
Optimization of Dynamical Systems 2018: MINLP Exercises

1. Consider the gear-train design problem for best matching gear ratio

minimize
x

(
1

6.931
− x3x2

x1x4

)2

x ∈ Z4, 12 ≤ xi ≤ 60

(1.1) Is the problem a convex or nonconvex MINLP?

(1.2) Is there an equivalent but simpler formulation?

2. The following model was published in an obscure paper, and concerns that optimization
of IEEE 802.11 broadband networks for resource sharing meshes (Costa-Montenegro et al.,
2007). The model contains the following nonlinear penalty that is added to the objective
(with a large penalty parameter to ensure z = 0):

z =
1

1 + 1000(x− y)10

(2.1) Plot this function (as a function of the difference d = x− y, e.g. using Matlab. What do
you observe?

(2.2) Can you deduce the modelers intention from the plot?

(2.3) Model this expression as MIP not NLP!

3. Show that no integer assignment can be generated twice by outer approximation. Hint:
consider the linearized constraints and the upper bound (or infeasibilty). This essentially
proves convergence of outer approximation (correctness follows from convexity).

4. Consider the quadratic facility location problem from Lecture 1.

(4.1) Formulate the model in AMPL. Construct the instances by placing facilities and loca-
tions randomly in the unit square and making the constant of proportionality for the
transportation cost between facility i ∈ I and customer j ∈ J a function of the distance
between the two locations. Specifically, if we (randomly) define the coordinates of the
facilities and customers as

(xF1 , y
F
1 ), . . . , (xFM , y

F
M ) and (xC1 , y

C
1 ), . . . , (xCN , y

C
N )

respectively, then define the constant for pairwise service as

Qij = 50
√

(xFi − xCj )2 + (yFi − yCj )2

and fix the cost as a uniform random variable between 0 and 100, which you can do in
AMPL using let{i in I} c[i] := 100*uniform(0,1).

(4.2) Experiment with different solvers. What do you observe?

(4.3) Code outer approximation in AMPL for the quadratic facility location problem.
Hints:

• You only need to linearize the quadratic/logarithmic terms (add this to the *.mod
file.
• Introduce an objective variable, η, e.g, and parameters for lower/upper bounds,
LBD, UBD.
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• Define two optimization problems: master & subproblem using AMPL’s problem
statement. You can switch between these models by using problem again.
• Start at zi = 1, ∀i for simplicity.
• E.g. use repeat { ... } until (Iter>=MaxIter || LBD>=UBD-1E-4); for

the loop.
• Fix integer variables in Subproblem by not including them in the problem state-

ment!
• Add cuts to the master using by increasing a cut counter, and saving the cuts into

a set of constraints.

How many iterations does OA take for the linear objective?

(4.4) Solve the QFL with disaggregated constraints, and conic reformulations (using the
gurobi or xpress solver).

5. Consider the following nonconvex NLP from Lecture 2:

minimize
x

f(x) := x2
1x

2
2 − 2x1x

3
2 + x4

2

subject to −1 ≤ xi ≤ 1 for i = 1, 2

with three nonconvex terms and use the RLT ideas to obtain a lower bound (relaxation) in
AMPL.

(5.1) What is the value of your lower bound, and how does it compare to the root relaxation
of Baron?

(5.2) What solutions do the NLP solvers find (snopt, knitro, ipopt, filter, minos)? Perform a
parametric search over [−1, 1]2 and plot the value of the minimizer for different solvers.

(5.3) Can you obtain a tighter (and smaller) relaxation? Hint: Think about group partial
separability!

(5.4) What is the tightest root-node relaxation bound that you can find?

6. Consider the following PDE-constrained optimization (PDECO) problem, see (OPTPDE,
2014; Tröltzsch, 1984), which describes a simple Poisson problem with distributed controls to
reach a certain desired target state, ud. We will spice up this problem with integer variables
to make it more interesting:

minimize
u,w

1

2
‖u− ud‖2L2(Ω) + 12

∫
Γ
eΓ u ds+

1

2
‖w‖Lx

subject to −∆u+ u = w in Ω
∂u

∂n
= 0 on boundary Γ

w(x, y) ∈ {0, 1}

where Ω = [0, 1]2,

ud = −142

3
+ 12

(
(x− 1

2
)2 + (y − 1

2
)2

)
.

This exercise will try to determine which norm, e.g. L1 or L2, we should use for the regu-
larization term of the binary control w(x, y) ∈ {0, 1}. Note, that for binary variables, the L1-
norm is the same as the L2-norm, because w2(x, y) = |w(x, y)| = w(x, y) for w(x, y) ∈ {0, 1}.
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(6.1) Write an AMPL model for this problem, using a 5-point finite-difference stencil, e.g.

subject to DiscretizePDE{(i,j) in IxI}:
4*u[i,j] - u[i-1,j] - u[i+1,j] - u[i,j+1] - u[i,j-1]

= ( w[i,j] - u[i,j] ) * (hˆ2) ;

where I := 0..N describes the discretization of the domain Ω = [0, 1]2.

(6.2) Try the MINLP solvers baron and knitro on this problem. How does the solution
time for the L2 norm compare to the time for the L1 norm? Do gurobi or xpress do
any better?

(6.3) How can you explain this difference? Hint: “plot” the values ofw(x, y) of the relaxation
(which you can obtain using, e.g., snopt or knitro.
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Tröltzsch, F. (1984). The generalized bang-bang-principle and the numerical solution of a parabolic
boundary-control problem with constraints on the control and the state. Zeitschrift für Ange-
wandte Mathematik und Mechanik, 64(12):551–556.

3


