
SIAM J. SCI. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 44, No. 2, pp. B395--B427

STOCHASTIC LEARNING APPROACH FOR BINARY
OPTIMIZATION: APPLICATION TO BAYESIAN OPTIMAL DESIGN

OF EXPERIMENTS\ast 

AHMED ATTIA\dagger , SVEN LEYFFER\dagger , AND TODD S. MUNSON\dagger 

Abstract. We present a novel stochastic approach to binary optimization suited for optimal
experimental design (OED) for Bayesian inverse problems governed by mathematical models such
as partial differential equations. The OED utility function, namely, the regularized optimality cri-
terion, is cast into a stochastic objective function in the form of an expectation over a multivariate
Bernoulli distribution. The probabilistic objective is then solved by using a stochastic optimization
routine to find an optimal observational policy. This formulation (a) is generally applicable to binary
optimization problems with soft constraints and is ideal for OED and sensor placement problems;
(b) does not require differentiability of the original objective function (e.g., a utility function in OED
applications) with respect to the design variable, and thus it enables direct employment of sparsity-
enforcing penalty functions such as \ell 0, without needing to utilize a continuation procedure or apply
a rounding technique; (c) exhibits much lower computational cost than traditional gradient-based re-
laxation approaches; and (d) can be applied to both linear and nonlinear OED problems with proper
choice of the utility function. The proposed approach is analyzed from an optimization perspective
with detailed convergence analysis of the optimization approach and is also analyzed from a machine
learning perspective with correspondence to policy gradient reinforcement learning. The approach
is demonstrated numerically by using an idealized two-dimensional Bayesian linear inverse problem
and validated by extensive numerical experiments carried out for sensor placement in a parameter
identification setup.

Key words. design of experiments, binary optimization, Bayesian inverse problem, reinforce-
ment learning, stochastic optimization

AMS subject classifications. 62K05, 35Q62, 62F15, 35R30, 35Q93, 65C60, 93E35

DOI. 10.1137/21M1404363

1. Introduction. Optimal experimental design (OED) is the general mathemat-
ical formalism for configuring an observational setup. This can refer to the frequency
of data collection or the spatiotemporal distribution of observational gridpoints for
physical experiments. OED has seen a recent surge of interest in the field of sensor
placement for applications of model-constrained Bayesian inverse problems; see, for
example, [1, 2, 3, 4, 6, 9, 10, 22, 24, 25, 26, 28, 39, 41, 52].

Many physical phenomena can be simulated by using mathematical models. The
accuracy of the mathematical models is limited, however, by the level at which the
physics of the true system is captured by the model and by the numerical errors
produced, for example, by computer simulations. Model-based simulations are often
corrected based on snapshots of reality, such as sensor-based measurements. Such
corrections involve first inferring the model parameter from the noisy measurements,
a problem referred to as the ``inverse problem,"" which can be solved by different
inversion or data assimilation methods; see e.g., [11, 12, 14, 19, 36]. These observations
themselves are noisy but in general follow a known probability distribution. The

\ast Submitted to the journal's Computational Methods in Science and Engineering section March
11, 2021; accepted for publication (in revised form) November 19, 2021; published electronically
April 13, 2022.

https://doi.org/10.1137/21M1404363
Funding: This material is based upon work supported by the U.S. Department of Energy, Office

of Science, under contract DE-AC02-06CH11357.
\dagger Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439

USA (attia@mcs.anl.gov, leyffer@mcs.anl.gov, tmunson@mcs.anl.gov).

B395

https://doi.org/10.1137/21M1404363
mailto:attia@mcs.anl.gov
mailto:leyffer@mcs.anl.gov
mailto:tmunson@mcs.anl.gov


B396 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

OED problem is concerned with finding the most informative, and thus optimal,
observational grid configuration out of a set of candidates, which, when deployed, will
result in a reliable solution of the inverse problem.

OED is most beneficial when there is a limit on the number of sensors that can be
used, for example, when sensors are expensive to deploy or operate. In order to solve
an OED problem for sensor placement, a binary optimization problem is formulated by
assigning a binary design variable \zeta i for each candidate sensor location. The objective
is often set to a utility function that summarizes the inversion parameter uncertainty
or the amount of information gained from the observations. The optimal design is
then defined as the optimizer of this objective function. The objective is constrained
by the model evolution equations, such as partial differential equations, and also by
any regularity or sparsity constraints on the design. Here we focus on sparse and
binary designs. A popular choice of a penalty function to enforce a sparse and binary
design is the \ell 0 penalty [3].

Solving binary optimization problems is computationally prohibitive, and often
the binary problem is replaced with a relaxation. In the relaxation of an OED problem,
the design variable is allowed to take any value in the interval [0, 1] and is often inter-
preted as an importance weight of the candidate location. Once a solution of the re-
laxed problem is obtained numerically, for example, by a gradient-based optimization
procedure, a rounding procedure is applied to transform the solution of the relaxed
problem into a candidate solution of the original problem. In general, however, the nu-
merical solutions of the two problems are not guaranteed to be related or even similar.

Using a gradient-based approach to solve the relaxed OED problem requires many
evaluations of the simulation model in order to evaluate the objective function and its
gradient. Moreover, this approach requires the penalty function to be differentiable
with respect to the design. To this end, since \ell 0 is discontinuous, numerous efforts have
been dedicated to approximating the effect of \ell 0 sparsification with other approaches.
For example, in [24], an \ell 1 penalty followed by a thresholding method is used; however,
\ell 1 is nonsmooth and hence is nondifferentiable. Continuation procedures are used
in [3, 33], where a series of OED problems are solved with a sequence of penalty
functions that successively approximate \ell 0 sparsification. Another approach that can
potentially induce a binary design is the sum-up-rounding algorithm [56], which also
provides optimality guarantees.

Here we propose a new efficient approach for directly solving binary optimiza-
tion problems which is ideally suited for OED and sensor placement applications. In
this framework, the objective function, namely, the regularized optimality criterion,
is cast into an objective function in the form of an expectation over a multivariate
Bernoulli distribution. A stochastic optimization approach is then applied to solve
the reformulated optimization problem in order to find an optimal observational pol-
icy. Related work on stochastic optimization for OED has been explored in [27],
where the utility function, in other words, the optimality criterion, is approximated
by using Monte Carlo (MC) estimators. A stochastic optimization procedure is then
applied with the gradient of the utility function with respect to the design being ap-
proximated by using Robbins--Monro stochastic approximation [43] or sample average
approximation [37, 48].

The main differences from the standard OED approach and previous stochas-
tic OED approaches, which highlight our main contributions in this work, are as
follows. First, the proposed methodology searches for an optimal probability distri-
bution representing the optimal binary design; hence it does not require relaxation or
binarization to follow the optimization step as in the traditional OED formulation.



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B397

Second, in our approach the penalized OED criterion is not required to be differen-
tiable with respect to the design. Thus, one can incorporate the \ell 0 regularization
norm to enforce sparsification without needing to approximate it with the \ell 1 penalty
term or apply a continuation procedure to retrieve a binary optimal design. Third,
the proposed stochastic OED formulation does not require formulating the gradient
of the objective function with respect to the design, thus implying a massive reduc-
tion in computation cost. Fourth, the proposed framework is generally applicable to
regularized binary optimization problems with nondifferentiable penalty terms and is
not limited to OED applications. Fifth, when used to solve OED binary optimization
problems, the proposed approach and solution algorithms are completely independent
from the specific choice of the OED optimality criterion and the penalty function and
hence can be used with both linear and nonlinear problems.

In this work, for simplicity we provide numerical experiments for Bayesian inverse
problems constrained by linear forward operators, and we consider an A-optimal de-
sign, that is, a design that minimizes the trace of the posterior covariances of the
inversion parameter. The approach proposed, however, applies to other OED opti-
mality criteria, such as D-optimality and Kullback--Leibler (KL) divergence between
the prior and posterior [28]. We provide an analysis of the method from a mathemat-
ical point of view and an interpretation from a machine learning (ML) perspective.
Specifically, the proposed algorithm has a direct link to policy gradient algorithms
widely used in neuro-dynamic programming and reinforcement learning [15, 50, 54].
Numerical experiments using a toy example are provided to help with understanding
the problem; the proposed algorithm; and the relation between the binary OED prob-
lem, the relaxed OED problem, and the proposed formulation. Moreover, extensive
numerical experiments are performed for optimal sensor placement for an advection-
diffusion problem that simulates the spatiotemporal evolution of the concentration of
a contaminant in a bounded domain.

The paper is organized as follows. Section 2 gives a brief description of the
Bayesian inverse problem and the standard formulation of an optimal experimental
design in the context of Bayesian inversion. In section 3, we describe our proposed
approach for solving the binary OED problem and present a detailed analysis of the
proposed algorithms. An explanatory example and extensive numerical experiments
are given in section 4. Discussion and conclusions are presented in section 5.

2. OED for Bayesian inversion. Consider the forward model described by

y = F(\theta ) + \delta ,(2.1)

where \theta \in \BbbR Nstate is the discretized model parameter and y \in \BbbR Nobs is the observation,
where \delta \in \BbbR Nobs is the observation error. Here F is the parameter-to-observable map
which projects the model parameter \theta onto the observation space. Assuming Gaussian
observational noise \delta \sim \scrN (0,\Gamma noise), then the data likelihood takes the form

\scrL (y| \theta ) \propto exp

\biggl( 
 - 1

2
\| F(\theta ) - y\| 2\bfGamma  - 1

noise

\biggr) 
,(2.2)

where \Gamma noise is the observation error covariance matrix (positive definite) and the

matrix-weighted norm is defined as \| x\| 2\bfA = x\sansT Ax.
An inverse problem refers to the retrieval of the model parameter \theta from the noisy

observation y, conditioned by the model dynamics; see, e.g., [30, 51]. In Bayesian
inversion, the goal is to study the probability distribution of \theta conditioned by the



B398 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

observation y that is the posterior obtained by applying Bayes' theorem, \BbbP (\theta | y) \propto 
\BbbP (y| \theta )\BbbP (\theta ) , where \BbbP (\theta ) is the prior distribution of the inversion parameter \theta , which in
many cases is assumed to be Gaussian \theta \sim \scrN (\theta pr,\Gamma pr). If the parameter-to-observable
map F is linear, the posterior \BbbP (\theta | y) is Gaussian \scrN 

\bigl( 
\theta \bfy post,\Gamma post

\bigr) 
with

\Gamma post =
\bigl( 
F\ast \Gamma  - 1

noiseF+ \Gamma  - 1
pr

\bigr)  - 1
, \theta \bfy post = \Gamma post

\bigl( 
\Gamma  - 1
pr \theta pr + F\ast \Gamma  - 1

noise y
\bigr) 
,(2.3)

where F\ast is the forward operator adjoint. If the forward operator F is nonlinear,
however, the posterior distribution is no longer Gaussian. A Gaussian approximation
of the posterior can be obtained in this case by linearization of F around the maximum
a posteriori (MAP) estimate, which is inherently data dependent. For simplicity, we
will focus on linear models; however, the approach proposed in this work is not limited
to the linear case. Further analysis for nonlinear settings will follow in separate works.

In a Bayesian OED context (see, e.g., [1, 2, 3, 9, 10, 24, 25]), the observation
covariance \Gamma noise is replaced with a weighted version W\Gamma (\zeta ), parameterized by the
design \zeta , resulting in the following weighted data-likelihood \scrL (y| \theta ; \zeta ) and posterior
covariance \Gamma post(\zeta ).

\scrL (y| \theta ; \zeta ) \propto exp

\biggl( 
 - 1

2
\| F(\theta ) - y\| 2\bfW \Gamma (\zeta )

\biggr) 
, \Gamma post(\zeta ) =

\bigl( 
F\ast W\Gamma (\zeta )F+ \Gamma  - 1

pr

\bigr)  - \sansone 
.

(2.4)

The exact form of the posterior covariance \Gamma post(\zeta ) depends on how W\Gamma (\zeta ) is
formulated. We are interested mainly in binary designs \zeta \in \{ 0, 1\} ns , required, for
example, in sensor placement applications; see, for example, [1, 10]. In this case,
we assume a set of ns candidate sensor locations, and we seek the optimal subset of
locations. Note that selecting a subset of the observations is equivalent to applying
a projection operator onto the subspace spanned by the activated sensors. This is

equivalent to defining the weighed design matrix as W\Gamma := \Gamma 
 - 1/2
noiseW\Gamma 

 - 1/2
noise , where

W := \sansd \sansi \sansa \sansg (\zeta ) is a diagonal matrix with binary values on its diagonal. The ith entry
of the design is set to 1 to activate a sensor and is set to 0 to turn it off.

The optimal design \zeta opt is the one that optimizes a predefined criterion \Psi (\cdot ) of
choice. The most popular optimality criteria in the Bayesian inversion context are A-
and D-optimality. Both criteria define the optimal design as the one that minimizes
a scalar summary of posterior uncertainty associated with an inversion parameter
or state of an inverse problem. Specifically, \Psi (\zeta ) := Tr (\Gamma post(\zeta )) for an A-optimal
design, and \Psi (\zeta ) := log det (\Gamma post(\zeta )) for a D-optimal design, i.e., the sum of the
eigenvalues of \Gamma post(\zeta ), and the sum of the logarithms of the eigenvalues of \Gamma post(\zeta ),
respectively.

To prevent experimental designs that are simply dense, one typically adds a reg-
ularization term \Phi (\zeta ) that promotes sparsity, for example. Thus, to find an optimal
design \zeta opt, one needs to solve the following binary optimization problem,

\zeta opt = argmin
\zeta \in \{ 0,1\} ns

\scrJ (\zeta ) := \Psi (\zeta ) + \alpha \Phi (\zeta ) ,(2.5)

where the function \Phi (\zeta ) promotes regularization or sparsity on the design and \alpha is a
user-defined regularization parameter. For example, \Phi could represent a budget con-
straint on the form \Phi (\zeta ) := \| \zeta \| 0 \leq k ; k \in \ttZ + or a sparsifying (possibly discontinuous)
function, for example, \| \zeta \| 0 or \| \zeta \| 1.

Traditional binary optimization approaches [55] for solving the optimization prob-
lem are expensive, rendering the exact solution of (2.5) computationally intractable.



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B399

The optimization problem (2.6) is a continuous relaxation of (2.5) and is often used
in practice as a surrogate for solving (2.5) with a suitable rounding scheme:

\zeta opt = argmin
\zeta \in [0,1]ns

\scrJ (\zeta ) := \Psi (\zeta ) + \alpha \Phi (\zeta ) .(2.6)

In sensor placement we seek a sparse design in order to minimize the deploy-
ment cost, and thus we would utilize \ell 0 as a penalty function. Solving the relaxed
optimization problem (2.6) follows a gradient-based approach, and thus using \ell 0 as
a penalty function is replaced with the nonsmooth \ell 1 norm; see [3] for more details.
The optimal solution of the relaxed problem (2.6) provides a lower bound [16, sec-
tion 9.5] on (2.5), and because \{ 0, 1\} ns \subseteq [0, 1]ns any binary solution \zeta opt \in \{ 0, 1\} ns

of (2.6) is also an optimal solution of (2.5). Given a solution of (2.6) that is not
binary, we can obtain a binary solution by rounding; however, there is no guarantee
that the resulting binary solution is optimal, except in special cases, such as certain
optimal control problems, where we use sum-up-rounding techniques (see, e.g., [44]).
In section 3 we present a new approach for directly solving the original OED binary
optimization problem (2.5) without the need to relax the design space or to round
the relaxations.

3. Stochastic learning approach for binary optimization. Our main goal
is to find the solution of the original binary regularized optimization problem (2.5)
without solving a mixed-integer programming problem or resorting to the relaxation
approach widely followed in OED for Bayesian inversion; see section 2. We propose to
reformulate and solve the binary optimization problem (2.5) as a stochastic optimiza-
tion problem defined over the parameters of a probability distribution. Specifically,
we assume \zeta is a random variable that follows a multivariate Bernoulli distribution.

3.1. Stochastic formulation of the OED binary optimization problem.
We associate with each candidate sensor location xi a probability of activation pi.
Specifically, we assume that \zeta i, i = 1, 2, . . . , ns, are independent Bernoulli random
variables associated with the candidate sensor locations xi, i = 1, 2, . . . , ns. The acti-
vation (success) probabilities of the respective sensors are pi, i = 1, 2, . . . , ns; that is,
\BbbP (\zeta i = 1) = pi, \BbbP (\zeta i = 0) = 1 - pi. The probability associated with any observational
configuration is then described by the joint probability of all candidate locations.
Assuming independent activation variables \zeta i does not interfere with the correlation
structure of the observational errors, manifested by the observation error covariance
matrix \Gamma noise. Conversely, setting \zeta i to 0 removes the ith row and column from the
precision matrix \Gamma  - \sansone 

noise, while setting \zeta i to 1 keeps the corresponding row and column,
respectively. We let \BbbP (\zeta | p) denote the joint multivariate Bernoulli probability, with
the following probability mass function (PMF):

\BbbP (\zeta | p) :=
ns\prod 

i=1

p\zeta i
i (1 - pi)

1 - \zeta i , \zeta i \in \{ 0, 1\} , pi \in [0, 1] .(3.1)

We then replace the original problem (2.5) with the following stochastic optimiza-
tion problem:

popt = argmin
\bfp \in [0,1]ns

\Upsilon (p) := \BbbE \zeta \sim \BbbP (\zeta | \bfp )[\scrJ (\zeta )] = \BbbE \zeta \sim \BbbP (\zeta | \bfp )[\Psi (\zeta ) + \alpha \Phi (\zeta )] .(3.2)

Because the support of the probability distribution is discrete, the possible values
of \zeta \in \{ 0, 1\} ns are countable and can be assigned unique indexes. An index k is



B400 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

assigned to each possible realization of \zeta := (\zeta 1, \zeta 2, . . . , \zeta ns
), based on the values of

its components using the relation

k = 1 +

ns\sum 

i=1

\zeta i 2
i - 1 , \zeta i \in \{ 0, 1\} .(3.3)

Thus, all possible designs are labeled as \zeta [k], k = 1, 2, . . . , 2ns . With the indexing
scheme (3.3), the optimization problem (3.2) takes the following equivalent form:

popt = argmin
\bfp \in [0,1]ns

\Upsilon (p) :=

2ns\sum 

k=1

\scrJ (\zeta [k])\BbbP (\zeta [k]| p) .(3.4)

To solve (3.4), one can follow a gradient-based optimization approach to find the
optimal parameter popt. The gradient of the objective in (3.4) with respect to the
distribution parameters p is

\nabla \bfp \Upsilon (p) = \nabla \bfp \BbbE \zeta \sim \BbbP (\zeta | \bfp )[\scrJ (\zeta )] = \nabla \bfp 

\sum 

\zeta 

\scrJ (\zeta )\BbbP (\zeta | p) =
2ns\sum 

k=1

\scrJ (\zeta [k])\nabla \bfp \BbbP (\zeta [k]| p) ,

(3.5)

where \nabla \bfp \BbbP (\zeta | p) is the gradient of the joint Bernoulli PMF (3.1) (see Appendix A
for details):

\nabla \bfp \BbbP (\zeta [k]| p) =
ns\sum 

j=1

\partial \BbbP (\zeta [k]| p)
\partial pj

\bigm| \bigm| \bigm| \bigm| 
\zeta =\zeta [k]

=

ns\sum 

j=1

( - 1)1 - \zeta j [k]
ns\prod 

i=1
i \not =j

p
\zeta i[k]
i (1 - pi)

1 - \zeta i[k]ej .

(3.6)

In Appendix A, we provide a detailed discussion of the multivariate Bernoulli
distribution, with identities and lemmas that will be useful for the following discus-
sion. Clearly, (3.4) and (3.5) are not practical formula, because their statement alone
requires the evaluation of all possible designs \scrJ (\zeta [k]), which is equivalent to com-
plete enumeration of (2.5). We show below how we can utilize stochastic gradient
approaches to avoid complete enumeration. A practical and efficient solution of (3.2)
is discussed in subsection 3.3. We first establish in subsection 3.2 the connection be-
tween the solution of the two problems (2.5) and (3.2) and discuss the benefits of the
proposed approach.

3.2. Benefits of the stochastic formulation. The connections between (2.5)
and (3.2) and their respective solutions are summarized by Proposition 3.1 and Lemma
3.2. The relation between the objective functions and their domains and codomains
is sketched in Figure 1.

Proposition 3.1. Consider the two functions \scrJ : \Omega \zeta := \{ 0, 1\} ns \rightarrow \BbbR and \Upsilon :
\Omega \bfp := [0, 1]ns \rightarrow \BbbR , defined in (2.5) and (3.2), respectively. Let \zeta \in \Omega \zeta be a random
vector following the multivariate Bernoulli distribution (3.1), with parameter p \in \Omega \bfp .
Let C := \{ c\in \BbbR | c :=\scrJ (\zeta ) , \zeta \in \Omega \zeta \} be the set of objective values corresponding to all
possible designs, \zeta \in \Omega \zeta . Then the following hold:

(a) \Omega \bfp is the convex hull of \Omega \zeta in \BbbR ns .
(b) The values of \Upsilon (3.2) form the convex hull of C in \BbbR , denoted by conv(C),

with points c \in C being the extreme points of conv(C); that is, conv(C) \equiv 
\{ \Upsilon (p)| p \in \Omega \bfp \} .



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B401

\Omega \zeta := \{ 0, 1\} ns \Omega \bfp := [0, 1]ns
Convex
Hull

\scrJ (\zeta )

C := \{ c1, c2, . . . , c2ns\} conv(C) := [min\{ C\} ,max\{ C\} ]Convex
Hull

\Upsilon (p)

Fig. 1. Relation between problems 2.5 and 3.2 and their respective domains and codomains.

(c) \Upsilon (x) = \scrJ (x)\forall x \in \Omega \zeta .
(d) For any realization of p \in \Omega \bfp , it holds that min\{ C\} \leq \Upsilon (p)\leq max\{ C\} , and

\Upsilon (popt)=min\{ C\} =\scrJ (\zeta opt).
Proof. (a) This follows from the definition of \Omega \zeta and \Omega \bfp and the fact that

\Omega \bfp is the hypercube in \BbbR ns whose vertices formulate the set \Omega \zeta .
(b) For any realization p, the function \Upsilon defines a convex combination of all

points in C, because the coefficients \BbbP (\zeta | p) , \zeta \in \Omega \zeta are probabilities satisfy-
ing that 0 \leq \BbbP (\zeta | p) \leq 1 and

\sum 
\zeta \in \Omega \zeta 

\BbbP (\zeta | p) = 1.

(c) Setting p to any x \in \Omega \zeta yields a degenerate multivariate Bernoulli distri-
bution, which is a Dirac measure \delta \zeta (\{ x\} ) defined on the set \{ x\} . Thus,
\BbbP (\zeta | p = x) = \delta \zeta (\{ x\} ), and \Upsilon (x) =

\sum 
\zeta \in \Omega \bfp 

\BbbP (\zeta | p=x)\scrJ (\zeta ) =\sum \zeta \in \Omega \bfp 
\delta \zeta (\{ x\} )

\scrJ (\zeta ) = \scrJ (x) .
(d) It follows from Carath\'eodory's theorem that for any realization of p \in \Omega \bfp , the

value of the objective \Upsilon (p) falls on a line segment in \BbbR that connects at most
two points in C. This guarantees that min\{ C\} \leq \Upsilon (p) \leq max\{ C\} . Addition-
ally, from points (a) and (b) above, it follows that \Upsilon (popt) = min\{ conv(C)\} =
min\{ C\} = \scrJ (\zeta opt).

Lemma 3.2. The optimal solutions of the two problems (2.5) and (3.2) are such
that

argmin
\zeta \in \Omega \zeta 

\scrJ (\zeta ) \subseteq argmin
\bfp \in \Omega \bfp 

\Upsilon (p) .

Moreover, if the optimal solution \zeta opt of (2.5) is unique, then popt = \zeta opt, where popt

is the unique optimal solution of (3.2).

Proof. Proposition 3.1 guarantees that \nexists p \in \Omega \bfp , \Upsilon (p) < \scrJ (\zeta opt). Additionally,
from points (a) and (c) in Proposition 3.1, it follows that argmin

\zeta \in \Omega \zeta 

\scrJ (\zeta ) \subseteq argmin
\bfp \in \Omega \bfp 

\Upsilon (p) .

Assume \zeta opt is the unique optimal solution of (2.5); it follows that popt = \zeta opt

is an optimal solution of (3.2). Now assume \exists p \in \Omega \bfp such that p \not = popt, \Upsilon (p) =
\Upsilon (popt) = \scrJ (\zeta opt). If p is the parameter of a degenerate Bernoulli distribution, then
p \in \Omega \zeta and \scrJ (p) = \scrJ (\zeta opt), thus contradicting the uniqueness of \zeta opt. Conversely,
if p is the parameter of a nondegenerate multivariate Bernoulli distribution, then
there are at least two designs \zeta , \eta \in \Omega \zeta with nontrivial probabilities \in (0, 1), with
\scrJ (\zeta ) = \zeta (\eta ), again contradicting the uniqueness assumption of \zeta opt.

The stochastic formalism proposed in subsection 3.1 is beneficial for multiple rea-
sons. First, this probabilistic formulation (3.2) to solving the original optimization
problem (2.5) enables converting a binary design domain into a bounded continuous
domain, where the optimal solution of the two problems (3.2) and (2.5) coincide. Sec-
ond, the stochastic formulation (3.2) enables utilizing efficient stochastic optimization
algorithms to solve binary optimization problems, which are not applicable for the



B402 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

deterministic binary optimization problem (2.5). Third, the solution of the stochastic
problem (3.2) is an optimal parameter popt that can be used for sampling binary de-
signs \zeta by sampling \BbbP (\zeta | popt) , even if only a suboptimal solution is found. Fourth,
the stochastic formulation (3.2) requires evaluating the derivative of \Upsilon with respect
to the parameter of the probability distribution p, instead of the design \zeta . Thus, we
do not need to evaluate the derivative of \scrJ with respect to the design \zeta . In OED for
Bayesian inversion, as discussed in section 2, evaluating the gradient (with respect to
the design) is very expensive since it requires many forward and backward solves of
expensive simulation models. Fifth, because \scrJ is not required to be differentiable with
respect to the design \zeta , a nonsmooth penalty function \Phi can be utilized in defining
\scrJ , for example, to enforce sparsity or budget constraints, with the need to approxi-
mate this penalty with a smoother penalty approximation. Note that in this case, as
explained by (2.5) and (3.2), the penalty is asserted on the design, rather than the
distribution parameter p.

3.3. Approximately solving the stochastic optimization problem. The
objective in (3.4) and the gradient (3.5) amount to evaluating a large finite sum,
which can be approximated by sampling. The simplest approach for approximately
solving (3.4) is to follow an MC sample-based approximation to the objective \Upsilon and
the gradient \nabla \bfp \Upsilon , where the sample is drawn from an appropriate probability distri-
bution. However, the objective (3.2) is deterministic with respect to p. Nevertheless,
one can add randomness by assuming a uniform random variable (an index) over
all terms of the objective and the associated gradient. This allows utilizing exter-
nal and internal sampling-based stochastic optimization algorithms; see, for exam-
ple, [20, 21, 31, 32, 35, 42, 46, 47]. These algorithms, however, are beyond the scope
of this work.

Here, instead, we focus on efficient algorithmic procedures inspired by recent
developments in reinforcement learning [15, 50, 54]. Specifically, we view \BbbP (\zeta | p) as
a policy that describes the probability of activating each sensor: The design \zeta is
viewed as the state, and the action entails altering the status (turn on/off) of any
combination of sensors given an initial policy. Here, in RL terminology, one action
is allowed to reach the optimal policy from the initial policy, that is, only one time
step is assumed. Our goal is to find an optimal policy to configure the observational
grid. The reward is prescribed by the value of the original objective function, and we
seek the optimal design that maximizes the total expected reward. Note that we can
replace the maximization with minimization of the negative of the objective function,
thus enabling mapping between RL terminology and various OED objectives such as
A-optimality. This is further explained below.

An alternative form of the gradient (3.5) can be obtained by using the ``ker-
nel trick,"" which utilizes the fact that \nabla \bfp log(\BbbP (\zeta | p)) = 1

\BbbP (\zeta | \bfp )\nabla \bfp \BbbP (\zeta | p), and thus

\nabla \bfp \BbbP (\zeta | p) = \BbbP (\zeta | p)\nabla \bfp log(\BbbP (\zeta | p)). Using this identity, we can rewrite the gradi-
ent (3.5) as

\nabla \bfp \Upsilon (p) =

2ns\sum 

k=1

\Bigl( 
\scrJ (\zeta [k])\nabla \bfp log\BbbP (\zeta [k]| p)

\Bigr) 
\BbbP (\zeta [k]| p) = \BbbE \zeta \sim \BbbP (\zeta | \bfp )[\scrJ (\zeta )\nabla \bfp log\BbbP (\zeta | p)] .

(3.7)

We assume, without loss of generality, that p falls inside the open ball (0, 1)ns ,
and thus both the logarithm and the associated derivative of the log-probability are
well defined. If any of the components of p attain their bound, then the distribution



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B403

becomes degenerate in this direction, and the probability is set to either 0 or 1 and is
thus taken out of the formulation since the gradient in that direction is set to 0. This
is equivalent to projecting p onto a lower-dimensional subspace.

The form of the gradient described by (3.7) is equivalent to (3.5). However, it
shows that the gradient can be written as an expectation of gradients. This enables us
to approximate the gradient using MC sampling by following a stochastic optimization
approach. Specifically, given a sample \zeta [j] \sim \BbbP (\zeta | p) , j = 1, 2, . . . ,Nens, we can use
the following MC approximation of the gradient,

g := \nabla \bfp \BbbE \BbbP (\zeta | \bfp )[\scrJ (\zeta )] \approx \widehat g :=
1

Nens

Nens\sum 

j=1

\scrJ (\zeta [j])\nabla \bfp log\BbbP (\zeta [j]| p) ,(3.8)

where \nabla \bfp log\BbbP (\zeta [j]| p) is the score function of the multivariate Bernoulli distribution
(see Appendix A). By combining (3.8) with (A.7), we obtain the following form of the
stochastic gradient:

\widehat g =
1

Nens

Nens\sum 

j=1

\scrJ (\zeta [j])
ns\sum 

i=1

\biggl( 
\zeta i[j]

pi
+

\zeta i[j] - 1

1 - pi

\biggr) 
ei .(3.9)

To solve the optimization problem (3.2), one can start with an initial policy,
in other words, an initial set of parameters p, and iteratively follow an approximate
descent direction until an approximately optimal policy is obtained. Because the opti-
mization problems described here require box constraints, we introduce the projection
operator P , which maps an arbitrary point p onto the feasible region described by
the box constraints. One can apply projection by truncation (see [38, section 16.7]):

P(pi) := min\{ 1,max\{ 0,pi\} \} \equiv 

\left\{ 
  
  

0 if pi < 0 ,

pi if pi \in [0, 1] ,

1 if pi > 1 ,

(3.10)

where the projection P(p) is applied componentwise to the parameters' vector p.
The projection operator P is nonexpansive and thus is orthogonal, guaranteeing that
for any P(p[1]), P(p[2]) \in \BbbR ns : \| P(p[1]) - P(p[2])\| \leq \| p[1] - p[2]\| . A stochastic
steepest-descent step to solve (3.2) is approximated by the stochastic approximation
of the gradient (3.9) and is described as

p(n+1) = P
\Bigl( 
p(n)  - \eta (n)\widehat g(n)

\Bigr) 
,(3.11)

where \eta (n) is the step size (learning rate) at the nth iteration. Equation (3.11)
describes a stochastic gradient descent approach, using the stochastic approxima-
tion (3.9) at each iteration in place of g(n), where the sample is generated from
\BbbP 
\bigl( 
\zeta | p(n)

\bigr) 
. One can choose a fixed step size or follow a decreasing schedule to guar-

antee convergence or can do a line search using the sampled design to approximate
the objective function. One can also use approximate second-order information and
create a quasi-Newton-like step.

Algorithm 3.1 describes a stochastic descent approach for solving (2.5) by solv-
ing (3.2) followed by a sampling step. As \zeta is sampled from a multivariate Bernoulli
distribution with parameter p, in step 5 if pi \in \{ 0, 1\} , then \zeta i = pi. Thus the
corresponding term in the summation vanishes.

Algorithm 3.1 is a stochastic gradient descent method with convergence guaran-
tees in expectation only; see subsection 3.4. In practice, the convergence test could



B404 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

Algorithm 3.1 Stochastic optimization algorithm for binary OED.

Input: Initial distribution parameter p(0), step size schedule \eta (n); sample sizes
Nens, m

Output: \zeta opt

1: Initialize n = 0
2: while Not Converged do
3: Update n\leftarrow n+ 1
4: Sample \{ \zeta [i]; i = 1, 2, . . . ,Nens\} \sim \BbbP 

\bigl( 
\zeta | p(n)

\bigr) 

5: Calculate \widehat g(n) = 1
Nens

\sum Nens

j=1 (\scrJ (\zeta [j]))\sum ns

i=1

\Bigl( 
\zeta i[j]
\bfp i

+ \zeta [j]i - 1
1 - \bfp i

\Bigr) 
ei

6: Update p(n+1) = P
\bigl( 
p(n)  - \eta (n)\widehat g(n)

\bigr) 

7: end while
8: Set popt = p(n)

9: Sample \{ \zeta [j]; j = 1, 2, . . . ,m\} \sim \BbbP (\zeta | popt), and calculate \scrJ (\zeta [j])
10: return \zeta opt: the design \zeta with smallest value of \scrJ in the sample.

be replaced with a maximum number of iterations. Doing so, however, might not
result in degenerate PMF. The output of the algorithm popt = p(a) is used for sam-
pling binary designs \zeta , by sampling \BbbP (\zeta | popt), even if a suboptimal solution is found.
Another potential convergence criterion is the magnitude of the projected gradient\bigm\| \bigm\| P
\bigl( 
g(k)

\bigr) \bigm\| \bigm\| \leq pgtol. We also note that Algorithm 3.1 is equivalent to the vanilla pol-
icy gradient REINFORCE algorithm [54]. The remainder of section 3 is devoted to
addressing convergence guarantees, convergence analysis, and improvements of Algo-
rithm 3.1.

3.4. Convergence analysis. Here, we show that the optimal solution of (3.4)
is a degenerate multivariate Bernoulli distribution and that the convergence of Al-
gorithm 3.1 to such an optimal distribution in expectation is guaranteed under mild
conditions. First, we study the properties of the exact objective defined by (3.4) and
the associated exact gradient (3.5). We then address the stochastic approximation
and the performance of Algorithm 3.1. For clarity of the discussion, the proofs of the
lemmas discussed in subsections 3.4 and 3.5 are provided in Appendix B.

3.4.1. Analysis of the exact stochastic optimization problem. Recall that
the objective function utilized in (3.4) and the associated gradient take the respective
forms

\Upsilon (p) =

2ns\sum 

k=1

\scrJ (\zeta [k])\BbbP (\zeta [k]| p) ; \nabla \bfp \Upsilon (p) \equiv g =

2ns\sum 

k=1

\scrJ (\zeta [k])\nabla \bfp \BbbP (\zeta [k]| p) ,(3.12)

where p \in \Omega \bfp := [0, 1]ns , \BbbP (\zeta | p) is the multivariate Bernoulli distribution (3.1),
and we use the indexing scheme (3.3). We are viewing the objective \Upsilon explicitly
as a function of the PMF parameter p because all combinations of binary designs
\zeta [k]; k = 1, 2, . . . , 2ns are present in the expectation.

Here, we show that the exact gradient of \Upsilon is bounded (Theorem 3.3) and that the
Hessian of \Upsilon is bounded; hence, by following a steepest-descent approach, a locally
optimal design is obtained. This will set the ground for an analysis of Algorithm 3.1.

Theorem 3.3. Let \zeta \in \Omega \zeta = \{ 0, 1\} ns , and let C = max\zeta \in \Omega \zeta 
\{ | \scrJ (\zeta )| \} . Then the

following bounds of the gradient of the stochastic objective \Upsilon hold,



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B405

\| \nabla \bfp \Upsilon (p)\| \leq 
\sqrt{} 
ns | \Omega \zeta | C , p \in \Omega \bfp ,(3.13a)

\| \nabla \bfp \Upsilon (p[1]) - \nabla \bfp \Upsilon (p[2])\| \leq 2
\sqrt{} 
ns | \Omega \zeta | C , p[1],p[2] \in \Omega \bfp ,(3.13b)

where | \Omega \zeta | = 2ns is the cardinality of the design domain. Moreover, the Hessian is
bounded by

\bigm| \bigm| \bigm| \bigm| 
\partial 2\Upsilon 

\partial pi \partial pj

\bigm| \bigm| \bigm| \bigm| \leq 
\sqrt{} 
| \Omega \zeta | C .(3.14)

Proof. See Appendix B.

Theorem 3.3 is especially interesting because it shows that the gradient of \Upsilon (p)
is bounded. On the contrary, \scrJ (\zeta ) does not have bounded gradients for \ell 0 regular-
ization. Additionally, it follows from Theorem 3.3 that the entries of the Hessian are
bounded, implying that the Hessian is bounded. Thus the objective \Upsilon is Lipschitz
smooth. Finding the Lipschitz constant, however, depends on the value of the func-
tion \scrJ evaluated at all possible values of \zeta , or at least the maximum value. This
is impossible to know a priori, without any prior knowledge about the problem in
hand. Moreover, the bound given above indicates that the Lipschitz constant de-
creases for higher dimensions, since it is exponentially proportional to the cardinality
of the design space \Omega \zeta . However, one can estimate the Hessian matrix by using an
ensemble of realizations and use it to estimate the Lipschitz constant. This can be
helpful for choosing a proper step size for a steepest-descent algorithm. Alternatively,
one can use a decreasing step size sequence \{ \eta (k)\} \infty k=0 such that limk\rightarrow \infty \eta (k) = 0 and\sum 

k \eta 
(k) =\infty , which guarantees convergence to a local optimum; see [15, Proposition

4.1].

3.4.2. Analysis of stochastic steepest-descent algorithm. Here we show
that \widehat g(p) is an unbiased estimator of the true gradient g(p). This fact, along
with Theorem 3.3 and the fact that \Upsilon is a convex combination, guarantees conver-
gence, in expectation, of Algorithm 3.1 to a locally optimal policy. At each iteration
n of Algorithm 3.1, the gradient is approximated with a sample from the respective
conditional distribution \BbbP 

\bigl( 
\zeta | p(n)

\bigr) 
. First, we note that

\| \widehat g\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

Nens

Nens\sum 

j=1

\scrJ (\zeta [j])\nabla \bfp log\BbbP (\zeta [j]| p)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq 1

Nens

Nens\sum 

j=1

| \scrJ (\zeta [j])| \| \nabla \bfp log\BbbP (\zeta [j]| p)\| ,

(3.15)

which shows that the magnitude of \widehat g is bounded. Moreover, we will show next that
\widehat g(p) is an unbiased estimator of g(p) and that the variance of this estimator is
bounded.

Lemma 3.4. The stochastic estimator \widehat g defined by (3.8) is unbiased, with sam-
pling total variance \sansv \sansa \sansr (\widehat g), such that

\BbbE [\widehat g] = g = \nabla \bfp \Upsilon (p) ; \sansv \sansa \sansr (\widehat g) = 1

Nens
\sansv \sansa \sansr (\scrJ (\zeta )\nabla \bfp log\BbbP (\zeta | p)) ,(3.16)

where the total variance operator evaluates the trace of the variance-covariance matrix
of the random vector. Moreover, the total variance of \widehat g is bounded, and there exist
some positive constants K1, K2, such that

\BbbE 
\bigl[ 
\widehat g\sansT \widehat g

\bigr] 
= \BbbE \| \widehat g\| 2 \leq K1 +K2 \| g\| 2 = K1 +K2g

\sansT g .(3.17)



B406 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

Proof. See Appendix B.

The significance of Lemma 3.4 is that (3.17) guarantees that Assumption (d)
of [15, Assumptions 4.2] is satisfied. This, along with the fact that \widehat g is unbiased, and
given the boundedeness of entries of the Hessian (Theorem 3.3), and by complying
with the step size requirement, guarantees the convergence of Algorithm 3.1 to a
locally optimal policy popt.

The sample-based approximation of the gradient described by (3.9) exhibits high
variance, however, and thus requires a prohibitively large number of samples in order
to achieve acceptable convergence behavior to a locally optimal policy. Alternatively,
one can use importance sampling [7] or antithetic variates [34] or can add a baseline
to the objective, in order to reduce the variability of the estimator. This issue is
discussed next (subsection 3.5).

3.5. Variance reduction: Introducing the baseline. The formulation of
the stochastic estimator \widehat g defined by (3.8) provides limited control over its variabil-
ity. The implication of Lemma 3.4 is that, while the gradient estimator is unbiased,
large samples are required to reduce its variability. Specifically, it follows from (3.16)
that \sansv \sansa \sansr (\widehat g) = \scrO 

\bigl( 
N - 1

ens

\bigr) 
; thus, to reduce the variability of the estimator, one would

need to increase the sample size. In general, MC estimators are known to suffer from
high variance; thus this estimator, while unbiased, will be impractical especially if
ns is large and the sample size Nens is small. Instead of increasing the sample size,
one can reduce the estimator variability by introducing a baseline b to the objec-
tive function. The objective function \Upsilon can be replaced with the following baseline
version,

\Upsilon b(p) := \BbbE \zeta \sim \BbbP (\zeta | \bfp )[\scrJ (\zeta ) - b] ,(3.18)

where b is a baseline assumed to be independent from the parameter p. Since b is
independent from \Upsilon and by linearity of the expectation, it follows that \Upsilon b(p) =
\BbbE \zeta \sim \BbbP (\zeta | \bfp )[\scrJ (\zeta )]  - b, and thus argmin\bfp \Upsilon b = argmin\bfp \Upsilon , and \nabla \bfp \Upsilon 

b = \nabla \bfp \Upsilon  - 
\nabla \bfp b = \nabla \bfp \Upsilon . By applying the kernel trick again, we can write the gradient of (3.18)
as

\nabla \bfp \Upsilon 
b(p) = \BbbE \zeta \sim \BbbP (\zeta | \bfp )[(\scrJ (\zeta ) - b)\nabla \bfp log\BbbP (\zeta | p)] ,(3.19)

which can be approximated by the sample estimator

\widehat gb :=
1

Nens

Nens\sum 

j=1

(\scrJ (\zeta [j]) - b)\nabla \bfp log\BbbP (\zeta [j]| p) = \widehat g  - b

Nens

Nens\sum 

j=1

\nabla \bfp log\BbbP (\zeta [j]| p) .

(3.20)

Note that (3.19) is also an unbiased estimator since \BbbE 
\bigl[ 
\widehat gb
\bigr] 
= \BbbE [\widehat g] = g. The

variance of such an estimator, however, can be controlled by choosing an adequate
baseline b. In subsection 3.5.1, we provide guidance for choosing the baseline. In what
follows, however, we keep the baseline as a user-defined parameter, opening the door
for other choices.

3.5.1. On the choice of the baseline. We define the optimal baseline to be
the one that minimizes the variability in the gradient estimator. We provide the
following results, which will help us obtain an optimal baseline.



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B407

Lemma 3.5. Let d = 1
Nens

\sum Nens

j=1 \nabla \bfp log\BbbP (\zeta [j]| p). Then the following identities
hold:

\BbbE [d] = 0 ; \sansv \sansa \sansr (d) =
1

Nens

ns\sum 

i=1

1

pi  - p2
i

.(3.21)

Proof. See Appendix B.

Lemma 3.6. The ensemble estimator \widehat gb described by (3.20) is unbiased, with
sampling total variance \sansv \sansa \sansr 

\bigl( 
\widehat gb
\bigr) 
, such that

\BbbE 
\bigl[ 
\widehat gb
\bigr] 
= g = \nabla \bfp \Upsilon (p) ; \sansv \sansa \sansr 

\bigl( 
\widehat gb
\bigr) 
= \sansv \sansa \sansr (\widehat g) - 2b\BbbE 

\bigl[ 
\widehat g\sansT d

\bigr] 
+

b2

Nens

ns\sum 

i=1

1

pi  - p2
i

.

(3.22)

Proof. See Appendix B.

The variance of \widehat gb is described by Lemma 3.6. We can view (B.15) as a quadratic
expression in b and minimize it over b. Because

\sum ns

i=1
1

\bfp i - \bfp 2
i
> 0, the quadratic is

convex, and the min in b is obtained by equating the derivative of the estimator
variance (B.15) to zero, which yields the following optimal baseline:

bopt =
Nens\sum ns

i=1
1

\bfp i - \bfp 2
i

\BbbE 
\bigl[ 
\widehat g\sansT d

\bigr] 
.(3.23)

The expectation in (3.23), however, depends on the value of the function \Upsilon and
can be estimated by an ensemble of realizations \widehat g[j], d[j], j = 1, 2, . . . ,m,

\BbbE 
\bigl[ 
\widehat g\sansT d

\bigr] 
\approx 1

bm

bm\sum 

e=1

\widehat g[e]\sansT d[e] ,(3.24)

where g[e] and d[e] are realizations of g and d, respectively. Thus, we propose to
estimate the optimal baseline bopt as follows. Given a realization p of the hyperpa-
rameter, a set of bm batches each of size Nens are sampled from \BbbP (\zeta | p), resulting in
the multivariate Bernoulli samples \{ \zeta [e, j]; e = 1, 2, . . . , bm; j = 1, 2, . . . ,Nens\} . The
following function is then used to estimate bopt:

bopt \approx \widehat bopt :=

bm\sum 
e=1

\Biggl( 
Nens\sum 
j=1

\scrJ (\zeta [e, j])\nabla \bfp log\BbbP (\zeta [e, j]| p)
\Biggr) \sansT \Biggl( 

Nens\sum 
j=1

\nabla \bfp log\BbbP (\zeta [e, j]| p)
\Biggr) 

Nens bm
ns\sum 
i=1

1
\bfp i - \bfp 2

i

.

(3.25)

3.5.2. Complete algorithm statement. We conclude this section with an
algorithmic description of the stochastic steepest-descent algorithm with the optimal
baseline suggested here. Algorithm 3.2 is a modification of Algorithm 3.1, where we
only added the baseline (3.25).

Note that in both Algorithms 3.1 and 3.2, the value of \scrJ is evaluated repeat-
edly at instances of the binary design \zeta . With the algorithm progressing, it becomes
more likely to revisit previously sampled designs. One should keep track of the sam-
pled designs and the corresponding value of \scrJ , for example, by utilizing the indexing
scheme (3.3), to prevent redundant computations. We remark that as noted in Algo-
rithm 3.1, if pi \in \{ 0, 1\} in step 6 or step 7 of Algorithm 3.2, then \zeta i =pi. Thus the
corresponding term in the summation vanishes.



B408 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

Algorithm 3.2 Stochastic optimization for binary OED with the optimal baseline.

Input: Initial distribution parameter p(0), step size schedule \eta (n), sample sizes
Nens, m, baseline batch size bm

Output: \zeta opt

1: initialize n = 0
2: while Not Converged do
3: Update n\leftarrow n+ 1
4: Sample \{ \zeta [j]; j = 1, 2, . . . ,Nens\} \sim \BbbP 

\bigl( 
\zeta | p(n)

\bigr) 

5: Calculate b = OptimalBaseline(p(n), Nens, bm)

6: Calculate g(n) = 1
Nens

\sum Nens

j=1 (\scrJ (\zeta [j] - b))
\sum ns

i=1

\Bigl( 
\zeta i[j]
\bfp i

+ \zeta [j]i - 1
1 - \bfp i

\Bigr) 
ei

7: Update p(n+1) = P
\bigl( 
p(n)  - \eta (n)g(n)

\bigr) 

8: end while
9: Set popt = p(n)

10: Sample \{ \zeta [j]; j = 1, 2, . . . ,m\} \sim \BbbP (\zeta | popt), and calculate \scrJ (\zeta [j])
11: return \zeta opt: the design \zeta with smallest value of \scrJ in the sample.

12: function OptimalBaseline(\theta , Nens, bm)
13: Initialize b\leftarrow 0
14: for e \leftarrow 1 to bm do
15: for j \leftarrow 1 to Nens do
16: Sample \zeta [j] \sim \BbbP (\zeta | p)
17: Calculate r[j] =

\sum ns

i=1

\Bigl( 
\zeta i[j]
\bfp i

+ \zeta [j]i - 1
1 - \bfp i

\Bigr) 
ei

18: end for
19: Calculate d[e] = 1

Nens

\sum Nens

j=1 r[j] , and g[e] = 1
Nens

\sum Nens

j=1 \scrJ (\zeta [j]) r[j]
20: Update b\leftarrow b+ (g[e])

\sansT 
d[e]

21: end for
22: Update b\leftarrow bNens /

\Bigl( 
bm
\sum ns

i=1
1

\bfp i - \bfp 2
i

\Bigr) 

23: return b
24: end function

3.6. Computational considerations. Here, we discuss the computational cost
of the proposed algorithms and of standard OED approaches in terms of the number
of forward model evaluations. We assume \scrJ is set to the A-optimality criterion, that
is, the trace of the posterior covariance of the inversion parameter. This discussion
extends easily to other OED optimality criteria.

Standard OED approaches require solving the relaxed OED problem (2.6), which
requires evaluating the gradient of the objective \scrJ , namely, the optimality criterion,
with respect to the relaxed design, in addition to evaluating the objective itself \scrJ 
for line-search optimization. Formulating the gradient requires one Hessian solve and
a forward integration of the model F for each entry of the gradient. The Hessian,
being the inverse of the posterior covariance of the inversion parameter in the linear
(or the linearized) inverse problem, is a function of the relaxed design; see, for exam-
ple, [9, 17] for details. Hessian solves can be done by using a preconditioned conjugate
gradient (CG) method. Each application of the Hessian requires a (linear/linearized)
forward and an adjoint model evaluation. If the prior covariance is employed as a
preconditioner, and assuming r \ll Nstate is the numerical rank of the prior precon-
ditioned data misfit Hessian (see [17, 29]), then the cost of one Hessian solve is \scrO (r)



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B409

CG iterations, that is, \scrO (2r) evaluations of the forward model F. To summarize,
the cost of evaluating the optimality criterion \scrJ for a given design \zeta is \scrO (2 rNstate)
forward model solves. Moreover, the cost of evaluating the gradient of \scrJ with respect
to the design is \scrO (2 r nsNstate) model solves. Note that the cost of the gradient in
the relaxed OED formulation reduces to \scrO (2 r nsNstate) when the observation errors
are uncorrelated with identical variances, that is, when \Gamma noise = \sigma 2

obsI, where I is the
identity matrix and \sigma 2 is the variance of the observational errors; see, e.g., [3].

In contrast, with the proposed algorithms, we do not need to evaluate the gradient
of \scrJ with respect to the design. At each iteration of Algorithm 3.1, the function \scrJ 
is evaluated for each sampled design to evaluate the stochastic gradient. Assuming
the size of the sample used to formulate the stochastic gradient \widehat g is Nens, then the
cost of each iteration is \scrO (2 rNensNstate). The cost of evaluating the gradient of
the multivariate Bernoulli distribution (3.6) is negligible compared with solving the
forward model F. Note that unlike the case with the relaxed OED formulation, in
the proposed framework the design space is binary; and as we will show later, as
the optimization algorithm proceeds, it reuses previously sampled designs. Moreover,
the value of \scrJ can be evaluated independently, and thus evaluating the stochastic
gradient is embarrassingly parallel.

4. Numerical experiments. We start this section with a small illustrative
model to clarify the approach proposed and provide additional insight. Next, we
present numerical experiments using an advection-diffusion model.

4.1. Results for a two-dimensional problem. Here we discuss an idealized
problem following the definition of the linear forward and inverse problem described
in section 2. Python code for this set of experiments is available from [8]. We define the
forward operator F as a short wide matrix that projects model space into observation
space. Moreover, we specify prior and observation covariance matrices and formulate
the posterior covariance matrix \Gamma post and the objective \scrJ accordingly. The forward
operator and prior and observation noise covariances are

F :=

\biggl[ 
0.5 0.5 0 0
0 0 0.5 0.5

\biggr] 
; \Gamma pr := \sansd \sansi \sansa \sansg (4, 1, 0.25, 1) ; \Gamma noise := \sansd \sansi \sansa \sansg (0.25, 1) ,

(4.1)

which result in the following form of the objective \scrJ = Tr (\Gamma post(\zeta )):

\scrJ (\zeta ) = Tr

\left( 
   

\left[ 
   

\zeta 1 + 0.25 \zeta 1 0 0
\zeta 1 \zeta 1 + 1 0 0
0 0 0.25\zeta 2 + 4 0.25\zeta 2
0 0 0.25\zeta 2 0.25\zeta 2 + 1

\right] 
   

 - \sansone \right) 
   =

8\zeta 1 + 5

5\zeta 1 + 1
+

2\zeta 2 + 20

\zeta 2 + 16
.

(4.2)

The forward operator F in (4.1) describes a simulation at four model gridpoints,
with two candidate observational sensors. The first sensor measures the average value
simulated at the first two model gridpoints, and the second sensor measures the av-
erage value simulated at the last two gridpoints. An A-optimal OED problem here
seeks an optimal design \zeta \in \{ 0, 1\} 2 that minimizes (4.2) and thus guides activa-
tion/deactivation of each of the two sensors.

Figure 2 (left) shows the surface of the two objective functions \scrJ (\zeta ) (4.2) and
\Upsilon (p) (3.4), respectively. The objective functions are evaluated on a regular grid of 15
values equally spaced in each direction. In the same plot we also display the progress



B410 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

p1/ζ1

0.0
0.5

1.0

p 2/
ζ 2

0.0

0.5

1.0

O
bj

ec
ti

ve
va

lu
e

3

4

5

6Optimization: no baseline

Optimization: optimal baseline

Relaxed objective J (ζ)

Stochastic objective Υ(p)

Bruteforce ζopt

Bruteforce popt
0 2 5 7 10

Iteration

3.0

3.5

4.0

O
bj

ec
ti

ve
va

lu
e

Υ
(p

) No baseline ĝ

Optimal baseline ĝbopt

Global Minimum

Fig. 2. Left: Surface plot of the relaxed-OED objective function \scrJ (\zeta ) (4.2) and the objective
function \Upsilon (p) of the corresponding stochastic OED problem (3.4). In each direction 15 equally
spaced points are taken to create the surface plots. Iterations of both Algorithms 3.1 and 3.2 are
shown on the surface plot. Right: Value of the objective function \Upsilon evaluated at each iteration of
the algorithm until convergence. Brute force results are obtained by searching over all 4 possible
values of the binary design. The initial parameter p(0) of the optimizer is set to (0.5, 0.5)\sansT , and the
algorithm terminates when the magnitude of the projected gradient (pgtol) is lower than 10 - 8.

of both Algorithms 3.1 and 3.2, where in the latter we utilize the optimal baseline
bopt described in subsection 3.5.1. In both cases, we set the learning rate to 0.25. The
value of the objective function \Upsilon evaluated at each iteration of the optimizer is shown
in Figure 2 (right). We note that, as explained in subsection 3.2, the values of \scrJ (\zeta )
and \Upsilon (p) coincide at the extremal points of the domain [0, 1]ns . Moreover, unlike the
surface of the stochastic objective \Upsilon , the surface of the original objective function \scrJ ,
evaluated at the relaxed design, flattens out for values of p1 greater than 0.5. This
behavior makes applying a sparsification procedure challenging when associated with
traditional OED approaches.

Figure 2 shows that the optimization algorithms move quickly toward a lower-
dimensional space corresponding to lower values of the objective \Upsilon and then move
slowly toward a local optimum. We also note that since both candidate parameter
values (0, 1)\sansT and (1, 1)\sansT have similar objective values, the optimizer moves slowly
between them, since the value of the gradient in this direction is close to zero. We
note, however, that Algorithm 3.2 outperforms Algorithm 3.1 and converges faster,
in this case to the global minimum. If the optimizer is terminated before convergence
(say, after the first iteration, where p1 is set to 1 here), the returned value of p2 is
in the interval (0, 1), which allows sampling estimates of \zeta opt1 from \{ 0, 1\} , and the
decision can be made based on the value of \scrJ or other decisions, such as budget
constraints. Alternatively, one could modify (4.2) by adding a regularization term to
enforce desired constraints. This will be explained further in subsection 4.2.

4.2. Experimental setup for an advection-diffusion problem. In this sub-
section we demonstrate the effectiveness of our proposed approach using an advection-
diffusion model simulation that has been used extensively in the literature; see, for
example, [3, 5, 9, 10, 40].

The advection-diffusion model simulates the spatiotemporal evolution of a con-
taminant field u = u(x, t) in a closed domain \scrD . Given a set of candidate locations to
deploy sensors to measure the contaminant concentration, we seek the optimal subset
of sensors that once deployed would enable inferring the initial distribution of the
contaminant with minimum uncertainty. To this end, we seek the optimal subset of
candidate sensors that minimized the A-optimality criterion, that is, the trace of the
posterior covariance matrix. We carry out numerical experiments in a setup where



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B411

only 14 candidate sensor locations are considered inside the domain \scrD . The number
of possible combinations of active sensors in this case is 214=16, 384. Despite being
large, this allows us to carry out a brute force search. The purpose of the brute force
search here is to study the behavior of the proposed methodology and its capability
in exploring the design space and utilizing any constraints properly, while seeking the
optimal design. In particular, we can compare the quality of our solution with the
global minimum in this case.

Model setup: Advection-diffusion. We use the same model setup. Specifically, the
contaminant field u = u(x, t) is governed by the advection-diffusion equation

ut  - \kappa \Delta u+ v \cdot \nabla u = 0 in \scrD \times [0, T ],

u(x, 0) = \theta in \scrD ,
\kappa \nabla u \cdot n = 0 on \partial \scrD \times [0, T ],

(4.3)

where \kappa > 0 is the diffusivity, T is the simulation final time, and v is the velocity
field. The spatial domain here is \scrD = [0, 1]2, with two rectangular regions inside the
domain simulating two buildings where the flow is not allowed to enter. Here, \partial \scrD 
refers to the boundary of the domain, which includes both the external boundary and
the walls of the two buildings. The velocity field v is assumed to be known and is
obtained by solving a steady Navier--Stokes equation, with the side walls driving the
flow; see [40] for further details. We utilize the package HippyLib [53] to solve the
advection-diffusion problem (4.3) numerically. To create a synthetic simulation, we
use the initial distribution of the contaminant shown in Figure 3 (left) as the ground
truth.

Observational setup. We consider a set of uniformly distributed candidate sensor
locations (spatial observational gridpoints). Specifically, we consider ns = 14 candi-
date sensor locations as described by Figure 3 (right), and we assume that the sensor
locations do not change over time. An observation vector y represents the concentra-
tion of the contaminant at the sensor locations, at a set of predefined time instances
\{ t1, . . . , tnt\} \subset [0, T :=4]. The observation times are t1+s\Delta t, with initial observation
time t1 = 1; \Delta t = 0.2 is the model simulation timestep; and s = 0, 1, . . . , 20. The
result is nt=16 observation time instances, and Nobs=ns\times nt is the observation space
dimension.

The observation error distribution is \scrN (0,\Gamma noise), with \Gamma noise \in \BbbR Nobs\times Nobs de-
scribing spatiotemporal correlations of observational errors. For simplicity, we assume
that observation errors are uncorrelated, with fixed standard deviation; that is, the ob-
servation error covariance matrix takes the form \Gamma noise=\sigma 2

obsI, where I \in \BbbR Nobs\times Nobs is

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

Fig. 3. Advection-diffusion model domain, discretization, candidate sensor locations, and the
ground truth, in other words, the true initial condition. Left: The physical domain \scrD including
outer boundary and the two buildings, the model grid discretization, and the true model parameter.
Right: Candidate observational sensor locations.



B412 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

the identity matrix. Here, we set the observation error variances to \sigma obs=2.482\times 10 - 2.
This specific value is obtained by considering a noise level of 5\% of the maximum
value of the contaminant concentration captured at all observation points, by running
a simulation over [0, T ], using the the true model parameter; see Figure 3 (left).

Forward operator, adjoint operator, and the prior. The forward operator F maps
the model parameter \theta , here the model initial condition, to the observation space.
Specifically, F represents a forward simulation over the interval [0, T ] followed by ap-
plying an observation operator (here, a restriction operator), to extract concentrations
at sensor locations at observation time instances. Here, F is linear, and the adjoint is
defined as F\ast :=M - \sansone F\sansT , where M is the finite-element mass matrix. The prior distri-
bution of the parameter \theta is modeled by a Gaussian distribution \scrN (\theta pr,\Gamma pr), where
\Gamma pr is a discretization of \scrA  - 2, with \scrA being a Laplacian; see [17] for further details.

4.3. The OED optimization problem. Now we define the design space and
formulate the OED optimization problem. To find the best subset of candidate sensor
locations, we assign a binary design variable \zeta i to each candidate sensor location
xi, where i = 1, 2, . . . , ns, and hence \zeta \in \{ 0, 1\} ns . We aim to find a binary A-
optimal design, that is, the minimizer of the trace of the posterior covariance matrix.
Moreover, to promote sparsity of the design, we employ an \ell 0 penalty term \Phi . We
thus define the objective function \scrJ for this problem as

\scrJ (\zeta ) = Tr

\biggl( \Bigl( 
M - \sansone F\sansT \Gamma 

 - 1/2
noise\sansd \sansi \sansa \sansg (\zeta )\Gamma 

 - 1/2
noiseF+ \Gamma  - 1

pr

\Bigr)  - \sansone 
\biggr) 
+ \alpha \Phi (\zeta ) ,(4.4)

where \alpha is the user-defined penalty parameter. This parameter controls the level of
sparsity that we desire to impose on the design. Specifically, we set \Phi (\zeta ) := \| \zeta \| 0 to
impose sparsity. On the other hand, if we have a specific budget \lambda , it would be more
reasonable to define the penalty function as \Phi (\zeta ) := \alpha | \| \zeta \| 0  - \lambda | = \alpha | \sum ns

i=1 \zeta i  - \lambda | .
We will discuss these two cases in the following and in the numerical experiments.
The stochastic optimization problem (3.2) is formulated given the definition of \scrJ in
(4.4) as

popt = argmin
\bfp \in [0,1]ns

\BbbE \zeta \sim \BbbP (\zeta | \bfp )

\biggl[ 
Tr

\biggl( \Bigl( 
M - \sansone F\sansT \Gamma 

 - 1/2
noise\sansd \sansi \sansa \sansg (\zeta )\Gamma 

 - 1/2
noiseF+ \Gamma  - 1

pr

\Bigr)  - \sansone 
\biggr) 
+ \alpha \Phi (\zeta )

\biggr] 
,

(4.5)

where \BbbP (\zeta | p) is the multivariate Bernoulli distribution with PMF given by (3.1).

4.4. Numerical results with advection-diffusion model. The main goal
here is to study the behavior of the proposed Algorithm 3.2 compared with the global
solution of (4.5). Solution by enumeration (brute force) is carried out for all 214 =
16, 384 possible designs, and the corresponding value of \scrJ is recorded to identify the
global solution of (4.5). In addition, we run Algorithm 3.2 with the maximum number
of iterations set to 20. We choose this tight number to test the performance of the
stochastic optimization algorithm upon early termination. We choose the learning
rate \eta = 0.25 and set the gradient tolerance pgtol to 10 - 8. Each sensor is equipped
with an initial probability 0.5. This is employed by choosing the initial parameter p(0)

of the stochastic optimization algorithm to p(0) = (0.5, . . . , 0.5)\sansT . In all experiments,
we set the sample size for estimating the stochastic gradient to Nens = 32 and the
number of epochs for the optimal baseline to bm=10.

The optimization algorithm returns samples from the multivariate Bernoulli dis-
tribution associated with the parameter popt at the final step. Then, it picks \zeta opt as



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B413

the sampled design associated with the smallest value of \scrJ . We assume that the opti-
mization procedure samples 10 designs upon termination, from the final distribution.
Note that all samples will be identical if the probability distribution is degenerate.
In the numerical results discussed next, we show not only the final optimal design
returned by the optimization procedure but also the sampled designs.

4.4.1. Results without penalty term. We start with numerical results ob-
tained by setting the penalty parameter \alpha =0. Figure 4 shows the results of the brute
force search, along with results returned by Algorithms 3.1 and 3.2. Specifically, the
value of \scrJ := Tr (\Gamma post(\zeta )) is evaluated at each possible design \zeta and is shown on the
y-axis. Candidate binary designs are grouped on the x-axis by the number of entries
set to 1, that is, the number of active sensors. In this setup, we have access to the
value of \scrJ corresponding to all possible designs, and thus we can in fact evaluate
\Upsilon (p) \equiv \BbbE \zeta \sim \BbbP (\zeta | \bfp )[\scrJ (\zeta )] exactly, for any choice of the parameter p. Of course, such
an action is impossible in practice; however, we are interested in understanding the
behavior of the optimization algorithm. Here, without any constraints on the number
of sensors, the global optimal minimum is attained by \zeta opt=1\in \BbbR ns , that is, by acti-
vating all sensors. However, we note that increasing the number of sensors, say, more
than 9, would add little to information gain from data. The reason is the similarity
of the values of \scrJ for all designs with more than 9 active sensors.

In Figure 4, results of the brute force search are shown as light-blue dots. The
designs sampled from the final distribution obtained by Algorithm 3.1 are marked
as red x marks, which in this case are identical, showing that the final probability
distribution is degenerate. The samples generated by Algorithm 3.2 with the opti-
mal baseline estimate (3.23) are marked as green tripod-up marks; in this case, as
indicated by the three unique designs in the sample, the resulting policy is nondegen-
erate and successfully explores the space near the global optimum. Note that both
Algorithms 3.1 and 3.2 result in probability distributions (defined by popt) associated
with small values. However, Algorithm 3.2 with the optimal baseline (3.23) outper-
forms Algorithm 3.1 and generates designs with significantly smaller objective values.
Specifically, as shown in Figure 4, the objective value \scrJ evaluated at the designs
generated by Algorithm 3.2 fall within 1\% of the global optimum.

Evaluating the optimal baseline estimate, however, requires additional evaluations
of \scrJ . We monitor the number of additional evaluations of \scrJ carried out at each
iteration of the optimizer. We keep track of the values of \scrJ for each sampled design
\zeta during the course of the algorithm. By doing so, we avoid any computational
redundancy due to recalculating the objective function multiple times for the same
design. Figure 5 shows the behavior of the optimization procedures over consecutive

0 2 4 6 8 10 12 14
Number of active sensors ‖ζ‖0

10

20

O
bj

ec
tiv

e
va

lu
e
J

(ζ
)

Global Minimum
Bruteforce
No baseline
Optimal baseline

Fig. 4. Results of the policy gradient procedures (Algorithms 3.1, 3.2), compared with the brute
force search of all candidate binary designs. No penalty is used here; that is, we set the sparsity
penalty parameter to \alpha =0. Candidate designs are grouped by the number of active sensors, on the
x-axis, with the corresponding value of \scrJ displayed on the y-axis. Brute force results are shown as
light-blue dots.



B414 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

0 5 10 15 20
Iteration

2.5

3.0

3.5

O
bj

ec
tiv

e
va

lu
e

Υ
(p

)
No baseline
Optimal baseline

Global Minimum

0 5 10 15 20
Iteration

0

10

20

30

N
ew

fu
nc

tio
n
J

(ζ
)

ca
lls

No baseline Optimal baseline

Fig. 5. Behavior of the policy gradient procedures (Algorithms 3.1, 3.2) over consecutive itera-
tions. No penalty is used; we set the penalty parameter \alpha =0. Left: The value of the objective \Upsilon at
each iteration of the optimization procedures. Right: Number of new function \scrJ evaluations carried
out.

iterations. Specifically, Figure 5 (left) shows the value of \Upsilon evaluated at the kth step,
and Figure 5 (right) shows the number of new function evaluations carried out at
each step. In both cases, we show results obtained by Algorithms 3.1 and 3.2.

Figure 5 (left) suggests that Algorithm 3.1 moves steadily toward a local mini-
mum and converges in a small number of iterations (see Figure 5 (right)) but it fails
to explore the space near the global optimum. This action is expected because of
sampling error and the high variability of the estimator. Conversely, Algorithm 3.2
with optimal baseline estimate (3.23) moves steadily toward the global minimum.
The results in Figure 5 (right) indicate that the computational cost, explained by the
number of function evaluations, is not significantly different.

4.4.2. Results with sparsity and fixed-budget constraints. To study the
behavior of the optimization procedures in the presence of \ell 0 sparsity constraints, we
set the penalty function to \Phi (\zeta ) := \| \zeta \| 0 and the regularization penalty parameter to
\alpha = 1.0. Here we do not concern ourselves with the choice of \alpha , and we leave it for
the user to tune based on the application at hand and the required level of sparsity.
Furthermore, to study the behavior of the optimization algorithms in the presence
of an exact budget constraint \| \zeta \| 0 = \lambda , we carry out the same procedure, with the
penalty function set to \Phi (\zeta ) := | \| \zeta \| 0  - \lambda | and the regularization penalty parameter
set to \alpha = 1.0, and we set the budget to \lambda = 8 sensors. Results are shown in Figures 6
and 7, respectively.

In the case of sparsity constraint, as suggested by Figure 6 (left), there is a unique
global optimum design with only three active sensors. Both Algorithms 3.1 and 3.2
result in degenerate probability distributions. The global optimal design, however,
is attained by utilizing the optimal baseline estimate as shown in Figure 6. In the
case of a fixed-budget constraint, as suggested by Figure 6 (right), the two algorithms

0 2 4 6 8 10 12 14
Number of active sensors ‖ζ‖0

10

15

20

O
bj

ec
tiv

e
va

lu
e
J

(ζ
)

Global Minimum
Bruteforce

No baseline
Optimal baseline

0 2 4 6 8 10 12 14
Number of active sensors ‖ζ‖0

10

20

30

O
bj

ec
tiv

e
va

lu
e
J

(ζ
)

Global Minimum
Bruteforce

No baseline
Optimal baseline

Fig. 6. Similar to Figure 4. Left: We use a sparsity constraint, defined by \Phi (\zeta ) :=\| \zeta \| 0. Right:
We use budget constraint, defined by \Phi (\zeta ) :=

\bigm| \bigm| \| \zeta \| 0 - \lambda 
\bigm| \bigm| , where \lambda = 8. In both cases, we set the

sparsity penalty parameter to \alpha =1.0.



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B415

0 5 10 15 20
Iteration

8

9

10

O
bj

ec
tiv

e
va

lu
e

Υ
(p

)
No baseline
Optimal baseline

Global Minimum

0 5 10 15 20
Iteration

0

10

20

30

N
ew

fu
nc

tio
n
J

(ζ
)

ca
lls

No baseline Optimal baseline

0 5 10 15 20
Iteration

3

4

5

O
bj

ec
tiv

e
va

lu
e

Υ
(p

)

No baseline
Optimal baseline

Global Minimum

0 5 10 15 20
Iteration

0

10

20

30

N
ew

fu
nc

tio
n
J

(ζ
)

ca
lls

No baseline Optimal baseline

Fig. 7. Similar to Figure 5. Top: We use a sparsity constraint, defined by \Phi (\zeta ) := \| \zeta \| 0.
Bottom: We use budget constraint, defined by \Phi (\zeta ) :=

\bigm| \bigm| \| \zeta \| 0 - \lambda 
\bigm| \bigm| , where \lambda =8. In both cases, we set

the sparsity penalty parameter to \alpha =1.0.

(Algorithms 3.1 and 3.2) produce similar policies, but the result of Algorithm 3.2
with optimal baseline estimate (3.23) is significantly better as it produces designs
that satisfy the budget constraint. The evolution of the optimization algorithms and
the associated computational costs explained by the number of objective function
evaluations are shown in Figure 7.

The performance of both Algorithms 3.1 and 3.2 is consistent with and with-
out sparsity constraints. By including the optimal baseline estimate (3.23) in Algo-
rithm 3.2, at slight additional computational cost, the global optimum is more likely
to be discovered by the algorithm.

4.4.3. The initial policy and the optimality gap. Both Algorithms 3.1
and 3.2 require setting an initial policy by choosing the initial parameter p(0) of
the optimizer. In the results above, we set p(0) := (0.5, . . . , 0.5)\sansT . Here, we show
the results of carrying out the optimization procedure with different initial policies.
Specifically, we choose 10 different randomly sampled initial policies (each pi is ran-
domly sampled for a uniform distribution \scrU [0, 1]). For each initial policy, we run
Algorithms 3.1 and 3.2. The resulting policy is then used to sample 10 different de-
signs. Figure 8 shows results obtained by setting the sparsity penalty parameter to

1 2 3 4 5 6 7 8 9 10
Random starts: sampled designs ζ

2.25

2.50

2.75

3.00

O
bj

ec
ti

ve
va

lu
e
J

(ζ
)

Global Minimum

No baseline

Optimal baseline

No baseline Optimal baseline

2.5

3.0

O
bj

ec
ti

ve
va

lu
e
J

(ζ
)

Fig. 8. Results of the policy gradient procedures (Algorithms 3.1 and 3.2). The optimization
procedures are run 10 times from different (random) initial policies, and 10 designs are sampled from
the policy returned by each algorithm in each experiment. Left: The 10 experiments are grouped by
the initial policy on the x-axis. Right: The results of the 10 experiments, each with different initial
policy, are grouped by the algorithm used, over all experiments. Here, the penalty parameter is set
to \alpha = 0.



B416 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

1 2 3 4 5 6 7 8 9 10
Random starts: sampled designs ζ

8

10

12

O
bj

ec
ti

ve
va

lu
e
J

(ζ
)

Global Minimum

No baseline

Optimal baseline

No baseline Optimal baseline

8

10

12

O
bj

ec
ti

ve
va

lu
e
J

(ζ
)

Fig. 9. Similar to Figure 8. Here we set the sparsity penalty parameter to \alpha = 1.0 and use the
sparsity-enforcing penalty defined by \Phi (\zeta ) := \| \zeta \| 0.

1 2 3 4 5 6 7 8 9 10
Random starts: sampled designs ζ

3

4

5

O
bj

ec
ti

ve
va

lu
e
J

(ζ
)

Global Minimum

No baseline

Optimal baseline

No baseline Optimal baseline

3

4

5

O
bj

ec
ti

ve
va

lu
e
J

(ζ
)

Fig. 10. Similar to Figure 9. Here we set the sparsity penalty parameter to \alpha = 1.0 and use
the penalty constraint defined by \Phi (\zeta ) :=

\bigm| \bigm| \| \zeta \| 0  - \lambda 
\bigm| \bigm| , where \lambda = 8.

\alpha =0. Similarly, Figures 9 and 10 show results obtained in the presence of sparsity
and fixed-budget constraints, respectively. These results suggest that Algorithm 3.2
exhibits much lower variability than Algorithm 3.1 and tends to significantly decrease
the optimality gap, and hence is more reliable for exploring the probability space near
the global optimal policy. We note, however, that global optimality is not guaranteed
by the policy gradient algorithms presented in this work.

4.4.4. Performance and scalability. The cardinality of the design space | \Omega \zeta | 
grows exponentially with respect to the number of candidate sensors ns, which may
bring significant variance for the stochastic optimization with a large ns as shown
in Theorem 3.3. The proposed formula for variance reduction via optimal baseline
estimation (3.25), however, is developed to reduce the variance numerically. Here
we investigate the scalability of the proposed approach compared to relaxed OED
formulations (see, e.g., [3, 10]), by numerically analyzing the performance for an
increasing number of candidate sensors ns.

In this set of experiments, we use the same setup as in subsection 4.4.2, that is,
we assume an exact budget of \lambda = 8 sensors and enforce it by setting the penalty
function \Phi (\zeta ) := | \| \zeta \| 0  - \lambda | and the penalty parameter \alpha = 1. The budget \lambda = 8 is
enforced in the relaxed approach by using an \ell 1 penalty function with the penalty
parameter value tuned by an L-curve approach: using 20 values of \alpha to approximate
the L-curve and selecting the best value; see [9] for details.

We start by analyzing the accuracy and the performance of the proposed ap-
proach. The total variance of the gradient estimator is estimated using an ensemble
of 32 gradient evaluations. That is, we evaluate the gradients ((3.8) and (3.20),
respectively) using 32 different initial random seeds and calculate the sum of the
sample variance of these gradient approximations. To analyze the redundancy (re-
utilization of function \scrJ evaluations), we study the total redundancy ratio defined
as 1  - Number of unique sampled designs

Total number of sampled designs . More computational savings are achieved for a
redundancy rate closer to 1. As before, and for a fair comparison, we fix the maximum
number of iterations of the optimization algorithm to 20 iterations.



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B417

Figure 11 shows the total variance and the redundancy incurred by the gradi-
ent estimators (3.8) and (3.20) with optimal baseline estimate (3.25), respectively,
for an increasing number of candidate sensor locations ns. Figure 11 (left) shows
that the variance reduction---here the baseline (3.25)---is effective even for large num-
bers of candidate sensors ns \approx 120 and in fact is necessary for the success of the
proposed approach. Figure 11 (right) shows that in this approach, previously evalu-
ated \scrJ values are effectively utilized, thus considerably reducing the computational
cost.

Next, we study the accuracy and the computational cost of the proposed approach
compared to relaxed OED. Figure 12 (left) shows the value of the objective \scrJ (\zeta )
evaluated at the optimal design obtained by each approach, for an increasing number
of candidate sensors. Figure 12 (right) shows the total number of model evaluations
(number of F calls) incurred by the optimization procedures. While the relaxed OED
approach can produce designs with reasonably small values of the objective \scrJ , it
is much more computationally demanding, and it is outperformed by the proposed
approach.

We conclude this section by showing the values of the activation probability p and
the sampled designs \zeta generated by the policy gradient procedures (Algorithms 3.1
and 3.2) in the present set of experiments. Figure 13 shows the optimal parameter
value obtained by Algorithm 3.1 (top) and the designs sampled from the corresponding
optimal observational policy (bottom) for an increasing number of candidate sensor
(as shown in Figure 12). Corresponding results obtained by Algorithm 3.2 are shown
in Figure 14. These results show that (a) the policies returned by the optimization
procedures are not always degenerate (not all activation probabilities are set to 0
or 1), and in this case an estimate of the optimal design is generated by comparing
the values of \scrJ (\zeta ) associated with the sampled designs; (b) the baseline introduced
to reduce the variability of the stochastic gradient estimate is crucial for the perfor-

20 40 60 80 100
Number of candidate sensors

0

20000

40000

To
ta

lv
ar

ia
nc

e

No baseline Optimal baseline

20 40 60 80 100
Number of candidate sensors

0.0

0.5

1.0

R
ed

un
da

nc
y

ra
tio

No baseline Optimal baseline

Fig. 11. Results of (Algorithms 3.1, 3.2) for an increasing number of candidate sensor locations.
Left: Total variance of the gradient estimators averaged over optimization iterations. Right: Total
redundancy ratio.

20 40 60 80 100
Number of candidate sensors

0

25

50

O
bj

ec
tiv

e
va

lu
e
J

(ζ
)

20 40 60 80 100
Number of candidate sensors

0

1000

2000

M
od

el
ev

al
ua

tio
ns

Relaxed OED Stochastic OED; no baseline Stochastic OED; optimal baseline

Fig. 12. Left: Value of the \ell 0-weighted objective function \scrJ (\zeta ) evaluated at the optimal design
\zeta opt obtained by (a) applying relaxed OED followed by thresholding (here we choose the highest
\lambda =8 weights); (b) the policy gradient approach, that is, Algorithms 3.1 and 3.2, respectively. Right:
Number of forward model F evaluations.



B418 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 13. Values of the optimal activation parameters/probabilities p (top) and the sampled
designs (bottom) obtained by the policy gradient procedure Algorithm 3.1 for an increasing number
of candidate sensor locations (as shown in Figure 12). The designs sampled from the optimal policy
are marked by circles, and the sampled optimal design (the design achieving the smallest value of \scrJ 
in the sample) is highlighted by red cross marks.

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 14. Similar to Figure 13. Here, we show a result for the policy gradient procedure Algo-
rithm 3.2.

mance of the optimization routine especially for large cardinality, i.e., large ns); (c)
Algorithm 3.1 achieves reasonable behavior for small cardinality, but, its performance
degrades for increasing cardinality, which is also noted from Figure 12 (left); and (d)
the optimal baseline estimate (3.25) enables Algorithm 3.2 to produce a policy that
reduces the value of \scrJ by both reducing the OED criterion and by better respecting
the budget constraint imposed by the \ell 0 penalty. Note that for ns\approx 120, Algorithm 3.2
still achieves considerably better performance than Algorithm 3.1, but it converged
to a suboptimal policy. This can be enhanced by optimizing the learning rate, by in-
corporating antithetic variates [34], and by utilizing importance sampling [7]. These
approaches will be further investigated in future works.

4.4.5. Results with various learning rates. We conclude this section of ex-
periments with results obtained by different learning rates. We use the setup in sub-
section 4.4.2 and assume an exact budget of \lambda = 8 sensors and enforce it by setting
the penalty function \Phi (\zeta ) := | \| \zeta \| 0  - \lambda | and the penalty parameter \alpha =1. Figure 15
shows results obtained by varying the learning rate \eta in Algorithm 3.2, with the op-
timal baseline estimate (3.23), and note that similar behavior was observed for the
other settings used earlier in the paper.

Figure 15 (left) shows the value of the stochastic objective function corresponding
to the parameter p(k) at the kth iteration of the optimization algorithm for various
choices of the learning rate. Figure 15 (right) shows the number of new calls to the
function \scrJ made at each iteration. By increasing the learning rate \eta , the algorithm



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B419

0 2 4 6 8 10 12 14 16 18 20
Iteration

3

4

5

6

O
bj

ec
tiv

e
va

lu
e

Υ
(p

)

Global Minimum

η = 0.001

η = 0.010

η = 0.100

η = 0.250

η = 0.500

η = 1.000

0 2 4 6 8 10 12 14 16 18 20
Iteration

0

10

20

30

N
ew

fu
nc

tio
n
J

(ζ
)

ca
lls

η = 0.001

η = 0.010

η = 0.100

η = 0.250

η = 0.500

η = 1.000

Fig. 15. Similar to Figure 7. Here, we set the sparsity penalty parameter to \alpha = 1.0 and use
the budget constraint defined by \Phi (\zeta ) :=

\bigm| \bigm| \| \zeta \| 0  - \lambda 
\bigm| \bigm| , where \lambda = 8.

tends to converge quickly and explore the space of probability distributions near the
global optimal policy very quickly. However, this action is also associated with the
risk of divergence. Among the tested values, \eta = 0.5 is the best learning rate.

In general, one can choose a small learning rate or even a decreasing sequence and
run the optimization algorithm long enough to guarantee convergence to an optimal
policy. Doing so, however, will likely increase the computational cost manifested in
the number of evaluations of \scrJ . This problem is widely known as the exploration-
exploitation trade-off in the reinforcement learning literature. Finding an analytically
optimal learning rate is beyond the scope of this paper.

5. Discussion and concluding remarks. In this work, we presented a new
approach for binary optimization that is suitable for optimal design of experiments
in Bayesian inverse problems constrained by expensive mathematical models, such
as partial differential equations. The regularized utility function is cast into a sto-
chastic objective defined over the parameters of multivariate Bernoulli distribution.
A policy gradient algorithm is used to optimize the new objective function and thus
yields an approximately optimal probability distribution, that is, policy from which
an approximately optimal design is sampled. The proposed approach does not re-
quire differentiability of the design utility function nor the penalty function generally
employed to enforce sparsity or regularity conditions on the design. Hence, the com-
putational cost of the proposed methods, in terms of the number of forward model
solves, is much less than the cost required by traditional gradient-based approach
for optimal experimental design. The decrease in computational cost is due mostly
to the fact that the proposed method does not require evaluation of the simulation
model for each entry of the gradient. Sparsity-enforcing penalty functions such as \ell 0
can be used directly, without the need to utilize a continuation procedure or apply a
rounding technique.

The main open issue pertains to the optimal selection of the learning rate parame-
ter. While a decreasing sequence satisfying the Robbins--Monro conditions guarantees
convergence of the proposed algorithm almost surely, such a choice may require many
iterations before convergence to a degenerate optimal policy. The proposed stochastic
formulation can also be solved by other sample-based stochastic optimization meth-
ods, including sample average approximation [37, 43, 48]. The learning rate and
performance of sample-based methods will be considered in future works.

In sensor placement problems, soft constraints are used to enforce sparsity or a
budget on the design, and both classes of constraints have been used in this work.
Accommodating hard-constraints, for example, to enforce a maximum number of sen-
sors, has proven to be challenging because one has to map the constraint space to the



B420 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

space of the policy parameters (i.e., parameters of the Bernoulli distribution). The
multivariate Bernoulli distribution was an intuitive choice to define the probability
of sensor activation. Other distributions can be employed to define an observational
policy. For example, one can consider a mixture distribution to define optimal ex-
perimental design in a continuous spatial domain. This, however, requires different
formulation of the Bayesian OED problem, the underlying observation error models,
and the associated probability measures. These extensions will be considered in future
works.

We note that utilizing traditional cost-reduction methods, including random-
ized matrix methods [13, 45], and other reduced-order modeling approaches (see,
e.g., [12, 18, 23, 49]), to reduce the cost of the OED criterion \scrJ apply to both the
relaxed approach and our proposed approach equally. This shows that the proposed
algorithms introduce massive computational savings to the OED solution process,
compared with the traditional relaxation approach.

Appendix A. Multivariate Bernoulli distribution. The probabilities of a
Bernoulli random variable \zeta \in \{ 0, 1\} are described by

\BbbP (\zeta | p) = p\zeta (1 - p)(1 - \zeta ) \equiv p\zeta + (1 - p)(1 - \zeta ) ; \zeta \in \{ 0, 1\} , p \in [0, 1],(A.1)

where p can be thought of as the probability of success in a one-trial experiment.
Moreover, the following identity holds:

\partial \BbbP (\zeta | p)
\partial p

= ( - 1)1 - \zeta .(A.2)

Assuming \zeta i, i = 1, 2, . . . , ns are mutually independent Bernoulli random variables
with respective success probabilities pi, i = 1, 2, . . . , ns, then the joint probability
mass function (PMF) of the random variable \zeta = (\zeta 1, \zeta 2, . . . , \zeta ns

)\sansT , parameterized by
p = (p1,p2, . . . ,pns

)\sansT , takes the form

\BbbP (\zeta | p) =
ns\prod 

i=1

p\zeta i
i (1 - pi)

1 - \zeta i \equiv 
ns\prod 

i=1

\Bigl( 
pi\zeta i + (1 - pi) (1 - \zeta i)

\Bigr) 
, \zeta i \in \{ 0, 1\} .(A.3)

By using (A.2), the first-order derivative of (A.3) with respect to the parameters
pi is described by

\partial \BbbP (\zeta | p)
\partial pj

=
\partial 

\partial pj

\left( 
  p\zeta j

j (1 - pj)
1 - \zeta j

ns\prod 

i=1
i \not =j

p\zeta i
i (1 - pi)

1 - \zeta i

\right) 
  = ( - 1)1 - \zeta j

ns\prod 

i=1
i\not =j

p\zeta i
i (1 - pi)

1 - \zeta i .

(A.4)

Thus, the gradient can be written as

\nabla \bfp \BbbP (\zeta | p) =
ns\sum 

j=1

\partial \BbbP (\zeta | p)
\partial pj

=

ns\sum 

j=1

( - 1)1 - \zeta j

ns\prod 

i=1
i\not =j

p\zeta i
i (1 - pi)

1 - \zeta iej .(A.5)

Note that the derivative given by (A.4) is the (signed) conditional probability of
\zeta conditioned by \zeta j and pj , respectively. The second-order derivatives follow as

\partial 2\BbbP (\zeta | p)
\partial pk \partial pj

= (1 - \delta kj)( - 1)2 - \zeta j - \zeta k

ns\prod 

i=1
i/\in \{ j,k\} 

p\zeta i
i (1 - pi)

1 - \zeta i ,(A.6)



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B421

where \delta kj is the standard Kronecker delta function. The gradient of the log-probabilities,
that is, the score function of the multivariate Bernoulli PMF (A.3), is given by

\nabla \bfp log\BbbP (\zeta | p) = \nabla \bfp log

ns\prod 

i=1

p\zeta i
i (1 - pi)

1 - \zeta i =

ns\sum 

i=1

\nabla \bfp logp\zeta i
i +

ns\sum 

i=1

\nabla \bfp log (1 - pi)
1 - \zeta i

=

ns\sum 

i=1

\zeta i\nabla \bfp logpi+

ns\sum 

i=1

(1 - \zeta i)\nabla \bfp log (1 - pi) =

ns\sum 

i=1

\biggl( 
\zeta i
pi

+
\zeta i  - 1

1 - pi

\biggr) 
ei.

(A.7)

It follows immediately from (A.7) that

\nabla \bfp \nabla \bfp log\BbbP (\zeta | p) =
ns\sum 

i=1

\biggl(  - \zeta i
p2
i

 - 1 - \zeta i
(1 - pi)2

\biggr) 
eie

\sansT 
i ,

\nabla \bfp log\BbbP (\zeta | p) (\nabla \bfp log\BbbP (\zeta | p))\sansT =

ns\sum 

i=1

ns\sum 

j=1

\biggl( 
\zeta i
pi
 - 1 - \zeta i

1 - pi

\biggr) \biggl( 
\zeta j
pj
 - 1 - \zeta j

1 - pj

\biggr) 
eie

\sansT 
j .

(A.8)

In the rest of this appendix, we prove some identities essential for convergence
analysis of the algorithms proposed in this work. We start with the following basic
relations. First note that \BbbE [\zeta i\zeta j ] = \sansc \sanso \sansv (\zeta i, \zeta j)+\BbbE [\zeta i]\BbbE [\zeta j ] = \delta ijpi(1 - pi)+pipj . This
means that \BbbE 

\bigl[ 
\zeta 2i
\bigr] 
= \BbbE [\zeta i] = pi and \BbbE [\zeta i\zeta j ] = pipj \forall i \not = j. Similarly, \BbbE [\zeta i(\zeta j  - 1)] =

\BbbE [\zeta i\zeta j ]  - \BbbE [\zeta i] = \delta ijpi(1  - pi) + pipj  - pi , and \BbbE [(\zeta i  - 1)(\zeta j  - 1)] = \BbbE [\zeta i\zeta j ]  - pi  - 
pj + 1 = \delta ijpi(1 - pi) + pipj  - pi  - pj + 1 .

Lemma A.1. Let \zeta \in \Omega \zeta := \{ 0, 1\} ns be a random variable following the joint
Bernoulli distribution (A.3) and assume that \sansv \sansa \sansr (\zeta ) is the total variance operator that
evaluates the trace of the variance-covariance matrix of the random variable \zeta . Then
the following identities hold:

\BbbE [\nabla \bfp log\BbbP (\zeta | p)] = 0 ; \sansv \sansa \sansr (\nabla \bfp log\BbbP (\zeta | p)) =
ns\sum 

i=1

1

pi  - p2
i

.(A.9)

Proof. The first identity follows as

\BbbE [\nabla \bfp log\BbbP (\zeta | p)] =
\sum 

\zeta 

\nabla \bfp log\BbbP (\zeta | p)\BbbP (\zeta | p) =
\sum 

\zeta 

\nabla \bfp \BbbP (\zeta | p) = \nabla \bfp 

\sum 

\zeta 

\BbbP (\zeta | p) = 0 .

(A.10)

By definition of the covariance matrix, and since \BbbE [\nabla \bfp log\BbbP (\zeta | p)] = 0, then

\sansv \sansa \sansr (\nabla \bfp log\BbbP (\zeta | p))=Tr
\Bigl( 
\BbbE 
\Bigl[ 
(\nabla \bfp log\BbbP (\zeta | p)) (\nabla \bfp log\BbbP (\zeta | p))\sansT 

\Bigr] \Bigr) 

=\BbbE 
\Bigl[ 
Tr
\Bigl( 
(\nabla \bfp log\BbbP (\zeta | p)) (\nabla \bfp log\BbbP (\zeta | p))\sansT 

\Bigr) \Bigr] 
=\BbbE 

\Bigl[ 
(\nabla \bfp log\BbbP (\zeta | p))\sansT (\nabla \bfp log\BbbP (\zeta | p))

\Bigr] 
,

(A.11)

where we utilized the circular property of the trace operator and the fact that the
matrix trace is a linear operator. Thus,



B422 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

\sansv \sansa \sansr (\nabla \bfp log \BbbP (\zeta | \bfp )) = \BbbE 
\Bigl[ 
(\nabla \bfp log \BbbP (\zeta | \bfp ))\sansT (\nabla \bfp log \BbbP (\zeta | \bfp ))

\Bigr] 
= \BbbE 

\Biggl[ 
ns\sum 
i=1

\biggl( 
\partial log \BbbP (\zeta | \bfp i)

\partial \bfp i

\biggr) 2
\Biggr] 

= \BbbE 

\Biggl[ 
ns\sum 
i=1

\biggl( 
\zeta i
\bfp i

+
\zeta i  - 1

1 - \bfp i

\biggr) 2
\Biggr] 
=

ns\sum 
i=1

\Biggl( 
\BbbE 
\bigl[ 
\zeta 2i
\bigr] 

\bfp 2
i

+
\BbbE 
\bigl[ 
\zeta 2i
\bigr] 
 - 2\BbbE [\zeta i] + 1

(1 - \bfp i)2

\Biggr) 

=

ns\sum 
i=1

\biggl( 
\bfp i

\bfp 2
i

+
\bfp i  - 2\bfp i + 1

(1 - \bfp i)2

\biggr) 
=

ns\sum 
i=1

\biggl( 
1

\bfp i
+

1 - \bfp i

(1 - \bfp i)2

\biggr) 
=

ns\sum 
i=1

1

\bfp i  - \bfp 2
i

,

(A.12)

where we used the fact that \BbbE 
\bigl[ 
\zeta 2i
\bigr] 
= pi , as discussed above. This is also obvious

since \zeta 2 = \zeta .

Lemma A.2. Let \zeta \in \Omega \zeta := \{ 0, 1\} ns be a random variable following the joint
Bernoulli distribution (A.3). Then for any \zeta \in \Omega \zeta , the following bounds hold:

\| \nabla \bfp \BbbP (\zeta | p)\| \leq \surd ns max
j=1,...,ns

min
i=1,...,ns

k \not =j

\BbbP (\zeta i| pi) ,(A.13)

\BbbE \zeta 

\Bigl[ 
\| \nabla \bfp log\BbbP (\zeta | p)\| 2

\Bigr] 
\equiv \sansv \sansa \sansr (\nabla \bfp log\BbbP (\zeta | p)) \leq ns

min
i

p
+

ns

1 - max
i

p
.(A.14)

Proof.

\| \nabla \bfp \BbbP (\zeta | \bfp )\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
ns\sum 
j=1

( - 1)1 - \zeta j
ns\prod 
i=1
k \not =j

\bfp \zeta i
i (1 - \bfp i)

1 - \zeta i\bfe j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 
ns\sum 
j=1

\bigm| \bigm| \bigm| ( - 1)1 - \zeta j \bigm| \bigm| \bigm| 
\left(   ns\prod 

i=1
k \not =j

\bfp \zeta i
i (1 - \bfp i)

1 - \zeta i

\right)   
2

\leq 
ns\sum 
j=1

min
i=1,...,ns

k \not =j

(\BbbP (\zeta i| \bfp i))
2\leq ns max

j=1,...,ns

min
i=1,...,ns

k \not =j

(\BbbP (\zeta i| \bfp i))
2 ,

(A.15)

which prove the first inequality (A.13). By utilizing (A.7), we have

\| \nabla \bfp log\BbbP (\zeta | p)\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
ns\sum 

i=1

\biggl( 
\zeta i
pi

+
\zeta i  - 1

1 - pi

\biggr) 
ei

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

=

ns\sum 

i=1

\biggl( 
\zeta i
pi

+
\zeta i - 1
1 - pi

\biggr) 2

(A.16)

=

ns\sum 

i=1

\Biggl( 
\zeta i
p2
i

+
\zeta i - 1

(1 - pi)
2

\Biggr) 
,

where the last relation follows given the fact that \zeta i \in \{ 0, 1\} , and hence \zeta i(1 - \zeta i) = 0,
and \zeta 2i = \zeta i \forall i = 1, 2, . . . , ns. Taking the expectation of both sides, we get

\BbbE \zeta 

\Bigl[ 
\| \nabla \bfp log\BbbP (\zeta | p)\| 2

\Bigr] 
= \BbbE \zeta 

\Biggl[ 
ns\sum 

i=1

\Biggl( 
\zeta i
p2
i

+
\zeta i  - 1

(1 - pi)
2

\Biggr) \Biggr] 
=

ns\sum 

i=1

\Biggl( 
\BbbE [\zeta i]
p2
i

+
\BbbE [\zeta i] - 1

(1 - pi)
2

\Biggr) 

=

ns\sum 

i=1

\Biggl( 
pi

p2
i

+
pi  - 1

(1 - pi)
2

\Biggr) 
=

ns\sum 

i=1

\biggl( 
1

pi
+

1

(1 - pi)

\biggr) 

=

ns\sum 

i=1

1

pi
+

ns\sum 

i=1

1

(1 - pi)
\leq ns

min
i

p
+

ns

1 - max
i

p
,

(A.17)

which completes the proof of (A.14).



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B423

Appendix B. Proofs of theorems and lemmas discussed in subsec-
tion 3.4.

Proof of Theorem 3.3. The first bound is obtained as follows:

\| \nabla \bfp \Upsilon (p)\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2ns\sum 

k=1

\scrJ (\zeta [k])\nabla \bfp \BbbP (\zeta [k]| p)
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leq 
2ns\sum 

k=1

\| \scrJ (\zeta [k])\nabla \bfp \BbbP (\zeta [k]| p)\| 2

=

2ns\sum 

k=1

(\scrJ (\zeta [k]))2 \| \nabla \bfp \BbbP (\zeta [k]| p)\| 2 \leq C2
2ns\sum 

k=1

\| \nabla \bfp \BbbP (\zeta [k]| p)\| 2 .

(B.1)

Lemma A.2 provides a bound on the gradient of log probability of the multivariate
Bernoulli distribution (3.1) as \| \nabla \bfp \BbbP (\zeta | p)\| \leq \surd ns max

j=1,...,ns

min
k=1,...,ns

k \not =j

\BbbP (\zeta k| pk). It then

follows from (B.1) that

\| \nabla \bfp \Upsilon (p)\| 2 \leq ns C
2

2ns\sum 

i=1

max
j=1,...,ns

min
k=1,...,ns

k \not =j

\BbbP (\zeta k[i]| pk) ,

and hence

\| \nabla \bfp \Upsilon (p)\| 2 \leq ns2
nsC2 max

i=1,...,2ns
max

j=1,...,ns

min
k=1,...,ns

k \not =j

\BbbP (\zeta k[i]| pk) .(B.2)

Because \BbbP (\zeta | p) \leq 1, it follows immediately that \| \nabla \bfp \Upsilon (p)\| 2 \leq ns 2
ns C2, and

the bound (3.13a) follows by taking the square root on both sides. The second
bound (3.13b) follows by noting that

\| \nabla \bfp \Upsilon (p[1]) - \nabla \bfp \Upsilon (p[2])\| \leq \| \nabla \bfp \Upsilon (p[1])\| + \| \nabla \bfp \Upsilon (p[2])\| \leq 2
\sqrt{} 
ns | \Omega \zeta | C .(B.3)

The second-order derivative of the objective \Upsilon is

Hess\bfp \Upsilon = \nabla \bfp \nabla \bfp \Upsilon =
\sum 

\zeta 

\scrJ (\zeta )\nabla \bfp \nabla \bfp \BbbP (\zeta | p) =
2ns\sum 

i=k

\scrJ (\zeta [k])\nabla \bfp \nabla \bfp \BbbP (\zeta [k]| p) .(B.4)

Equation (B.4) shows that the (i, j)th entry of the Hessian (B.4) is
\sum 2ns

k=1 \scrJ (\zeta [k])
\partial 2\BbbP (\zeta | \bfp )
\partial \bfp i \partial \bfp j

. The second-order derivative of the Bernoulli distribution is discussed in

detail in Appendix A, and it follows from (A.6) that \partial 2\BbbP (\zeta | \bfp )
\partial \bfp i \partial \bfp j

\leq 1. This means that

the entries of the Hessian (B.4) are bounded as follows,

\biggl( 
\partial 2\Upsilon 

\partial pi \partial pj

\biggr) 2

=

\Biggl( 
2ns\sum 

i=k

\scrJ (\zeta [k])\partial 
2\BbbP (\zeta | p)
\partial pi \partial pj

\Biggr) 2

\leq C2
2ns\sum 

k=1

\biggl( 
\partial 2\BbbP (\zeta [k]| p)
\partial pi \partial pj

\biggr) 2

\leq C22ns ,

(B.5)

and the bound in (3.14) follows by taking the square root of both sides.

Proof of Lemma 3.4. For any realization of the random design \zeta \sim \BbbP (\zeta | p), it
holds that



B424 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

\BbbE [\scrJ (\zeta )\nabla \bfp log\BbbP (\zeta | p)] =
\sum 

\zeta 

\scrJ (\zeta )\nabla \bfp log\BbbP (\zeta | p)\BbbP (\zeta | p) =
\sum 

\zeta 

\scrJ (\zeta )\nabla \bfp \BbbP (\zeta | p)

= \nabla \bfp 

\sum 

\zeta 

\scrJ (\zeta )\BbbP (\zeta | p) = \nabla \bfp \BbbE [\scrJ (\zeta )] = \nabla \bfp \Upsilon (p) .
(B.6)

Thus, the unbiasedness of the estimator \widehat g follows because

\BbbE [\widehat g] = \BbbE 

\left[ 
 1

Nens

Nens\sum 

j=1

\scrJ (\zeta [j])\nabla \bfp log\BbbP (\zeta [j]| p)

\right] 
 (B.6)

=
1

Nens

Nens\sum 

j=1

\nabla \bfp \Upsilon (p) = \nabla \bfp \Upsilon (p) .

(B.7)

The total variance \sansv \sansa \sansr (\widehat g) follows by the definition of \widehat g as

\sansv \sansa \sansr (\widehat g) = \sansv \sansa \sansr 

\left( 
 1

Nens

Nens\sum 

j=1

\scrJ (\zeta [j])\nabla \bfp log\BbbP (\zeta [j]| p)

\right) 
 =

1

Nens
\sansv \sansa \sansr (\scrJ (\zeta )\nabla \bfp log\BbbP (\zeta | p)) .

(B.8)

To prove (3.17), we rewrite (B.8) as follows,

\BbbE 
\bigl[ 
\widehat g\sansT \widehat g

\bigr] 
= \sansv \sansa \sansr (\widehat g) + \BbbE [\widehat g]\sansT \BbbE [\widehat g] = 1

Nens
\sansv \sansa \sansr (\scrJ (\zeta )\nabla \bfp log\BbbP (\zeta | p)) + g\sansT g

\leq 1

Nens
\sansv \sansa \sansr (C\nabla \bfp log\BbbP (\zeta | p)) + g\sansT g =

C2

Nens
\sansv \sansa \sansr (\nabla \bfp log\BbbP (\zeta | p)) + g\sansT g.

\leq C2 ns

Nens

\left( 
 1

min
i

p
+

1

1 - max
i

p

\right) 
 + g\sansT g ,

(B.9)

where the last inequality follows by (A.14), and, as before, C = max\zeta \in \Omega \zeta 
\{ | \scrJ (\zeta )| \} .

From Theorem 3.3, the gradient is bounded. By setting K1 = C2ns

Nens
( 1
min\bfp i

+ 1
1 - max\bfp i

)

and K2 = 1, one can guarantee that \BbbE 
\bigl[ 
\widehat g\sansT \widehat g

\bigr] 
\leq K1 +K2g

\sansT g .

Proof of Lemma 3.5. The first identity follows from

\BbbE [d] = \BbbE 

\left[ 
 1

Nens

Nens\sum 

j=1

\nabla \bfp log\BbbP (\zeta [j]| p)

\right] 
 =

1

Nens

Nens\sum 

j=1

\BbbE [\nabla \bfp log\BbbP (\zeta [j]| p)] = 0 ,(B.10)

where the last equality follows from (A.9). Because \BbbE [d] = 0, and by utilizing
Lemma A.1, the second identity follows as

\sansv \sansa \sansr (d) = \BbbE 
\bigl[ 
d\sansT d

\bigr] 
 - \BbbE [d]\sansT \BbbE [d] = \BbbE 

\bigl[ 
d\sansT d

\bigr] 
=

1

N2
ens

Nens\sum 

j=1

\sansv \sansa \sansr (\nabla \bfp log\BbbP (\zeta [j]| p))(B.11)

=
1

N2
ens

Nens\sum 

j=1

ns\sum 

i=1

1

pi  - p2
i

=
1

Nens

ns\sum 

i=1

1

pi  - p2
i

.

Proof of Lemma 3.6. The estimator is unbiased because \nabla \bfp \Upsilon 
b(p) = \nabla \bfp \Upsilon (p) ,

and



STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B425

\BbbE 
\Bigl[ \widehat \bfg b
\Bigr] 
= \BbbE 

\Biggl[ 
1

Nens

Nens\sum 
j=1

\scrJ (\zeta [j] - b)\nabla \bfp log \BbbP (\zeta [j]| \bfp )

\Biggr] 
=

1

Nens

Nens\sum 
j=1

\BbbE [\scrJ (\zeta [j] - b)\nabla \bfp log \BbbP (\zeta [j]| \bfp )]

=
1

Nens

Nens\sum 
j=1

\BbbE [\scrJ (\zeta [j])\nabla \bfp log \BbbP (\zeta [j]| \bfp )] - 1

Nens

Nens\sum 
j=1

\BbbE [b\nabla \bfp log \BbbP (\zeta [j]| \bfp )]

= \nabla \bfp \Upsilon (\bfp ) - b

Nens

Nens\sum 
j=1

\BbbE [\nabla \bfp log \BbbP (\zeta [j]| \bfp )] = \nabla \bfp \Upsilon (\bfp ) ,

(B.12)

where the last step follows by Lemma A.1. The total variance of the estimator \widehat gb is
given by

\sansv \sansa \sansr 
\bigl( 
\widehat gb
\bigr) 
= \BbbE 

\Bigl[ \bigl( 
\widehat gb
\bigr) \sansT \widehat gb

\Bigr] 
 - \BbbE 

\bigl[ 
\widehat gb
\bigr] \sansT \BbbE 

\bigl[ 
\widehat gb
\bigr] 
= \BbbE 

\Bigl[ \bigl( 
\widehat gb
\bigr) \sansT \widehat gb

\Bigr] 
 - g\sansT g ,(B.13)

where g = \nabla \bfp \Upsilon 
b = \nabla \bfp \Upsilon . The first term follows as

\BbbE 
\Bigl[ \bigl( 
\widehat gb
\bigr) \sansT \widehat gb

\Bigr] 
= \BbbE 

\Bigl[ 
(\widehat g  - bd)

\sansT 
(\widehat g  - bd)

\Bigr] 
= \BbbE 

\bigl[ 
\widehat g\sansT \widehat g

\bigr] 
 - 2\BbbE 

\bigl[ 
\widehat g\sansT bd

\bigr] 
+ \BbbE 

\bigl[ 
bd\sansT bd

\bigr] 

= \sansv \sansa \sansr (\widehat g) + \BbbE [\widehat g]\sansT \BbbE [\widehat g] - 2b\BbbE 
\bigl[ 
\widehat g\sansT d

\bigr] 
+ b2\sansv \sansa \sansr (d) + b2\BbbE [d]\sansT \BbbE [d]

= \sansv \sansa \sansr (\widehat g) + g\sansT g  - 2b\BbbE 
\bigl[ 
\widehat g\sansT d

\bigr] 
+ b2\sansv \sansa \sansr (d)

= \sansv \sansa \sansr (\widehat g) + g\sansT g  - 2b\BbbE 
\bigl[ 
\widehat g\sansT d

\bigr] 
+

b2

Nens

ns\sum 

i=1

1

pi  - p2
i

.

(B.14)

From (B.13), (B.14), the total variance follows as

\sansv \sansa \sansr 
\bigl( 
\widehat gb
\bigr) 
= \sansv \sansa \sansr (\widehat g) - 2b\BbbE 

\bigl[ 
\widehat g\sansT d

\bigr] 
+

b2

Nens

ns\sum 

i=1

1

pi  - p2
i

.(B.15)

Acknowledgment. We thank three anonymous referees and the associate editor
for their detailed and insightful comments that helped us improve our manuscript.

REFERENCES

[1] A. Alexanderian, Optimal experimental design for infinite-dimensional Bayesian inverse
problems governed by PDEs: A review, Inverse Problems, 2021.

[2] A. Alexanderian, P. J. Gloor, and O. Ghattas, On Bayesian A-and D-optimal experimen-
tal designs in infinite dimensions, Bayesian Anal., 11 (2016), pp. 671--695.

[3] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, A-optimal design of exper-
iments for infinite-dimensional Bayesian linear inverse problems with regularized \ell 0-
sparsification, SIAM J. Sci. Comput., 36 (2014), pp. A2122--A2148.

[4] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, A fast and scalable method
for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse
problems, SIAM J. Sci. Comput., 38 (2016), pp. A243--A272.

[5] A. Alexanderian, N. Petra, G. Stadler, and I. Sunseri, Optimal design of large-scale
Bayesian linear inverse problems under reducible model uncertainty: Good to know what
you don't know, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 163--184.

[6] A. Alexanderian and A. K. Saibaba, Efficient D-optimal design of experiments for
infinite-dimensional Bayesian linear inverse problems, SIAM J. Sci. Comput., 40 (2018),
pp. A2956--A2985.

[7] B. Arouna, Adaptative Monte Carlo method, a variance reduction technique, Monte Carlo
Methods Appl., 10 (2004), pp. 1--24.



B426 AHMED ATTIA, SVEN LEYFFER, AND TODD S. MUNSON

[8] A. Attia, DOERL: Design of Experiments Using Reinforcement Learning, 2021, https:
//gitlab.com/ahmedattia/doerl.

[9] A. Attia, A. Alexanderian, and A. K. Saibaba, Goal-oriented optimal design of experiments
for large-scale Bayesian linear inverse problems, Inverse Problems, 34 (2018).

[10] A. Attia and E. Constantinescu, Optimal Experimental Design for Inverse Problems in the
Presence of Observation Correlations, preprint, https://arxiv.org/abs/2007.14476, 2020.

[11] A. Attia and A. Sandu, A Hybrid Monte Carlo sampling filter for non-Gaussian data assim-
ilation, AIMS Geosci., 1 (2015), pp. 41--78.

[12] A. Attia, R. Stefanescu, and A. Sandu, The reduced-order hybrid Monte Carlo sampling
smoother, Internat. J. Numer. Methods Fluids, 83 (2017), pp. 28--51.

[13] H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix, J. ACM, 58 (2011), pp. 1--34.

[14] R. Bannister, A review of operational methods of variational and ensemble-variational data
assimilation, Quart. J. Roy. Meteor. Soc., 143 (2017), pp. 607--633.

[15] D. P. Bertsekas and J. Tsitsiklis, Neuro--Dynamic Programming, Athena Scientific,
Belmont, MA, 1996.

[16] S. P. Bradley, A. C. Hax, and T. L. Magnanti, Applied Mathematical Programming,
Addison-Wesley, Reading, MA, 1977.

[17] T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler, A computational framework for
infinite-dimensional Bayesian inverse problems part I: The linearized case, with applica-
tion to global seismic inversion, SIAM J. Sci. Comput., 35 (2013), pp. A2494--A2523.

[18] T. Cui, Y. Marzouk, and K. Willcox, Scalable posterior approximations for large-scale
Bayesian inverse problems via likelihood-informed parameter and state reduction, J. Com-
put. Phys., 315 (2016), pp. 363--387.

[19] R. Daley, Atmospheric Data Analysis, Cambridge University Press, Cambridge, 1991.
[20] A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method

with support for non-strongly convex composite objectives, in Proceedings of Advances in
Neural Information Processing Systems, 2014, pp. 1646--1654.

[21] J. Dupacov\'a and R. Wets, Asymptotic behavior of statistical estimators and of optimal
solutions of stochastic optimization problems, Ann. Statist., 16 (1988), pp. 1517--1549.

[22] V. Fedorov and J. Lee, Design of experiments in statistics, in Handbook of Semidefinite
Programming, R. S. H. Wolkowicz and L. Vandenberghe, eds., Internat. Ser. Oper. Res.
Management Sci. 27, Kluwer Academic Publishers, Boston, 2000, pp. 511--532.

[23] H. P. Flath, L. C. Wilcox, V. Ak\c celik, J. Hill, B. van Bloemen Waanders, and O. Ghat-
tas, Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse
problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput., 33
(2011), pp. 407--432.

[24] E. Haber, L. Horesh, and L. Tenorio, Numerical methods for experimental design of large-
scale linear ill-posed inverse problems, Inverse Problems, 24 (2008), pp. 125--137.

[25] E. Haber, L. Horesh, and L. Tenorio, Numerical methods for the design of large-scale
nonlinear discrete ill-posed inverse problems, Inverse Problems, 26 (2010), 025002.

[26] E. Haber, Z. Magnant, C. Lucero, and L. Tenorio, Numerical methods for A-optimal
designs with a sparsity constraint for ill-posed inverse problems, Comput. Optim. Appl.,
52 (2012), pp. 293--314.

[27] X. Huan and Y. Marzouk, Gradient-based stochastic optimization methods in Bayesian ex-
perimental design, Int. J. Uncertain. Quantif., 4 (2014).

[28] X. Huan and Y. M. Marzouk, Simulation-based optimal Bayesian experimental design for
nonlinear systems, J. Comput. Phys., 232 (2013), pp. 288--317.

[29] T. Isaac, N. Petra, G. Stadler, and O. Ghattas, Scalable and efficient algorithms for
the propagation of uncertainty from data through inference to prediction for large-scale
problems, with application to flow of the Antarctic ice sheet, J. Comput. Phys., 296 (2015),
pp. 348--368.

[30] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math.
Sci. 160, Springer, New York, 2006.

[31] A. J. King and R. T. Rockafellar, Asymptotic theory for solutions in statistical estimation
and stochastic programming, Math. Oper. Res., 18 (1993), pp. 148--162.

[32] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello, The sample average approximation
method for stochastic discrete optimization, SIAM J. Optim., 12 (2002), pp. 479--502.

[33] K. Koval, A. Alexanderian, and G. Stadler, Optimal experimental design under irreducible
uncertainty for linear inverse problems governed by PDEs, Inverse Problems, 36 (2020).

[34] P. L'Ecuyer, Efficiency improvement and variance reduction, in Proceedings of the Winter
Simulation Conference, IEEE, 1994, pp. 122--132.

https://gitlab.com/ahmedattia/doerl
https://gitlab.com/ahmedattia/doerl
https://arxiv.org/abs/2007.14476


STOCHASTIC LEARNING FOR BINARY OPTIMIZATION B427

[35] W.-K. Mak, D. P. Morton, and R. K. Wood, Monte Carlo bounding techniques for deter-
mining solution quality in stochastic programs, Oper. Res. Lett., 24 (1999), pp. 47--56.

[36] I. M. Navon, Data assimilation for numerical weather prediction: A review, in Data Assimi-
lation for Atmospheric, Oceanic and Hydrologic Applications, Springer, New York, 2009,
pp. 21--65.

[37] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation
approach to stochastic programming, SIAM J. Optim., 19 (2009), pp. 1574--1609.

[38] J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 2006.
[39] A. P\'azman, Foundations of Optimum Experimental Design, D. Reidel, Boston, 1986.
[40] N. Petra and G. Stadler, Model Variational Inverse Problems Governed by Partial Differ-

ential Equations, Technical report 11-05, The Institute for Computational Engineering and
Sciences, The University of Texas at Austin, 2011.

[41] F. Pukelsheim, Optimal Design of Experiments, John Wiley \& Sons, New York, 1993.
[42] S. J. Reddi, S. Sra, B. P\'oczos, and A. Smola, Fast Incremental Method for Nonconvex

Optimization, preprint, https://arxiv.org/abs/1603.06159, 2016.
[43] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist., 22 (1951),

pp. 400--407.
[44] S. Sager, H. G. Bock, and M. Diehl, The integer approximation error in mixed-integer

optimal control, Math. Program., 133 (2012), pp. 1--23.
[45] A. K. Saibaba, A. Alexanderian, and I. C. Ipsen, Randomized matrix-free trace and log-

determinant estimators, Numer. Math., 137 (2017), pp. 353--395.
[46] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochastic average

gradient, Math. Program., 162 (2017), pp. 83--112.
[47] A. Shapiro, Asymptotic analysis of stochastic programs, Ann. Oper. Res., 30 (1991), pp. 169--

186.
[48] J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and

Control, Wiley Ser. Discrete Math. Optim. 65, John Wiley \& Sons, New York, 2005.
[49] A. Spantini, A. Solonen, T. Cui, J. Martin, L. Tenorio, and Y. Marzouk, Optimal low-

rank approximations of Bayesian linear inverse problems, SIAM J. Sci. Comput., 37 (2015),
pp. A2451--A2487.

[50] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in Proceedings of Advances in
Neural Information Processing Systems, 2000, pp. 1057--1063.

[51] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM,
Philadelphia, PA, 2005.

[52] D. Uci\'nski, Optimal sensor location for parameter estimation of distributed processes, Internat.
J. Control, 73 (2000), pp. 1235--1248.

[53] U. Villa, N. Petra, and O. Ghattas, hIPPYlib: An extensible software framework for large-
scale inverse problems governed by PDEs: Part I: Deterministic inversion and linearized
Bayesian inference, ACM Trans. Math. Software, 47 (2021), pp. 1--34.

[54] R. J. Williams, Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning, Mach. Learn., 8 (1992), pp. 229--256.

[55] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization, Wiley Ser.
Discrete Math. Optim. 55, John Wiley \& Sons, New York, 1999.

[56] J. Yu, V. M. Zavala, and M. Anitescu, A scalable design of experiments framework for
optimal sensor placement, J. Process Control, 67 (2018), pp. 44--55.

https://arxiv.org/abs/1603.06159

	Introduction
	OED for Bayesian inversion
	Stochastic learning approach for binary optimization
	Stochastic formulation of the OED binary optimization problem
	Benefits of the stochastic formulation
	Approximately solving the stochastic optimization problem
	Convergence analysis
	Analysis of the exact stochastic optimization problem
	Analysis of stochastic steepest-descent algorithm

	Variance reduction: Introducing the baseline
	On the choice of the baseline
	Complete algorithm statement

	Computational considerations

	Numerical experiments
	Results for a two-dimensional problem
	Experimental setup for an advection-diffusion problem
	The OED optimization problem
	Numerical results with advection-diffusion model
	Results without penalty term
	Results with sparsity and fixed-budget constraints
	The initial policy and the optimality gap
	Performance and scalability
	Results with various learning rates


	Discussion and concluding remarks
	Appendix A. Multivariate Bernoulli distribution
	Appendix B. Proofs of theorems and lemmas discussed in subsec:convergenceanalysis
	Acknowledgment
	References

