
Tutorial 5: Optimality Conditions
1 Consider the NLP

minimize
x

1

2

(
(x1 − 1)2 + x2

2

)
subject to − x1 + βx2

2 = 0.

Write down its KKT and second-order conditions. For what
values of β is x∗ = 0 a local minimizer of this problem?

2 Write down the KKT conditions

minimize
l≤x≤u

f (x)

and establish the correctness of Theorem 7.1.1 by showing
that the Lagrange multipliers are the slopes of f (x) in the
coordinate directions. Hint: Introduce “copy variables”, and
split l ≤ x ≤ u into xl = xu, xl ≥ l , −xu ≥ −u, so that
Theorem 8.2.1 can be applied.

3 Show that the KKT conditions of the LP around x∗ (8.11) are
equivalent to the KKT conditions of the NLP (8.2) at the
solution x∗.
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Tutorial 5: Optimality Conditions

1 Show that the conditions in Theorem 6.2.2 (optimality of TR
subproblem) follow from the KKT conditions.

2 Consider the following optimization problem

minimize
x

xTAx subject to ‖x‖22 = 1,

where A ∈ Rn×n is a symmetric matrix. Derive its optimality
conditions, and show that it can be solved to global
optimality. Does the same hold, if we maximize instead?
If you like, you can start using the matrix

A =

3 0 1
0 2 −1
1 −1 −4


What is the interpretation of the Lagrange multiplier and the
optimum, x∗?
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Tutorial 5: Convexity and Duality
1 Show that the following functions are convex:

Linear function: l(x) = aT x + b
Quadratic function: q(x) = 1

2xTGx + gT x + b for pos.
semi-def. Hessian, G � 0
Norms, such as the `1 and `2 norm
Convex combinations of two convex functions, i.e. if
g(x), h(x) are convex, then f (x) = (1− λ)g(x) + λh(x) is
convex for λ ∈ [0, 1].

2 Prove the following theorem:

Theorem (KKT Conditions are Necessary and Sufficient)

KKT conditions are necessary and sufficient for a global minimum
of a convex program.

3 Derive the dual of

minimize
x

cT x subject to AT x ≥ b, x ≥ 0
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