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Abstract

We develop a new active-set method for nonlinear programming problems that
solves a regularized linear program to predict the active set and then fixes the active
constraints to solve an equality-constrained quadratic program for fast convergence.
Global convergence is promoted through the use of a filter. We show that the reg-
ularization parameter fulfills the same role as a trust-region parameter, and we give
global convergence results. In addition, we show that the method identifies the opti-
mal active set once it is sufficiently close to a regular solution. We also comment on
alternative regularized problems that allow the inclusion of curvature information into
the active-set identification.
Keywords: Nonlinear programming, active-set methods, filter methods.
AMS-MSC2000: 90C30, 90C33, 90C51, 49M37, 65K10.

1 Introduction

Consider the nonlinear program (NLP)

(P )

{
minimize

x
f(x)

subject to ci(x) ≥ 0, i = 1, . . . ,m,

where x ∈ Rn, f : IRn → IR and ci : IRn → IR are twice continuously differentiable. NLPs
have a broad range of applications in engineering, science, and economics.

We are interested in developing fast active-set methods for large-scale NLPs. Current
active-set methods solve a quadratic program (QP) or a linear program (LP) to predict the
active set. This step is computationally expensive, however, and does not readily general-
ize to large problems, because the LP or QP subproblems are solved with pivoting algo-
rithms that can change only one activity per iteration. In addition, active-set quadratic
programming methods must factorize either a dense reduced Hessian matrix (in the case of
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a null-space method) or a dense Schur-complement (in the case of a range-space method).
We therefore believe that sequential quadratic programming approaches are not suitable for
large-scale NLPs unless either the null-space or the range-space is small.

The bottleneck of current active-set methods for NLP is the determination of the active
set. Our strategy is to replace this expensive computational step with a cheaper alternative.
In particular, we consider gradient projection methods that allow much larger changes in the
active set at each inner iteration. By using computational kernels for which good parallel
solvers exist, we also ensure that the proposed method can be implemented in parallel. In
this paper, we explore the theoretical underpinnings of the new method.

But why should we look at active-set methods at all, given the recent surge of interior-
point methods and their clear computational superiority? The answer to this question lies
in two classes of optimization problems that have received recent attention, namely, mixed-
integer nonlinear programming (MINLP) and optimization problems with partial differential
equation (PDE) constraints. Methods for solving MINLP solve NLPs as subproblems, usu-
ally starting from an excellent guess of the optimal solution. Interior-point methods are
not readily warm-started and are not as efficiently warm-started as are active-set methods,
despite recent efforts in the area [2, 11,13].

PDE-constrained optimization problems give rise to huge linear systems that must be
solved at every iteration. In particular, the linear systems arising from any optimization
method can no longer be solved by using direct solvers or factorizations. Instead, iterative
solvers must be employed. This shift has important implications: pivoting methods for LP
or QP subproblems rely on the fact the matrix factorizations can be updated cheaply after
each pivot. Clearly, this approach is no longer possible if the linear systems are solved
iteratively. The reliance of interior-point methods on factorizations is less obvious. By
factorizing the linear systems, interior-point methods avoid the inherent ill-conditioning due
to the barrier parameter. Thus, to solve PDE-constrained optimization problems, we must
develop methods that use computational kernels that can be solved efficiently with iterative
solvers and whose conditioning is not artificially inflated.

Our new active-set method solves a regularized LP (RLP) to predict the active set and
then fixes the active constraints and solves an equality-constrained QP (EQP) to speed
convergence. We show below that the dual of the regularized LP is a bound-constrained
QP for which efficient solution methods such as projected-gradient methods exist. A simple
outline of our algorithm is given in Figure 1. This figure, however, leaves a number of
important open questions: When should we accept a step? What happens if the RLP or the
EQP have no solution? In a practical implementation we might also restrict the EQP step
by a trust-region or a proximal-point term, and we can either use the RLP step if the EQP
has no solution, or usa a piecewise line-search along an arc.

This paper is organized as follows. In the next section, we present our new algorithm,
FASTr, for solving NLP. In Section 3 we show that FASTr is globally convergent. Section 4
contains preliminary results regarding the active-set identification property of our algorithm.
Section 5 outlines what is left to be done.

We finish this section by briefly introducing our notation. We denote the gradient of the
objective function by g(x) = ∇f(x), the constraints by c(x) = (c1(x), . . . , cm(x))T , and the
Jacobian by A(x) = ∇c(x)T with ai(x) = ∇ci(x). We also use subscripts to denote functions
and gradients evaluated at iterates, for example, ck = c(xk).
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Given an initial point x0, set k = 0, and µ0 > 0.

while d 6= 0 do
Solve the regularized LP, RLP(xk, µk) for step dk

Identify the active set A(xk + dk).
Solve the equality constrained QP, EQP(x + d) for a second-order step dqp.
if xk + dqp acceptable step then

Set xk+1 := xk + dqp, and possibly increase µk+1 = 2µk.
else

Set xk+1 := xk, and decrease µk+1 = µk / 2.
end

end

Figure 1: RLP-EQP algorithm outline

2 The Algorithm

We start by reviewing sequential linear-quadratic programming (SLQP) methods and de-
rive an alternative subproblem to identify the optimal active set. Next, we describe our
globalization strategy and provide a formal statement of our new algorithm.

2.1 Sequential Linear-Quadratic Programming Methods

We believe SLQP methods [3,4,6,24] are well suited for large-scale nonlinear programming,
simply because each of the key steps involved—the solution an LP or EQP, together with
its attendant linear algebra—has already been tuned to cope with big problems. The basic
idea behind such methods is simple: in order to improve an estimate x of a solution to NLP,
NLP is replaced by an LP linearization about x of the form

(LP(x))

{
minimize

d
gT (x)d

subject to c(x) + AT (x)d ≥ 0.

Since the solution to the resulting LP—if there is one—is most likely at a (possibly distant)
vertex (or possibly at infinity), the LP solution d is further constrained so that ‖d‖ ≤ ρ for
some suitable norm ‖ · ‖ and positive “radius” ρ, leading to the trust-region subproblem

(TR(x, ρ))


minimize

d
gT (x)d

subject to c(x) + AT (x)d ≥ 0
and ‖d‖ ≤ ρ.

The intention is then that distant constraint linearizations in TR(x, ρ) play no role, and the
hope is that the closer ones give a good prediction of the optimal active set for NLP.

In practice, the resulting step d may not necessarily be particularly effective, since it
is a first-order (“constrained steepest descent”) direction. But the set of predicted active
constraints,

A := A(x) :=
{
i|ci(x) + ai(x)T d = 0

}
,
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can be used to generate a more appropriate subproblem. In particular, given such a predic-
tion, those constraints that are inactive may be temporarily discarded, and a more effective
(second-order) step computed by approximately solving an EQP in which a model of the
Lagrangian function is minimized subject to the linearized constraints in A being held as
equalities, that is,

(EQP(x,A))

{
minimize

d

1
2
dT Hd + gT (x)d

subject to AT
A(x)d = −cA(x),

where cA(x) = (ci(x))i∈A, AA(x) are the columns of the Jacobian A(x) corresponding to
active constraints A, and H ≈ ∇2L(x, y) approximates the Hessian of the Lagrangian,
L(x, y) = f(x) − yT c(x), for NLP for some suitable Lagrange multiplier estimates y. Since
the solution to this problem may be unbounded from below, it is common to introduce an
additional ellipsoidal trust-region constraint ‖d + dc‖G ≤ ρ2 (for G positive definite, and
‖z‖G =

√
zT Gz) to ensure that EQP(x,A) has a solution, where dc is the minimum norm

solution to AT
A(x)d = −cA(x).

Many other precautions are necessary in practice. These include (i) the means to recover
from inconsistent constraint linearizations and incompatibilities caused by small ρ, (ii) a
mechanism to assess the quality of EQP step, (iii) the possible need for a second-order cor-
rection step to avoid the Maratos effect, and (iv) a strategy for adjusting the step restrictions
to try to encourage accurate active-set identification and fast convergence.

2.2 Difficulties with the LP/TR Step Computation

From a pragmatic point of view, it has been traditional [3, 4, 6, 24] to specify a polyhedral
trust-region norm when solving TR(x, ρ), since then the subproblem may be reformulated
and solved as an LP. This has an unfortunate side effect, however. Specifically, while it
may be reasonable to hope that the active set of the linearized constraints for TR(x, ρ)
approaches the optimal active set for NLP as x approaches a solution to NLP, there is no
reason to suppose the same is true for those defining the polyhedral trust region. Indeed,
simply reducing ρ for fixed x can dramatically alter the active trust-region constraints. This
is unfortunate because much of the perceived efficiency of SLP/SQP methods derives from
the hope that the active set for one subproblem is a good prediction for that of the next
(and thus allows efficient “warm starts”). Extensive numerical experience with the SLIQUE
and KNITRO-ACTIVE software packages [3, 5] has indicated that indeed in some cases
warm-start strategies may be inefficient for this reason.

One way to avoid this drawback is to use a trust-region norm that does not have multiple
faces. Then, even if the trust-region constraint is active, it simply defines a single face and
thus does not add significantly to the combinatorial complexity. Any `p trust-region norm,
p ∈ (1,∞), is appropriate, but the downside is that TR(x, ρ) is no longer an LP and may be
more difficult to solve—there has been some work for the `2-norm case using semi-definite
and cone programming techniques [1, 12, 17, 18, 20, 26], but to our knowledge the size of
problems that are amenable to such techniques fall far short of those currently possible for
LP subproblems.

A second difficulty, common to many trust-region methods for constrained optimization,
is that TR(x, ρ) has no solution for any sufficient small ρ whenever c is nonzero. This is
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avoided by many modern SLQP methods [3, 24] by replacing TR(x, ρ) by

minimize
d

gT (x)d + π‖(max(0,−c(x)− AT (x)d)‖ subject to ‖d‖ ≤ ρ

for some positive penalty parameter π, but issues then arise [4] on precisely how to choose
π.

2.3 An Alternative Step Strategy via Regularized LP

Our interest then is to develop SLQP-type methods that do not suffer from the aforemen-
tioned defects. Instead of using TR(x, ρ), we propose an alternative trust-region subproblem
that can be viewed as adding a penalizing term for the trust-region constraint ‖d‖2 ≤ ρ to
the objective. We shall refer to this as a regularized LP (RLP):

(RLP(x, µ))

{
minimize

d
µgT (x)d + 1

2
dT d

subject to c(x) + AT (x)d ≥ 0.

Later, we will show a close relationship between RLP(x, µ) and TR(x, ρ). Crucially, we
control the convergence of our method by adjusting µ just as a trust-region SLQP method
does by adjusting ρ. Of course RLP(x, µ) is actually a (parametrized) convex quadratic
program (QP), and thus a wealth of suitable software exists for solving it (see [14, §4.2]).
We need to be cautious, however, since {d : c(x) + AT (x)d ≥ 0} may be empty. We return
to this issue below, but assume for now that one can find a solution dLP to RLP(x, µ).

The problem RLP(x, µ) has an interesting history. In particular, RLP(x, µ) is a Tikhonov
regularization [27] of LP(x), for which the solution of the former is the least `2-norm solution
to the latter for all µ sufficiently large [22]. See [29] for further references. Vitally, since the
Hessian of the objective is diagonal, the dual of RLP(x, µ) is a bound-constrained quadratic
program (BQP) [16,21] in the dual variables y,

(BQP(x, µ))

{
minimize

y

1
2
yT AT (x)A(x)y +

(
c(x)− µAT (x)g(x)

)T
y + µ2

2
gT (x)g(x)

subject to y ≥ 0,

from which the solution d = −µg(x)+A(x)y of RLP(x, µ) may be recovered. The significance
is that there are excellent methods [7, 15, 21, 23] and software [8, 19] for solving large-scale
BQPs.

Having solved RLP(x, µ)—or its dual, BQP(x, µ)—to find an initial step dLP and its
associated active set A, our algorithm solves the resulting EQP(x,A) to find a second step,
dQP (with, as before, an additional trust-region constraint as a precaution). So long as H
is positive definite on the null-space of AT

A, we can find dQP by solving the linear system
arising from the first-order optimality conditions of EQP(x,A),(

H AA(x)
AT
A(x) 0

) (
dQP

−yA(x)

)
=

(
−g
−cA(x)

)
,

although this may not necessarily satisfy the additional trust-region constraint. Better,
perhaps, is to use a projected, preconditioned conjugate-gradient method (see [14, §4.1]) to



6 Michael Friedlander, Nick Gould, Sven Leyffer, and Todd Munson

find dQP , since this automatically takes into account the elliptical trust-region constraint and
is highly suited to large-scale EQPs. We may also wish to compute some form of second-
order correction (SOC) dSOC (see [9, §15.3.2.3]) to account for constraint nonlinearity when
the constraint residuals are small.

We thus have two, perhaps three, potential steps. The RLP step dLP can be used to ensure
global convergence, and so we will fall back on it whenever dQP and dSOC are unsuitable.
The EQP step dQP and the SOC step dSOC are intended to accelerate convergence and thus
to be preferred if suitable. We also note that the computation of superficially similar steps
has recently been proposed by Yamashita and Dan [28] but with significant differences, the
most important being that µ is not used as a control parameter as it is here and that a
different globalization strategy is used.

2.4 Globalization and the Filter

Turning to globalization, we denote the predicted reduction in the linear model of f(x) due
to dLP , if the latter exists, by

∆l = −gT (x)dLP

and let

∆f = f(x)− f(x + d)

be the actual reduction in f(x) resulting from a given step d. We measure constraint infea-
sibility by

h(c(x)) = ‖c(x)+‖∞,

where ci(x)+ = max(0,−ci(x)).
We now define a filter [10] that combines the two competing aims in NLP, namely,

minimization of f(x) and h(c(x)). We will consider pairs (h, f) obtained by evaluating f(x)
and h(c(x)). We say that a pair (hk, fk) dominates another pair (hl, fl) if both hk ≤ hl and
fk ≤ fl. A filter F is a collection of pairs (h, f) such that no pair dominates another pair.

We say that a point is acceptable to a filter F if its (h, f) pair satisfies

h ≤ βhi or f ≤ fi − γh, ∀i ∈ F , (2.1)

where β and γ are constants such that 0 < γ < β < 1. The first inequality corresponds to
sufficient reduction in h, while the second inequality follows [6]. Both inequalities create an
envelope around the filter, which prevents convergence to a point at which h > 0. A typical
filter with three entries is indicated in Figure 2, where the solid lines indicate the filter and
the dotted lines show the envelope. In practice, we also add an upper bound

h(c(x)) ≤ βu (2.2)

on the constraint violation to the filter. We will use acceptability to the filter as a means
to assess potential new iterates x + d; in particular, for x + d to be considered as the new
iterate, it must be acceptable for the augmented filter F ∪ (h(c(x)), f(x)).

This definition of a filter is not sufficient to ensure convergence because the iterates
might still converge to a feasible, but noncritical point. To avoid this situation we insist



Filter Active-Set Trust-Region Method 7

Figure 2: A typical NLP filter and its envelope

on a sufficient decrease condition whenever the linear model predicts decrease. Thus, for
σ ∈ [0, 1) we ask that

∆f ≥ σ∆l (2.3)

whenever

∆l ≥ δh2, (2.4)

where δ > 0. We also define the Cauchy step

dC = αCdLP

as the step along dLP at which the decrease in the quadratic model

∆q(d) = −dT g(x)− 1
2
dT Hd

is maximized for 0 < αC ≤ 1. An alternative to the above sufficient reduction condition is
then to ask for

∆f ≥ σ∆q(dC);

it is straightforward to show [6, Lemma 3] that ∆q(dC) ≥ 1
2
αC∆l. A successful iteration

for which (2.4) does not hold is referred to as an h–type iteration. A successful iteration
at which both (2.4) and (2.3), or ∆f ≥ σ∆q(dC) hold is referred to as an f–type iteration.
Broadly speaking, an h–type iteration mainly reduces the constraint violation, which an
f–type iteration also makes progress at reducing the objective function.

We note that an alternative is to ask for sufficient reduction whenever ∆l > 0. The choice
of sufficient reduction condition is directly related to the way the filter is updated. If we
use (2.3) and (2.4), then we add acceptable points to the filter only for which this condition
fails (i.e. the so-called h-type steps), because (2.3) and (2.4) ensure that h→ 0 on so-called
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f-type iterations that are not added to the filter. On the other hand, if we use (2.3) and
∆l > 0, then we must add all points to the filter for which h > 0 holds. We prefer to use
(2.4), as this potentially adds fewer points to the filter than does the condition ∆l > 0.

2.5 Feasibility Restoration

As we have noted, RLP(x, µ) has no solution if L(x) = {d : c(x) + AT (x)d ≥ 0} is empty. In
this case, we temporarily abandon any attempt to reduce f(x) and instead enter a restoration
phase [10] with the sole aim of reducing the infeasibility h(c(x)). Since x has proved not to
be a satisfactory point for the algorithm, we first add its (h(c(x)), f(x)) pair to the filter—
this may mean that certain current filter points are now dominated, and these can safely be
removed (we call this tidying up the filter). We may then apply any algorithm we like to
perform our restoration, but our aim is to find a new point x̄ that is acceptable to the filter
and compatible for the resulting RLP(x̄, µ) in the sense that L(x̄) 6= ∅.

We also enter a restoration phase whenever there is evidence that reducing µ further will
not change the solution to RLP(x, µ) significantly. The next subsection presents one possible
strategy for detecting this situation.

Various algorithms exist for the restoration phase. We note that it is always possible
to generate a filter-acceptable point if the NLP is feasible, because the smallest constraint
violation of any filter entry is positive:

τk = min
i∈Fk

hi > 0. (2.5)

However, the restoration phase may also converge to stationary point of constraint violation,
which we take as an indication that the NLP is inconsistent.

2.6 Adjusting the Regularization Parameter µ

It is not surprising that RLP(x, µ) and TR(x, ρ) are closely related. In fact, we show below
that ρ is a piecewise quadratic function of µ. In Figure 3, we illustrate how the trust-region
radius ρ and the regularization parameter µ are related. The left figure shows the solution
path of the RLP

minimize
d

µd1 + 1
2
(d2

1 + d2
2)

subject to d1 + d2 ≥ 3
−d1 + d2 ≥ −2
1 ≤ d2 ≤ 3,

from µ = 8 following the pink line to µ = 0, which corresponds to the projection onto the
feasible set. The figure on the right shows the piecewise quadratic relationship between ρ
and µ. The flat regions in this figure correspond to ranges of µ for which the solution d of
RLP is constant, namely, the corners of the solution path.

The close relationship between RLP(x, µ) and TR(x, ρ) is further examined below and
motivates the adjustment of the regularization parameter µ in much the same way in which
ρ is adjusted. However, some care has to be taken when adjusting µ to avoid inefficiencies,
because the RLP step d and µ are only indirectly linked. For example, standard trust-region
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Figure 3: Relationship between perturbation parameter µ and trust-region radius ρ.

methods adjust ρ using the rule

ρk+1 = min(‖dk‖, ρk)/2,

to ensure that the next trust-region subproblem is significantly different. Clearly, a similar
rule is not possible for algorithms using RLP.

To reduce µ, we perform a parametric search to find the breakpoints of RLP(x, µ). The
aim is to find the largest ∆µ such that RLP(x, µ+), where µ+ = µ−∆µ still has the same
active set. Thus, for a given active set (with Jacobian submatrix A), we have(

d(µ+)
y(µ+)

)
=

[
I −A
AT 0

]−1 (
−µ+g
−c

)
=

(
d(µ)
y(µ)

)
+

[
I −A
AT 0

]−1 (
∆µg
0

)
.

Defining (
∆d
∆y

)
:=

[
I −A
AT 0

]−1 (
g
0

)
,

we have that (
d(µ+)
y(µ+)

)
=

(
d(µ)
y(µ)

)
+ ∆µ

(
∆d
∆y

)
.

This gives one bound on the maximum value of ∆µ. In addition, we must ensure that the
step also remains feasible with respect to the inactive constraints i ∈ I. Combining these
two conditions gives the following ratio test to ensure that the active set remains unchanged:

∆µ =


argmax

∆µ≥0
∆µ

subject to y(µ) + ∆µ∆y ≥ 0
ci + aT

i (d(µ) + ∆µ∆d) ≥ 0 ∀i ∈ I.
(2.6)

We note that if µ+ = 0 in (2.6), then we should enter the restoration phase, because reducing
µ is unlikely to change the RLP step to generate an acceptable point. Otherwise, we set
µ+ = (µ−∆µ)/2.

If the step is acceptable, then we increase µ to be within a fixed range [µ, µ], where µ
can be chosen to allow the usual doubling of the regularization parameter if we observe good
agreement between predicted and actual reduction.
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2.7 Computation of Multipliers

The solution of the EQPs requires multiplier estimates that are used in the (approximation)
of the Hessian of the Lagrangian, H. These multiplier estimates may be the multipliers from
the previous EQP step. Alternatively, if the previous step was an RLP step, we can compute
first-order multiplier estimates by solving the following system:[

I −A
AT 0

](
x
y

)
= −

(
g
c

)
.

As part of the solution of RLP(x, µ), we have already solved the following two systems:[
I −A

AT 0

](
xr

yr

)
= −

(
µg
c

)
and

[
I −A

AT 0

](
xp

yp

)
= −

(
g
0

)
.

Thus, first-order multiplier estimates can be obtained as a suitable linear combination of
these two solutions, namely,

y = yr − (µ− 1)yp.

2.8 Algorithm Statement

Our algorithm is known as the filter active-set trust-region method, or FASTr for short (see
page 11); of course, only thorough numerical experiments can show whether this name is
justified. The algorithm consists of two nested loops. In the inner loop, the regularization
parameter µ is reduced until either an acceptable point is found or we enter the restoration
phase. For the purposes of this proof, we count the inner loop as one iteration.

We show that FASTr is globally convergent in the next section.
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Given (x0, y0), µ0, and upper bound U , set k ← 0; compute ∇fk, ∇ck

while not optimal do
reset regularization parameter µ ∈ [µ, µ]

repeat
solve RLP(xk, µ) or its dual for the first-order step dLP

if ∃ solution dLP of LP (xk, µ) & ∆µ > 0 in (2.6) then
if dLP = 0 then terminate KKT point found
compute predicted linear reduction ∆l
evaluate Hessian H ≈ ∇2L(xk, yk) & solve EQP(xk,A) for step dQP

compute the Cauchy-step dC , αC and ∆qC

success ← false
for d ∈ {dQP , dLP} do

evaluate f(xk + d) and h(c(xk + d))
if xk + d acceptable to filter and (hk, fk) then

if ∆f ≥ σ min(∆qc, ∆l) or ∆l < δ(hk)
2 then

success ← true
exit for loop

end
end

end
if success = true then

set µk = µ, dk = d, ∆lk = ∆q, ∆fk = ∆f
if ∆lk < δ(hk)

2 then put (hk, fk) into filter & tidy filter up
set xk+1 = xk + dk

else
reduce regularization parameter µ = µ/2

end
else

put (hk, fk) into filter, tidy filter up & and enter restoration phase to
find acceptable/compatible point, xk+1

end
until new xk+1 found
set k = k + 1, update gradients ∇fk, ∇ck & test for convergence

end

Figure 4: FASTr: Filter Active-Set Trust-Region Method
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3 Convergence Analysis

The global convergence proof is similar to the one in [25] and shows that the iterates generated
by FASTr converge to stationary point. In fact, taking RLP steps is sufficient for global
convergence. However, we also show that the convergence of the EQP steps follows from a
Cauchy-point type argument similar to [25]. We make the following blanket assumptions:

A1 The functions f(x), c(x) are twice continuously differentiable.

A2 The iterates remain in a compact region X 6= ∅.
The first assumption is standard. The second assumption can be enforced by adding bounds
to all variables. There are four distinct outcomes for the algorithm (see below for a proof
that the inner iteration terminates):

OR The restoration phase iterates infinitely and fails to find a point that is acceptable to
the filter and for which RLP(xk, µ) is consistent.

OK A KKT point is found.

OF For k sufficiently large, all iterations are of f-type.

OH There exists an infinite number of h-type iterations.

The main convergence theorem will show that for outcomes OF and OH, the limit point is
a Fritz-John (FJ) point. Necessary conditions for x∗ to be an FJ point of P are that x∗ is
feasible and that the set of strictly feasible descent directions is empty. In other words,{

s | sT g∗ < 0, sT a∗i > 0, i ∈ A∗
}

= ∅, (3.7)

where A∗ is the active set at x∗.
If x∞ is feasible but not an FJ point, then it follows from A1 and (3.7) that there exist

ε > 0 and a vector s such that ‖s‖ = 1, and

sT g(x) ≤ −ε, and sT ai(x) ≥ ε, i ∈ A∞ (3.8)

for all x in a neighborhood N∞ of x∞.

3.1 Preliminary Lemmas

We first derive a useful result following from Taylor’s theorem.

Lemma 3.1 Let Assumptions A1 and A2 hold and let ‖g(x)‖ ≤ M1, ‖A(x)‖ ≤ M1, and
sT∇2cis ≤M2 for all x ∈ X. Let d 6= 0 solve

(RLP (xk, µ))

{
minimize

d
µgT

k d + 1
2
dT d

subject to ck + AT
k d ≥ 0,

and assume that ‖c(x)‖ ≤ µM2 for all x in some neighborhood of xk. Then it follows that
there exists M > 0 such that

ci(xk + d) ≥ −µ2M, ∀i = 1, . . . ,m (3.9)

∆f ≥ ∆l − µ2M. (3.10)
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Proof. The proof of this lemma differs slightly from the proof in earlier papers (e.g., [25])
because we do not have an explicit bound on the length of the step. To obtain such a bound,
we observe that the Karush-Kuhn-Tucker (KKT) conditions of RLP(xk, µ) imply that

dk = −µgk + Aky, (3.11)

where y are the dual variables. We would like a result that shows that ‖dk‖ = O(µ). To this
end, consider the dual BQP(xk, µ), and observe that without loss of generality, its solution
is given by y = (y1, y2), where y1 = 0, and y2 ≥ 0 with

y2 =
[
AT

k Ak

]−1

22

(
ck − µAT

k gk

)
.

From the assumption that ‖c(x)‖ ≤ µM2, it therefore follows that

‖y‖ ≤M3µ

for some M3 > 0 (because
[
AT

k Ak

]−1

22
is bounded and ‖µAT

k gk‖ ≤ µM2
1 ). Substituting this

expression into (3.11) shows that there exists M > 0 such that

‖dk‖ ≤Mµ.

We can now proceed with the proof as in earlier papers. Since dk is feasible, it follows that
there exists some z on the line segment between xk and xk + dk such that

ci(xk + d) = ci(xk) + ai(xk)
T dk +

1

2
dT

k∇2ci(z)d ≥ −Mµ2,

which shows (3.9). Similarly, it follows that

∆f = f(xk)− f(xk + dk)

= f(xk)− f(xk)− gT
k dk −

1

2
dT

k∇2f(z)d

≥ ∆l − µ2M,

which shows (3.10). 2

Note that we use Lemma 3.1 only near feasible points, in which case the assumption
‖c(x)‖ ≤ µM1 is always satisfied. Next, we show that the algorithm is well defined and that
the inner iteration terminates finitely.

The next lemma shows how solutions of RLP(x, µ) change when µ changes but the active
set remains unchanged.

Lemma 3.2 Consider RLP(x, µ), and let d(µ) be its (unique) solution. Let µ2 < µ1, and
assume that the active set A(µ) = A is constant for all µ2 ≤ µ ≤ µ1. Then it follows that
the solutions d2 = d(µ2) and d1 = d(µ1) satisfy

2µ2(µ1 − µ2)s
T s ≤ ‖d1‖22 − ‖d2‖22 ≤ 2µ1(µ1 − µ2)s

T s, (3.12)

where s is the (primal) solution to the auxiliary system[
I AT

−A 0

](
s
y

)
=

(
−g
c

)
, (3.13)

where A is the Jacobian of the active constraints and c are the residuals of the active con-
straints.
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Proof. Since di solves RLP(x, µi), it follows that

1
2
dT

1 d1 + µ2d
T
1 g ≥ 1

2
dT

2 d2 + µ2d
T
2 g and 1

2
dT

2 d2 + µ1d
T
2 g ≥ 1

2
dT

1 d1 + µ1d
T
1 g, (3.14)

which implies that

2µ2g
T (d2 − d1) ≤ ‖d1‖22 − ‖d2‖22 ≤ 2µ1(µ1 − µ2)g

T (d2 − d1). (3.15)

Let A denote the Jacobian of the active constraints. Then the KKT conditions give that[
I −A
AT 0

](
d1

y1

)
=

(
−µ1g

c

)
and

[
I −A
AT 0

](
d2

y2

)
=

(
−µ2g

c

)
.

Thus[
I −A
AT 0

](
d2 − d1

y2 − y1

)
= (µ2−µ1)

(
−g
0

)
⇒

(
d2 − d1

y2 − y1

)
=

(
s̄
ȳ

)
= (µ2−µ1)

(
s
y

)
.

Now observe that (3.13) implies that

(s, 0)T

[
I −A
AT 0

](
s
y

)
= −gT s = sT s,

which implies that gT (d2−d1) = (µ1−µ2)s
T s, which combines with (3.15) to give the result.

2

This lemma suggests an alternative to (2.6) to trigger the restoration phase. Let µ1 = µ
and µ2 = µ/2. Then it follows that

1− µ2 sT s

‖d(µ)‖22
≤ ‖d(µ/2)‖22
‖d(µ)‖22

≤ 1− µ2

2

sT s

‖d(µ)‖22
(3.16)

provided that the active set remains unchanged (a fact that can be checked cheaply). Thus,
we could enter restoration whenever two consecutive RLP steps d1 and d2 for µ1 > µ2 have
similar length. For example, if

‖d2‖
‖d1‖

≥ 0.99.

Another important question concerns the relationship between RLP(x, µ) and the clas-
sical trust-region subproblem

(TR(x, ρ))


minimize

d
gT d

subject to c + AT d ≥ 0,
‖d‖2 ≤ ρ,

where ρ > 0 is the standard trust-region radius. We would not want to solve TR(x, ρ) in
practice (SLIQUE uses an `∞ norm). Some interesting connections exist between the two
TR subproblems.
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Corollary 3.3 The solution to RLP(x, µ) is a continuous piecewise linear path as a function
of µ.

Proof. There exist a finite number of breakpoints along which the active set of RLP(x, µ) is
unchanged. Consider the active set for two values of µ for which the active set is the same.
Then it follows that the active set is the same for all values of µ in between. 2

Lemma 3.4 Let A be the active general constraints at the solution RLP(x, µ), and consider
the following two equality constraint problems for a fixed active set A:

(PP )

{
minimize

d
µgT d + 1

2
dT d

subject to AT
Ad = −cA

and (PT )


minimize

d
gT d

subject to AT
Ad = −cA

1
2
‖d‖22 = ρ2

2
.

Then it follows that
ρ2 = ‖dc‖22 + µ2‖dg‖22, (3.17)

where dc is the minimum norm solution to AT
Ad = −cA and dg is the projection of −g onto

the null-space of AT
A.

Proof. Let A = AA for simplicity. The solution of PP satisfies[
I A

AT 0

](
dp

zp

)
=

(
−µg
−c

)
.

Define (dc, zc) as the solution of the system,[
I A

AT 0

](
dc

zc

)
=

(
0
−c

)
.

That is, dc is the minimum norm solution to AT
Ad = −cA. Also, define (dg, zg) as the solution

of the system, [
I A

AT 0

](
dg

zg

)
=

(
−g
0

)
.

That is, dg is the projection of −g onto the null-space of AT
A. Then it follows that(

dp

zp

)
=

(
dc

zc

)
+ µ

(
dg

zg

)
.

Therefore,
‖dp‖22 = ‖dc‖22 + 2µdT

g dc + µ2‖dg‖22. (3.18)

Using the definition of dc, we observe that

0 =
(
dT

g : 0T
)T

(
0
−c

)
=

(
dT

g : 0T
)T

[
I A

AT 0

](
dc

zc

)
=

(
dT

g : dT
g A

)T
(

dc

zc

)
= dT

g dc,

where the final equality follows from the fact that AT dg = 0. Substituting this into (3.18),
we get that

‖dp‖22 = ‖dc‖22 + µ2‖dg‖22.
Thus, the problems PP and PT are equivalent if ‖dp‖22 = ρ2, which proves the result. 2
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Lemma 3.5 Let Assumptions A1 and A2 hold. Then the inner iteration terminates finitely.

Proof: Clearly, if the inner iteration does not terminate finitely, then the rule for decreasing
µ will ensure that µ→ 0. We distinguish two cases depending on whether hk > 0 or hk = 0.

If hk > 0, we consider the limiting (µ→ 0) QP{
minimize

d

1
2
dT d

subject to ck + AT
k d ≥ 0

and let its solution be d0. Since hk > 0, it follows that d0 6= 0. As µ → 0, it follows that
the solution d(µ) of RLP(µ, xk) approaches d0. In fact, the solution changes linearly, as µ
changes, and there exist a finite number of breakpoints by Lemma 3.2 and Corollary 3.3.
We can readily detect whether reducing µ results in changes to the active set, and we use
this mechanism as a trigger for our restoration phase.

If hk = 0, then we have shown that solving RLP(µ, xk) is equivalent to solving TR(ρ, xk)
for sufficiently small µ and a suitable ρ > 0; see Lemma 3.4. Thus, finiteness of the inner
iteration follows now from the result in [25]. 2

The next lemma shows that if infinitely many points are added to the filter, then the
limit must be feasible. This result is proved in [6].

Lemma 3.6 Consider an infinite sequence of iterations on which (hk, fk) is entered into the
filter and fk is bounded below. It follows that hk → 0.

Proof. See [6, Lemma 1]. 2

Lemma 3.7 The predicted reduction ∆lk = −gT
k d of RLP(xk, µ) increases monotonically as

µ increases.

Proof. Consider RLP(x, µi) for two values µ1 < µ2, and let di denote their respective
solutions. It follows from (3.14) that

µ1g
T
k d1 ≤ µ1g

T
k d2 + µ2

(
gT

k d1 − gT
k d2

)
,

which in turn implies that
(µ1 − µ2)

(
gT

k d1 − gT
k d2

)
≤ 0.

Because µ1 < µ2, it follows that gT
k d1 ≥ gT

k d2. Therefore, ∆lk = −gT
k d increases monotoni-

cally as µ increases. 2

The next lemma summarizes some useful results about the Cauchy step.

Lemma 3.8 Let standard assumption hold, and let ∆l be the reduction predicted by RLP(xk, µ)
(with solution dLP ). Then it follows that the Cauchy step satisfies

∆qC ≥ αC∆l. (3.19)

Moreover, if ∆l ≥ µε for some ε > 0, then it follows that

αC ≥
µε

M
, (3.20)

where M ≥ dT Hd, ∀d.
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Proof. The first part, (3.19), follows from [6, Lemma 3]. To show (3.20), set b := dT
LP HkdLP .

If b ≤ 0, then we set αC = 1, and the result follows trivially. Otherwise, consider

q(α) = fk + αgT
k dLP +

1

2
α2dT

LP HdLP ,

and form the first-order condition with respect to α, which gives

αC =
−gT

k d

dT
LP HdLP

≥ −gT
k d

M
=

∆l

M
≥ µε

M
,

where the first inequality follows from M ≥ dT Hd. 2

3.2 Main Convergence Result

A consequence of Lemma 3.5 is that if the algorithm does not terminate with OR or OK,
then there exists an infinite sequence of type OF or OH. The following theorem completes
the proof by showing that the iterates have an accumulation point that is an FJ point. The
proof uses the following tow key ideas. First, we show that the limit is feasible. Then, we
show that if the limit is bounded away from an FJ point, then the conditions for an f-type
step must eventually hold for some µ. This property is used in two ways. In case OF, we
use a standard argument from unconstrained optimization to show that if the limit is not
an FJ point, then f is unbounded below. In case OH, we use the fact to show that there
cannot be a subsequence of h-type steps converging to a non-FJ point.

Theorem 3.9 If Assumptions A1 and A2 hold, then for our Algorithm either OR or OK
occurs or the iterates have an accumulation point that satisfies the FJ conditions (3.7).

Proof. We consider only the case where OR or OK does not occur. Since the inner loop
is finite (Lemma 3.5), the outer iteration generates an infinite sequence, k ∈ S. Since all
iterates lie in the compact set X, there exist an accumulation point x∞, and we can assume
that xk → x∞ for k ∈ S (after possibly taking a subsequence). The proof that x∞ is an FJ
point is in two parts. First, we show that x∞ is feasible and then that it is also stationary.

In case OF, the sequence S is just the tail of the main sequence after the last h-type
iteration. Note that fk is monotonically decreasing and bounded below. Hence, it follows
that

∑
k∈S ∆fk is convergent. Because the iterations are f-type iterations, it follows that

∆fk ≥ σ∆lk ≥ σδ (hk)
2 .

The convergence of
∑

k∈S ∆fk implies that hk → 0. Thus, in case OF, any accumulation
point of the algorithm is feasible.

In case OH, we start by considering the thinner subsequence of h-type iterations, on
which (hk, fk) is entered into the filter. Lemma 3.6 shows that hk → 0.1

1Note that we cannot get feasibility for every limit point (or FJ conditions for every limit point) because
we are not adding every point to the filter. For example, we may have a sequence of alternating f/h-type
iterations. Lemma 3.6 shows that the sequence of h-type iterations converges to zero, but the f-type iterations
need not be monotonic. Hence, the argument from the first part would fail.
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Now we assume that x∞ is not an FJ point and seek a contradiction. Since x∞ is not an FJ
point, it follows that there exists a direction s for all x in some neighborhood N∞ := N (x∞)
of x∞ such that (3.8) holds. For k sufficiently large, we consider the effect of a step µs in
RLP(xk, µ).

The remainder of the proof is similar to the proof in [6]. For active constraints at x∞ we
have from (3.8) that

c
(k)
i + µa

(k)T
i s ≥ −hk + µε i ∈ A∞. (3.21)

For inactive constraints i 6∈ A∞, if k ≥ K is sufficiently large, then there exist positive
constants c̄ and ā, independent of k, such that

c
(k)
i ≥ c̄ and a

(k)T
i s ≥ −ā,

by continuity of ci and boundedness of ai on X. It follows that

c
(k)
i + µa

(k)T
i s ≥ c̄− µā i 6∈ A∞. (3.22)

If we denote κ = c̄/ā > 0, it follows for k ≥ K that if

hk/ε ≤ µ ≤ κ, (3.23)

then from (3.21) and (3.22),

c
(k)
i + µa

(k)T
i s ≥ 0 i = 1, 2, . . . , m.

Thus, if (3.23) holds, we are assured that µs is a feasible step and hence that RLP(xk, µ) is
a feasible subproblem. It also follows by optimality of d that

∆l = −gT
k d ≥ −µgT

k s ≥ µε (3.24)

from (3.8).
Thus, if µ2 ≤ βτk/M , then it follows from (3.9) that h(c(xk + d)) ≤ βτk. Also we deduce

from (3.10) and (3.24) that

∆f

∆l
≥ 1− µ2M

∆l
≥ 1− µM

ε
,

so if µ ≤ (1 − σ)ε/M , it follows that ∆f ≥ σ∆l. Combining these results with (3.23), we
see for sufficiently large k that if µ satisfies

hk

ε
≤ µ ≤ min

{
(1− σ)ε

M
,

√
βτk

M
, κ

}
, (3.25)

then LP (xk, µ) is compatible, h(c(xk + d)) ≤ βτk, and ∆f ≥ σ∆l. Also from (3.24) and
(3.25), ∆l ≥ hk, and hence ∆l ≥ δ(hk)

2. Thus, for sufficiently large k ∈ S there is a range
of values (3.25) that guarantee that xk + d is acceptable to the filter, and the conditions for
an f–type step are satisfied.

If the subsequence S arises from case OF, then τk is fixed, and the right-hand side of
(3.25) is just a number, µ̄ say, while the left-hand side converges to zero. Thus, for sufficiently
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large k we can guarantee that a value µk > 1
2
µ̄ will be chosen in the inner iteration. If we

accept the RLP step, then we deduce from (3.24) that ∆fk > 1
2
σεµ̄. If we take the EQP

step, then it follows from Lemma 3.8 that ∆fk ≥ σ∆qC ≥ σ µ̄2ε2

M
. In both cases, because an

f-type step is taken, we obtain a contradiction to the fact that
∑

k∈S ∆fk is convergent.
Finally we look at case OH. Because hk → 0, it follows that τk → 0, and there is an

infinite subsequence of S for which τk+1 = hk < τk. On this subsequence, for sufficiently
large k, the range (3.25) becomes

hk

ε
≤ µ ≤

√
βτk

M
. (3.26)

In the limit, because hk < τk, the upper bound in (3.26) is more than twice the lower bound.
Hence, reducing µ in the inner loop will eventually locate a value in the range (3.26) or to
the right of that interval. This implies that an f–type step will be taken. If we accept an
EQP step, then it follows that this must also be an f–type step, because ∆l ≥ δ(hk)

2. From
Lemma 3.7 it follows that it is not possible for a larger value of µ to produce an h–type step.
Thus there exists a k sufficiently large for which an f–type step will be taken. This result
contradicts the fact that case OF is formed by a subsequence of h–type steps.

Thus a contradiction has been obtained in both case OF and case OH, and the theorem
is proved. 2

4 Properties of Trust-Region Subproblem

This section summarizes some properties of the regularized LP subproblem RLP(x, µ).

4.1 Active Set Identification Properties of RLP

This section shows that the RLP identifies the correct active set in a neighborhood of a
nondegenerate KKT point for a range of regularization parameters µ.

Proposition 4.1 Let x∗ be a solution to the NLP P at which LICQ and strict complemen-
tarity holds, let A∗ := {i : ci(x∗) = 0} be the corresponding active set, let I∗ := {1 . . . , m}/A∗
be its complement, and partition the constraints into active and inactive constraints according
to A∗ denoted by c(x) = (cA(x), cI(x))T .

Then it follows that for any sufficiently small ε > 0 (maximum distance to any active
constraint) and suitable τ > 0 (distance to nearest inactive constraint) there exists a neigh-
borhood

Nε,τ (x∗) := {x|cI(x) ≥ τe and ‖cA(x)‖ ≤ ε and ‖x∗ − x‖ ≤ ε} (4.27)

such that for every x ∈ N (x∗) the regularized LP RLP(x, µ) identifies A∗ for all

µ ∈
[
κcε

κg

,
τ − κfε

κa

]
, (4.28)

where the constants κc, κg, κa > 0 are independent of τ and ε. Moreover, this range is
nonempty, as the lower bound converges to zero while the upper bound is a constant.
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Proof. We consider the KKT condition for RLP for the active set A∗ and show that this
choice of active set is indeed optimal. Thus, consider[

I −AA

AT
A 0

](
d
yA

)
=

(
−µg
−cA

)
,

where we have used the same partition into active/inactive constraints. LICQ and the fact
that x ∈ N (x∗) imply that the KKT matrix is nonsingular, which implies that(

d
yA

)
=

[
I −AA

AT
A 0

]−1 (
−µg

0

)
+

[
I −AA

AT
A 0

]−1 (
0
−cA

)
=: µ

(
dg

yg

)
+

(
dc

yc

)
.

Now, we derive conditions on µ that ensure that this solution is indeed optimal for RLP. We
start by considering the feasibility of d in RLP. Clearly, d satisfies the constraints A∗. Now
consider I∗ := {1, . . . ,m}/A∗, and observe that d is feasible in RLP if

AT
I (µdg + dc) + cI ≥ 0⇒ µ ≤ min

i∈I∗:aT
i dg<0

ci + aT
i dc

−aT
i dg

, (4.29)

where we use the convention that the upper bound on µ is infinite if the condition on the
right-hand side of (4.29) is empty.

Similarly, we obtain a bound on µ, by considering dual feasibility:

µyg + yc ≥ 0⇒ µ ≥ max

(
0, max

i∈A∗

−yci

ygi

)
. (4.30)

It remains to be shown that these bounds are compatible. To this end, we derive a lower
bound on (4.29) and an upper bound on (4.30).

The fact that ‖cA(x)‖ ≤ ε implies that −yci
≤ κcε, and strict complementarity implies

that there exists κg > 0 such that ygi
≥ κg. Combining these two observations, we have that

(4.30) holds for any

µ ≥ κcε

κg

. (4.31)

Next, we observe that ‖cA‖ ≤ ε, the boundedness of ‖ai‖ and g, and the boundedness of the
inverse of the augmented system imply

aT
i dc ≥ −‖ai‖ · ‖dc‖ ≥ −κfε.

This, together with ci ≥ τ ∀i ∈ I∗, and −aT
i dg ≤ κa (which follow from the boundedness of

g, and LICQ), implies that (4.29) holds for any

µ ≤ τ − κfε

κa

. (4.32)

We note that we can make ε sufficiently small, while τ is a constant that is bounded away
from zero. Hence, it follows that the bound in (4.32) is bounded away from zero, while the
lower bound, (4.31) can be made arbitrarily small. Combining (4.31) and (4.32), we have
that RLP(x, µ) identifies the correct active set A∗ for all µ in (4.28). 2

We remark that the lower bound on µ arises from dual feasibility, that is, from requiring
a minimum contribution of the gradient g to identify the correct active set, while the upper
bound arises from the inactive constraints.



Filter Active-Set Trust-Region Method 21

4.2 Relationship between TR Parameters ρ and µ

Consider the two TR subproblems RLP(x, µ) and TR(x, ρ) given above. Let y ≥ 0 be the
multipliers of the general constraints c + AT d ≤ 0, and let z ≥ 0 be the multiplier of the
trust-region ‖d‖2 ≤ ρ. Then the KKT conditions of RLP(x, µ) and TR(x, ρ) are given by

(RLP (x, µ)) (TR(x, ρ))
µg + d + Ay = 0 g + d + Ay = 0
0 ≤ y ⊥ c + AT d ≤ 0 0 ≤ y ⊥ c + AT d ≤ 0

0 < z ⊥ ‖d‖2 = ρ,

where we have assumed that TR(x, ρ) is consistent and that the TR is strongly active (this
will hold for a range of ρ). We can now easily show the following result.

Lemma 4.2 Assume that TR(x, ρ) is consistent, that ‖d‖2 = ρ is strongly active, and that
µ > 0. Then the following conditions exist.

1. If (d, y) solves RLP(x, µ), then (d, y/µ) solves TR(x, ρ) with ρ = ‖d‖, and z = µ−1.

2. If (d, y) solves TR(x, ρ), then (d, yµ) solves RLP(x, µ) with µ = z−1.

Proof. Compare the KKT conditions. 2

5 Conclusions

We have presented a new active-set method for NLPs. Our algorithm identifies the active set
by solving a regularized LP, and then solves an equality constrained QP to speed convergence.
Global convergence is promoted through the use of a filter.

We have shown that the algorithm converges globally from remote starting points under
reasonable assumptions and that the optimal active set is identified for a finite value of the
regularization parameter within a neighborhood of a regular point. We have also shown that
the regularized LP is equivalent to an `2 trust-region LP.

The new method avoids some of the pitfalls of other trust-region SQP and SLQP methods.
The regularization makes it less likely that an LP becomes infeasible and that feasibility
restoration must be invoked. The regularization also avoids a computational disadvantage of
SLP methods that often require many unnecessary pivots to sort out the optimal trust-region
bounds.

One advantage of the new method is the fact that the main computational tasks can be
implemented by using iterative solvers. Moreover, there exist efficient parallel implemen-
tations of these solvers (e.g., TAO and PETSc) that allow us to develop parallel solver for
NLPs based on the computational kernels. We believe that this is an important and valuable
property.

Our method triggers feasibility restoration either if RLP(xk, µ) is inconsistent or if active
set does not change as µ → 0. We can detect this easily by taking the solution to BQP or
RLP for a given µ, and re-solving for the same active set with µ = 0. If this solution is
also feasible and optimal, then we know that reducing µ will not give a better point, and
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we enter restoration. Otherwise, there exist other active sets that we can explore as µ → 0
from µ. Note that we can even find the breakpoints (see (2.6)).

Some open questions remain, not least a successful implementation. The most impor-
tant open question is how to define a good preconditioner for solving BQP(x, µ). Partial
factorizations such as ILU may provide good preconditioners. However, we believe that the
choice of a good preconditioner is problem-dependent and would be difficult to answer in
the general context of the present paper. Another important question is how the ordering
affects our iterative solvers.
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[19] C. Lin and J. J. Moré. Newton’s method for large bound-constrained optimization
problems. SIAM Journal on Optimization, 9(4):1100–1127, 1999.

[20] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone
programming. Linear Algebra and its Applications, 284:193–228, 1998.

[21] O. L. Mangasarian. Iterative solution of linear programs. SIAM Journal on Numerical
Analysis, 18(4):606–614, 1981.

[22] O. L. Mangasarian and R. R. Meyer. Nonlinear perturbations of linear programs. SIAM
Journal on Control and Optimization, 17(6):745–752, 1979.
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