounded above and below by
the maximum and return temperatures, respectively, according to constraint
(10d), while the binary temperature variables (Bin

5t and Bout
5t ) are bounded by

zero and one. Finally, the capacity (V5) of the water tank is bounded by the
same limits dictated in constraint (11b).

We next attempt to tighten the variable bounds in (14) using an optimization-
based approach. With this approach, each of the variables in (14) is maximized
or minimized subject to the constraints in (U) in order to obtain tighter up-
per or lower bounds, respectively. After executing bound tightening on all of
the variable bounds in (14) for various small (i.e., one-day) instances of the
problem, we find that only the upper bound on T5t, the upper bound on Bout

5t ,
and the lower bound on F out

5t benefit from the bound tightening. The fact that
these three bounds can be tightened logically follows from the relationships
dictated by constraints (2b), (10a), and (10d). In certain time periods, the
maximum possible inflow of heat from the CHP SOFCs and the minimum
required outflow of heat to meet demand could make it impossible for the
tank water temperature (T5t) to reach its upper bound (τmax), or even deliv-
ery temperature (τout6 ), in the following time period, according to constraint
(10a). If the tank water temperature is below the delivery temperature, then
the indicator variable (Bout

5t ) must be set to its lower bound (zero), according
to constraint (10d), and the flow of hot water (F out

5t ) must be set to its upper
bound, according to constraint (2b). Based on this information, we expedite
the bound tightening procedure for larger (i.e., two-day and greater) instances
of the problem by only applying the optimization to the upper bound on T5t
(referred to as T̂5t) and subsequently directly calculating the new upper bound
on Bout

5t (referred to as B̂out
5t ) and the new lower bound on F out

5t (referred to
as F̌ out

5t ). To further speed the bound tightening, we relax integrality in (U) as
part of the following algorithm:

Bound Tightening Algorithm

1. Set T̂5t = τmax, B̂out
5t = 1, F̌ out

5t =
(
τout
6 −τmin

τmax−τmin

)(
dHt

h5(τout
6 −τ in

5 )

)
∀t.

2. Loop ∀t ∈ T .
(a) Maximize T5t subject to (U) with integrality relaxed.
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(b) Set T̂5t equal to the objective value resulting from (a).
(c) Set B̂out

5t = 1 if T̂5t > τout6 and 0 otherwise.

(d) Set F̌ out
5t =

(
1−

[
1− τout

6 −τmin

T̂5t−τmin

]
B̂out

5t

)(
dHt

h5(τout
6 −τ in

5 )

)
.

This algorithm can be repeated multiple times to try and achieve even
tighter bounds. However, empirical evidence suggests the majority of the im-
provement in the bounds occurs within the first two to three repetitions. We
also find the algorithm results in the greatest improvement in the bounds
on T5t, B

out
5t , and F out

5t in hours that follow large spikes in the heat demand.
These tighter bounds are then applied in (U), with the original objective func-
tion and integrality once again enforced, to obtain an improved (i.e., greater)
global lower bound on the optimal objective value for (P). For the instances
presented in Section 4, the bound tightening algorithm increases the global
lower bound on (P) by an average of 1.6%. We next present techniques for
obtaining a global upper bound on the optimal objective value for (P).

3.3 Upper Bounding: Linearization Heuristic

An upper bound for an MI(N)LP minimization problem is provided by any
integer-feasible solution. One integer-feasible solution to (P) is to acquire no
DG technologies and meet all of the building’s demand with the macrogrid and
boiler. The cost of this “no DG” solution can be directly calculated, without
solving (P), using the C5 and C6 portions of the objective function and setting
Uout
t = dPt ∀t, Umax

n = max
t∈Tn
{dPt } ∀n, and G6t = dHt /η6 ∀t. However, the “no

DG” solution provides a weak upper bound on the total cost for the optimal so-
lution to (P) if DG technologies are economically viable. Thus, we wish to find
an integer-feasible solution, if one exists, that includes some DG technologies
and provides a lower total cost, and thus a tighter upper bound, than the “no
DG” solution. Integer-feasible solutions can be obtained by solving (P) with
existing MINLP solvers for small problem instances. However, based on our
testing, larger problem instances (i.e., one week and greater) cannot be solved
with the currently available solvers. Accordingly, we next present a lineariza-
tion heuristic, henceforth referred to as (H), for determining integer-feasible
solutions to (P) that can be applied to the large instances.

The intuition behind (H) is the observation that fixing the electric efficiency
of the SOFCs (E3t, E4t) and the tank water temperature (T5t) renders (P) lin-
ear. Simpler models in the literature similarly fix the efficiencies of generators
and fix, or ignore, the temperature of thermal storage devices to avoid nonlin-
earity (e.g., [21]). When E3t and E4t are fixed, constraint (5a) is linearized by
clearing the denominator on the right-hand side of the equation and constraint
(6a) is linear without modification. When T5t is fixed, constraints (10c) and
(10d) fix the values of Bin

5t and Bout
5t , respectively. With T5t, B

in
5t, and Bout

5t all
fixed, constraints (2b) and (6b) are linear without modification and constraint
(10a) is linearized by clearing the denominator on the right-hand side of the
equation. Thus, the (H) formulation is identical to (P) with the exception of
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fixing 3|T | continuous variable values (E3t, E4t, and T5t) and 2|T | binary vari-
able values (Bin

5t and Bout
5t ). Consequently, any feasible solution to the MILP

(H) is feasible for the MINLP (P).
Although we obtain (P)-feasible solutions from (H)-feasible solutions, the

fixed values for E3t, E4t, T5t, B
in
5t, and Bout

5t must be carefully selected in order
to achieve (H)-feasibility. Additionally, not every (P)-feasible solution pro-
duces a total cost less than the “no DG” solution. In general, the fixed variable
values used in (H) will produce lower cost (P)-feasible solutions if those fixed
values are tailored to the power and heat demands of the building of interest.
Hence, we next present techniques for selecting the fixed variable values used
in (H) with the goal of obtaining (P)-feasible solutions that incur a lower total
cost than the “no DG” solution. In presenting these techniques, we distinguish
between two types of system design solutions: DG systems with only power
generation and storage (referred to as “power DG”) and DG systems with
both power and heat generation and storage (referred to as “CHP DG”). De-
pending on the particular problem instance, one of these system design types
may produce a lower cost solution than the other.

For a “power DG” system, the selection of fixed values for E4t, T5t, B
in
5t,

and Bout
5t is trivial. Because there is no SOFC exhaust heat capture in this

case, CHP SOFCs are never acquired and the associated electric efficiency can
simply be set to its minimum. Also, because there is no water storage tank,
the water enters the boiler at return temperature in every hour and must be
fully heated to delivery temperature. Less trivial, however, is the selection of
the fixed values for the power-only SOFC electric efficiency (E3t). One might
ignore the specific power demands of the building and simply fix the efficiency
to the same value (e.g., the minimum, average, or maximum efficiency) in
all hours. However, this approach forces the SOFCs to operate at the same
power output for all hours in which they are utilized (see constraint (5a)) and,
therefore, is unlikely to produce a (P)-feasible solution with a total cost as
low as that produced by efficiency values which are tailored to the power de-
mands. We can obtain these tailored fixed values for E3t from the solution to
(U). Given the underestimation of constraint (5a) in (U), we cannot directly
apply the values for E3t from the solution to (U). However, the solution to
(U) provides valid values for P out

3t and N3t, referred to as P̆ out
3t and N̆3t, that

we use along with constraint (5a) to derive Ĕ3t. These tailored values are ap-
plied in (H) as part of the following algorithm to obtain a (P)-feasible solution:

“Power DG” (P)-feasible Solution Algorithm

1. Solve (U) and store resulting values for P̆ out
3t and N̆3t ∀t.

2. Set T5t = τ in5 , Bin
5t = 0, Bout

5t = 0, and E4t = ηmin
4 ∀t.

3. Set E3t = Ĕ3t =
(
ηmax
3 −µ3η

min
3

1−µ3

)
−
(
ηmax
3 −ηmin

3

kout
3 (1−µ3)

)
(P̆ out

3t /N̆3t) if N̆3t > 0, ηmin
3

otherwise ∀t.
4. Solve (H) and return its solution.

For “CHP DG” systems, the tailored fixed values for E3t and E4t are both
determined from the solution to (U), as previously demonstrated for Ĕ3t with
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“Power DG” systems. However, it may no longer be advisable to trivially fix
the values for T5t, B

in
5t, and Bout

5t to their minima. Fixing these variables to
their minimum values prevents the storage of heat across time periods (see
constraint (10a)) and likely wastes a large portion of the available exhaust
heat from the CHP SOFCs. We would prefer to use as much of the exhaust
heat as possible to keep the tank water as hot as possible and to reduce the
heat provided by the boiler. Hence, the fixed values for T5t, B

in
5t, and Bout

5t

should be tailored to the heat supplied to the water tank by the CHP SOFCs
and the heat demanded from the water tank by the building.

Any fixed values selected for T5t, B
in
5t, and Bout

5t must satisfy constraints
(10a) through (10e) to be (H)-feasible. In order to derive fixed values for T5t
that satisfy constraint (10a), we require values for the flowrate of heat from
the CHP SOFCs (F in

5t ), the flowrate of hot water from the tank (F out
5t ), and

the tank size (V5). The values for F in
5t and V5 are determined from the so-

lution to (U). Given P̆ out
4t and Ĕ4t, along with constraints (6a) and (9a), we

calculate the maximum flowrate of exhaust gas from the CHP SOFCs in each
hour and use this as the value for F in

5t . The value for V5 is taken directly
from the solution to (U). With a fixed inflow of heat and fixed tank size, we
can iteratively calculate values for T5t that satisfy constraint (10a), values for
Bin

5t that satisfy constraint (10c), and values for Bout
5t that satisfy constraint

(10d). As part of the algorithm, we also calculate values for F out
5t that satisfy

constraint (2b); however, these values are not fixed in (H). Finally, in order
to ensure the satisfaction of constraint (10e), we set the tank temperature in
the initial time period (T5,1) equal to the temperature in the terminal time
period (T5,|T |) after the first execution of the algorithm. We then continue
executing the algorithm until the terminal tank temperature is equal to the
initial tank temperature. Empirically, we find that the terminal temperature is
so insensitive to the initial temperature that only two repetitions total of the
algorithm are necessary. These tailored temperature values are applied in (H)
as part of the following algorithm to obtain a “CHP DG” (P)-feasible solution:

“CHP DG” (P)-feasible Solution Algorithm

1. Solve (U) and store resulting values for P̆ out
jt , N̆jt ∀j, t, and V̆5.

2. Set Ejt = Ĕjt ∀j, t, F in
5t = γ4(P̆ out

4t /Ĕ4t) ∀t, V5 = V̆5, and T5,1 = τmax.
3. Loop ∀t ∈ T .

(a) Set Bin
5t = 1 if T5t > (τ in5 + ε), 0 otherwise.

(b) Set Bout
5t = 1 if T5t > τout6 , 0 otherwise.

(c) Let F out
5t =

(
1−

[
1− τout

6 −τmin

T5t−τmin

]
Bout

5t

)(
dHt

h5(τout
6 −τ in

5 )

)
.

(d) Set T5,t+1 =

max
{
τ in5 ,min{τmax, (1−α5B

in
5t)T5t+

δη5h4F
in
5t (τ

out
4 −T5t)−δh5F

out
5t (T5t−τ in

5 )
h5V5

}
}

.

4. If T5,|T | = T5,1 then go to Step 5. Otherwise, set T5,1 = T5,|T | and return
to Step 3.

5. Solve (H) and return its solution.
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Upon obtaining the “no DG,” “power DG,” and “CHP DG” (P)-feasible
solutions for a given problem instance, we choose the solution with the lowest
cost to provide the tightest upper bound on the optimal solution to (P).

4 Case Studies

In this section, we provide solutions from (U) and (H) for a six-story, 122,000
square foot hotel located in Los Angeles, California. We then compare our
solutions to those provided by existing solvers.

4.1 Building, Utility, and Technology Data

The hourly electricity and heating demands for the hotel are simulated using
a benchmark building model in EnergyPlus (see [4]). The electricity demand
includes lighting, equipment, and cooling, while the heating demand includes
both space and water heating. The hotel’s hourly power and heat demands on
a summer weekday and winter weekday are depicted in Figure 2.

Fig. 2 Power and heat demand for a large hotel located in Los Angeles, California.

Electricity prices are based on Southern California Edison’s rate schedule
for commercial customers (see [18]), while natural gas prices are based on
Southern California Gas Company’s rate schedule for core commercial service
(see [19]). The energy prices from each utility on a summer weekday and winter
weekday are provided in Figure 3. According to Kaffine et al. [12], the average
carbon emissions rate for power plants in the California Independent System
Operator (CAISO) territory, which serves Los Angeles, is 0.15 kg/kWh (≈ 0.16
tons/MWh). This relatively low rate is due to the lack of coal-fired plants and
the prevalence of wind power and natural gas-fired plants. We use a carbon
tax of $0.02 per kg (≈ $20 per ton) and assume the building owner is taxed
for the generation of the purchased power.
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Fig. 3 Electricity and natural gas prices for commercial customers in Southern California.

Table 2 Generator cost and performance parameter values.

Parameter Power SOFC CHP SOFC PV Cell

Initial Capital Cost [$/kW] 2,800 3,360 2,800
O&M Cost [$/kWh] 0.02 0.024 0.04
Nameplate Power Rating [kW] 10 10 10
Ave. Availability [%] 100 100 PVWATTS
Max Turn-Down [%] 20 20 0
Start-up Time [hours] 0.5 0.5 N/A
Max Ramp Rate [kW/h] 16 16 N/A
Max (Min) Electric Efficiency [%] 57 (41) 57 (41) N/A
Exhaust Output per Fuel Input [kg/kWh] N/A 2.05 N/A
Ave. Exhaust Temperature [◦C] N/A 365 N/A
Ave. Lifetime [years] 15 15 15

For our DG system, the generators available for acquisition are power-only
SOFCs, CHP SOFCs, and fixed-tilt PV cells with the costs and performance
characteristics provided in Table 2. The average hourly availability of the PV
cells, given the prevailing weather, is determined by the PVWATTS Perfor-
mance Calculator developed by the National Renewable Energy Laboratory
(see [17]). The amortized capital costs of all of the technologies are calculated
according to Equation (13) based on the initial capital costs and average life-
times in Table 2, along with a 5% annual interest rate. The initial capital
costs applied here are lower than those typically found in other research. How-
ever, we find that higher capital costs result in the “no DG” solution for most
instances, which limits the ability to demonstrate our bounding techniques.

The storage technologies available for acquisition are lead-acid batteries
(electric) and a hot water tank (thermal), with the costs and performance
characteristics listed in Table 3. For simplicity, we assume that there is no
additional capital cost to increase the size of the water tank beyond its mini-
mum. Thus, the increased capital cost for the CHP SOFC option is assumed to
account for the cost of the water tank, regardless of its size. The temperature

23



Table 3 Storage cost and performance parameter values.

Parameter Lead-acid Battery Water Tank

Initial Capital and O&M Cost $140/kWh $0/gal
Nameplate Capacity 10 kWh 500-1,000 gal
Min State-of-Charge or Temperature 30% 15◦C
Max Charge (Discharge) Rate 1 (2.5) kW N/A
Charge-Discharge or Thermal Efficiency 90% 80%
Ave. Lifetime 5 years 15 years

of the water in the tank is assumed to decrease by 1% per hour due to ambient
heat loss. The values for the specific heat of SOFC exhaust and tank water
are 0.0003 kWh/(kg ◦C) and 0.0044 kWh/(gal ◦C), respectively. The average
return and maximum temperatures for the water in the tank are 16 ◦C and 85
◦C, respectively, and we assume the hot water must be delivered to all faucets
and radiators at 60 ◦C.

The boiler has an average thermal efficiency of 75% and O&M costs of $0.01
per kWh of heat supplied. We use a carbon emissions rate of 0.18 kg/kWh for
the combustion of natural gas (see [15]). Thus, the carbon emissions from the
SOFCs and boiler are determined by multiplying this emissions rate by the
amount of natural gas consumed.

4.2 Comparison of Solutions with Existing Solvers

We next solve (U) and (H) for instances with time horizons ranging from one
day to one year (see Table 1), and compare our solutions with those provided
by solving (P) directly using existing MINLP solvers. (U), (H), and (P) are
all coded in AMPL Version 20090327. (U) and (H) are solved with CPLEX
12.2 (see [11]) on a 64-bit workstation under the Linux operating system with
four Intel processors running at 2.27 GHz and with 12 GB of RAM. MINLP
solvers which accept models coded in AMPL include MINOTAUR, BONMIN,
Couenne, FilMINT, and MINLP-B&B. MINOTAUR (see [13]) resides on our
64-bit workstation, while the other four solvers are publicly available on the
NEOS Server for Optimization (see [3] and [5]). In all instances, we provide the
solvers the “no DG” solution as an initial feasible solution, set an optimality
gap of 1%, and enforce a time limit of 36,000 seconds.

Of the five MINLP solvers we tested, MINOTAUR demonstrates the great-
est success in solving instances of (P). MINOTAUR solves up to the four-day
instance, but is unable to find an integer solution for the instances of one week
or greater. BONMIN solves the one-day instance and obtains the same objec-
tive value as MINOTAUR, but is unable to find an integer solution for the
instances of two days or greater. Couenne is unable to converge on an optimal
solution for the one-day instance and terminates with a best integer solution
worse (i.e., greater) than that found by (H). FilMINT and MINLP-B&B ter-
minate immediately for the one-day instance with error messages stating “no
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Table 4 (P)-feasible solutions provided by our techniques and by MINOTAUR for time
horizons of one day to one year. ∗ In these instances, (U) reaches the 36,000 second time
limit prior to achieving a 1% optimality gap. The time beyond 36,000 seconds is the solve
time for (H). † In these instances, we use the best lower bound on (U) at the point of
termination as the global lower bound on (P). ‡ In these instances, an optimality gap of
<1% is reported by MINOTAUR using the best continuous relaxation solution as the lower
bound. Given the nonconvex nature of (P), these gaps are not an indication of the proximity
to global optimality.

(U) and (H) MINOTAUR
Time Best Integer Solve Opt. Best Integer Solve Opt.

Horizon Solution Time Gap Solution Time Gap
(hours) (% of “no DG”) (sec) (%) (% of “no DG”) (sec) (%)

24 85.92 4 8.97 85.16 38 ‡
48 96.79 15 8.41 97.22 1,905 ‡
96 96.82 629 8.34 96.98 6,127 ‡
168 91.46 36,002∗ 9.42† ∞ 36,000 ∞
744 91.66 36,007∗ 11.34† ∞ 36,000 ∞

8,760 100.00 36,027∗ 12.07† ∞ 36,000 ∞

feasible solution” and “ran out of memory,” respectively. By contrast, (U) and
(H) provide global lower bounds and integer solutions, respectively, for (P)
instances of up to one year. We compare the solutions provided by (U) and (H)
with those provided by MINOTAUR in Table 4. In all instances, the solutions
are expressed as a fraction of the total cost for the “no DG” solution.

For each of the six instances, we solve (U) to obtain a global lower bound
on (P). We then use variable values from the solution to (U) to solve (H)
and obtain an integer solution (upper bound) for (P). For the three largest
instances, (U) terminates at the 36,000 second time limit prior to achieving
the optimality gap of 1%. In these instances, we use the best lower bound on
(U) at the point of termination as the global lower bound on (P). Thus, the
optimality gaps reported in the table are based on the difference between the
optimal objective function value of (H) and the appropriate global lower bound
provided by (U). By contrast, the optimality gaps reported for MINOTAUR
are based on the solver’s best integer solution (upper bound) and best contin-
uous relaxation solution (lower bound). Given the nonconvex nature of (P),
solutions from continuous relaxations of the problem may not provide valid
global lower bounds. Hence, MINOTAUR’s optimality gaps do not indicate
the proximity of the integer solutions to global optimality.

Our techniques and MINOTAUR are both capable of obtaining (P)-feasible
solutions for instances with time horizons of up to four days (96 hours). For
these small instances, our solutions are close to those obtained by MINOTAUR
and require a significantly shorter solve time. Additionally, only (U) and (H)
provide the possibility of solving instances with time horizons of one week
and greater. For these instances, MINOTAUR terminates at the time limit
without an integer-feasible solution. Though (U) terminates at the time limit
without full convergence for these larger instances, we still obtain a global
lower bound on (P) and information that can be used in solving (H) to obtain
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an integer solution to (P). Therefore, our bounding techniques provide two
critical advantages over existing MINLP solvers: the capacity to solve large
instances of (P) and an indication of the proximity of those solutions to global
optimality.

5 Conclusions

In this paper, we present an optimization model which determines the config-
uration, capacity, and operational schedule of a DG system capable of meeting
the power and heat demands of a commercial building at the globally min-
imum total cost. The model includes aspects of the system operation that
are not considered in other research. In particular, we model the operational
status, ramping capacity, and variable electric efficiency of power generation
technologies. Additionally, we model thermal storage as a function of the tem-
perature at which hot water is stored. These modeling innovations allow us to
capture more detailed system performance characteristics and to obtain more
realistic solutions. However, those same innovations require additional integer
variables in every time period and nonlinearities that dictate our system be
modeled as a large, nonconvex MINLP.

The algorithms capable of solving large, nonconvex MINLPs to global op-
timality are limited. In order to execute a nonlinear branch-and-bound algo-
rithm that is capable of solving such problems to global optimality, we require
methods for determining global lower and upper bounds on the optimal ob-
jective function value at each node of the branch-and-bound tree. Yet, solving
the continuous relaxation of a nonconvex MINLP may not lead to a global
lower bound and currently available solvers are not capable of solving large
instances of nonconvex MINLPs to obtain a global upper bound. As a result,
we formulate a convex underestimation of our MINLP to obtain a global lower
bound and develop a linearization heuristic to obtain a global upper bound.

We demonstrate our bounding techniques for model instances ranging in
size from one day to one year using a large hotel located in Los Angeles, CA as
a case study. We then compare our solutions with those provided by existing
solvers. Few existing solvers are capable of obtaining solutions for small one-
day instances of our MINLP. Those that can solve these instances offer little
to no improvement over the solutions provided by our techniques and require
a longer run time. Furthermore, our techniques present the possibility to solve
larger instances (up to one year) of the problem that exceed the capacity of
existing solvers. The ability to solve these larger instances is critical to the
real-world application of the model to inform long-term capital investment
decisions.

The solutions obtained from our model provide valuable insights into the
acquisition and operation of commercial sector DG systems. Additionally, sen-
sitivity analyses have the potential to influence future energy policy measures.
The parameters for utility pricing, carbon taxation, building demand, DG
capital and operational costs, and DG technological performance can all be
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analyzed within the context of our model to determine the conditions for which
DG is most economically and environmentally viable. Further research could
also include uncertainty in the building demand, system output, and utility
pricing to test the robustness of the system design solutions. With this critical
information, DG might finally achieve appropriate market penetration.
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