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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

f : Rn → R, c : Rn → Rm smooth (often convex) functions

X ∈ Rn bounded, polyhedral set, e.g. X = {x : l ≤ AT x ≤ u}
I ⊂ {1, . . . , n} subset of integer variables

xi ∈ Z for all i ∈ I ... combinatorial problem

Combines challenges of handling nonlinearities
with combinatorial explosion of integer variables

More general constraints possible, e.g. l ≤ c(x) ≤ u etc.
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Complexity of MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Complexity of MINLP

MINLP is NP-hard: includes MILP, which are NP-hard
[Kannan and Monma, 1978]

Worse: MINLP are undecidable [Jeroslow, 1973]:
quadratically constrained IP for which no computing device
can compute the optimum for all problems in this class
... but we’re OK if X is compact!
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Notation

Some notation used throughout the course ...

f (k) = f (x (k)) evaluated at x = x (k)

∇f (k) = ∇f (x (k)) gradient

Hessian of Lagrangian L(x , λ) = f (x)−
∑
λici (c) is ∇2L(k)

... assumes X polyhedral

Subscripts denote components, e.g. xi is component i of x

If J ⊂ {1, . . . , n} then xJ are components of x corres. to J

xI integer and xC are the continuous variables, p = |I |
Floor and ceiling operators: bxic and dxie:

bxic largest integer smaller than or equal to xi
dxie smallest integer larger than or equal to xi
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Convexity of Nonlinear Functions

MINLP techniques distinguish convex and nonconvex MINLPs.
For our purposes, we define convexity as ...

Definition

A function f : Rn → R is convex, iff ∀x (0), x (1) ∈ Rn we have:

f (x (1)) ≥ f (x (0)) + (x (1) − x (0))T∇f (0)

In a slight abuse of notation, we say that ...

Definition

MINLP is a convex if the problem functions f (x) and c(x) are
convex functions. If either f (x) or any ci (x) is a nonconvex
function, then MINLP is nonconvex.

7 / 73



Convexity (cont.)

We also define the convex hull of a set S as ...

Definition

For a set S , the convex hull of S is conv(S):{
x |x = λx (1) + (1− λ)x (0), ∀0 ≤ λ ≤ 1, ∀x (0), x (1) ∈ S

}
.

If X = {x ∈ Zp : l ≤ x ≤ u} and l ∈ Zp, u ∈ Zp,
then conv(X ) = [l , u]p

Finding convex hull is hard, even for polyhedral X .

Convex hull important for MILP ...

Theorem

MILP can be solved as LP over the convex hull of feasible set.
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MILP 6= MINLP
Important difference between MINLP and MILP

minimize
x

n∑
i=1

(xi − 1
2)2, subject to xi ∈ {0, 1}

... solution is not extreme point (lies in interior)
Remedy: Introduce objective η and a constraint η ≥ f (x)



minimize
η,x

η,

subject to f (x) ≤ η,
c(x) ≤ 0,
x ∈ X ,
xi ∈ Z, ∀i ∈ I .

Assume wlog that MINLP objective
is linear

x1

x2

(x̂1, x̂2)

η
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Interlude: SOCN, Social Media, and MINLP

Questions, comments, and suggestions are always welcome!

Who is the audience of this course?

0 4 0 7

8 1 12 0

You can comment on this course on using hastag #socn13

I will post links to course notes using #socn13 after each lecture
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Relaxation and Constraint Enforcement

Relaxation

Used to compute a lower bound on the optimum

Obtained by enlarging feasible set; e.g. ignore constraints

Typically much easier to solve than MINLP

Constraint Enforcement

Exclude solutions from relaxations not feasible in MINLP

Refine or tighten of relaxation; e.g. add valid inequalities

Upper Bounds

Obtained from any feasible point; e.g. solve NLP for fixed xI
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Relaxations of Integrality

Definition (Relaxation)

Optimization problem min{f̆ (x) : x ∈ R} is a relaxation of
min{f (x) : x ∈ F}, iff R ⊃ F and f̆ (x) ≤ f (x) for all x ∈ F .

Goal: relaxation easy to solve globally, e.g. MILP or NLP

Relaxing Integrality

Relax Integrality xi ∈ Z to xi ∈ R for all i ∈ I

Gives nonlinear relaxation of MINLP, or NLP:
minimize

x
f (x),

subject to c(x) ≤ 0,
x ∈ X , continuous

Used in branch-and-bound algorithms
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Relaxations of Nonlinear Convex Constraints
Relaxing Convex Constraints

Convex 0 ≥ c(x) and η ≥ f (x)f relaxed by supporting
hyperplanes

η ≥ f (k) +∇f (k)T (x − x (k))

0 ≥ c(k) +∇c(k)T (x − x (k))

for a set of points x (k), k = 1, . . . ,K .

Obtain polyhedral relaxation of convex constraints.

Used in the outer approximation methods.
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Relaxations of Nonconvex Constraints

Relaxing Nonconvex Constraints

Construct convex underestimators, f̆ (x) and c̆(x) for
nonconvex functions c(x) and f (x):

f̆ (x) ≤ f (x) and c̆(x) ≤ c(x), ∀x ∈ conv(X ).

Relax constraints z ≥ f (x) and 0 ≥ c(x) as

z ≥ f̆ (x) and 0 ≥ c̆(x).

Used in spatial branch-and-bound.
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Relaxations Summary

Nonlinear and polyhedral relaxation
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Relaxations

Relaxations can be combined to produce better algorithms

Relax convex underestimators via supporting hyperplanes.

Relax integrality of polyhedral relaxation to obtain an LP.

Relaxations are useful because we have following result:

Theorem

If the solution of the relaxation of the η-MINLP is feasible in the
η-MINLP, then it solves the MINLP.

... but if solution of relaxation is not feasible, then need ...
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Constraint Enforcement

Goal: Given solution of relaxation, x̂ , not feasible in MINLP,
exclude it from further consideration to ensure convergence

Three constraint enforcement strategies

1 Relaxation refinement: tighten the relaxation

2 Branching: disjunction to exclude set of non-integer points

3 Spatial branching: divide region into sub-regions

Strategies can be combined ...
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Constraint Enforcement: Refinement
Tighten the relaxation to remove current solution x̂ of relaxation

Add a valid inequality to relaxation, i.e. an inequality that is
satisfied by all feasible solutions of MINLP

Valid inequality is called a cut if it excludes x̂

Example: c(x) ≤ 0 convex, and ∃i : ci (x̂) > 0, then

0 ≥ ĉi +∇ĉT (x − x̂)

cuts off x̂ . Proof: Exercise.

Used in Benders decomposition and outer approximation.

MILP: cuts are basis for branch-and-cut techniques.
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Constraint Enforcement: Branching

Eliminate current x̂ solution by branch on integer variables:

1 Select fractional x̂i for some i ∈ I

2 Create two new relaxations by adding

xi ≤ bx̂ic and xi ≥ dx̂ie respectively

... solution to MINLP lies in one of the new relaxations.

... creates branch-and-bound tree
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Branch-and-Bound Trees can be Huge

Tree after 360 s CPU time has more than 10,000 nodes
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Constraint Enforcement: Spatial Branching

Enforcement for relaxed nonconvex constraints

Combine branching and relaxation refinement

Branch on continuous variable and split domain in two parts.

Create new relaxation over (reduced) sub-domains.

Generates tree similar to integer branching.

Mix with interval techniques to eliminate sub-domains.

Nonconvex MINLPs combine all 3 enforcement techniques.
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Nonlinear Optimization Background

Consider nonlinear optimization problem (NLP)

(P) minimize
x

f (x) subject to c(x) = 0, x ≥ 0

All variables continuous in this section

f : Rn → R and c : Rn → Rm twice continuously differentiable

f , c not necessarily convex in this section
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Optimality Conditions for NLP

(P) minimize
x

f (x) subject to c(x) = 0, x ≥ 0

Definition (Active Set)

A(x) := {i |xi = 0} denotes set of active inequality constraints.

Definition (Constraint Qualification)

(P) satisfies the linear independence constraint qualification
(LICQ) at x∗, iff [∇c∗ : IA(x∗)] has full rank, where IA(x∗) are unit
columns corresponding to active set A(x∗).

Other CQs are possible (weakest is MFCQ)

CQs imply that feasible set “looks locally linear”

Exclude cusps from consideration

Ensure we can state optimality conditions & methods
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Optimality Conditions for NLP

(P) minimize
x

f (x) subject to c(x) = 0, x ≥ 0

Theorem (Karush-Kuhn-Tucker Conditions)

x∗ local minimizer & CQ holds ⇒ ∃ multipliers y∗, z∗:

∇f ∗ −∇c∗T y∗ − z∗ = 0
c(x∗) = 0

x∗ ≥ 0, z∗ ≥ 0, and X ∗z∗ = 0

where X ∗ = diag(x∗), thus X ∗z∗ = 0 ⇔ x∗i z
∗
i = 0

Lagrangian: L(x , y , z) := f (x)− yT c(x)− zT x
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Optimality Conditions for NLP

Objective gradient is linear combination of constraint gradients

g(x) = A(x)y , where g(x) := ∇f (x), A(x) := ∇c(x)T

... do not look at 2nd order conditions.
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Alternative Optimality Conditions for NLP

(P) minimize
x

f (x) subject to c(x) = 0, x ≥ 0

Theorem (LP-Based Optimality)

x∗ local minimizer & CQ holds ⇒ d = 0 solves linear
approximation:

minimize
d

∇f ∗T d

subject to c∗ +∇c∗T d = 0
x∗ + d ≥ 0

There exists no linearized descend direction ... suggests methods!

Used in convergence proof of outer approximation ...
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Newton’s Method for Nonlinear Equations

KKT conditions are nonlinear set of equations F (x) = 0 ...

To solve F (x) = 0:
Get approx. x (k+1) of solution of F (x) = 0
by solving linear model about x (k):

F (x (k)) +∇F (x (k))T (x − x (k)) = 0

for k = 0, 1, . . .

Theorem (Local Convergence of Newton’s Method)

If F ∈ C2, and ∇F (x∗) nonsingular, then Newton converges
quadratically near x∗.
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Newton’s Method for Nonlinear Equations

Next: two classes of methods based on Newton ...
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Sequential Quadratic Programming (SQP)

SQP for inequality constrained NLP:

minimize
x

f (x) subject to c(x) = 0 & x ≥ 0

REPEAT

1 Solve QP for (s, y (k+1), z(k+1))
minimize

s
∇f (k)T s + 1

2s
TH(k)s

subject to c(k) + A(k)T s = 0

x (k) + s ≥ 0

where H(k) ' ∇2L(k) Hessian of Lagrangian

2 Set x (k+1) = x (k) + s

... QP solve computationally expensive
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Modern Interior-Point Methods (IPM)

General NLP

minimize
x

f (x) subject to c(x) = 0 & x ≥ 0

Perturbed µ > 0 optimality conditions (x , z > 0)

Fµ(x , y , z) =


∇f (x)−∇c(x)T y − z

c(x)
Xz − µe

 = 0

Primal-dual formulation, where X = diag(x)

Central path {x(µ), y(µ), z(µ) : µ > 0}
Apply Newton’s method for sequence µ↘ 0
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Modern Interior-Point Methods (IPM)

Newton’s method applied to primal-dual system ...∇2L(k) −A(k) −I
A(k)T 0 0

Z (k) 0 X (k)

∆x
∆y
∆z

 = −Fµ(x (k), y (k), z(k))

where A(k) = ∇c(x (k))T , X (k) diagonal matrix of x (k).

Polynomial run-time guarantee for convex problems
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Solving Nonlinear Optimization Problems

(P) minimize
x

f (x) subject to c(x) ≥ 0

Main ingredients of iterative solution approaches:

1 Local Method: Given x (k) (solution guess) find a step s.

Sequential Quadratic Programming (SQP)
Sequential Linear/Quadratic Programming (SLQP)
Interior-Point Methods

2 Forcing Strategy: Convergence from remote starting points.
3 Forcing Mechanism: Truncate step s to force progress:

Trust-region to restrict s of local problem ... used in this talk.
Back-tracking line-search along step s.
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Trust-Region Methods

Globalize SQP/IPM using trust region, ∆k > 0:
Consider unconstrained f (x) minimization by trust-region

min
s

q(k)(s) := f (x (k)) +∇f (x (k))T s +
1

2
sTH(x (k))s s.t. ‖s‖ ≤ ∆k
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Active-Set (SQP) vs Interior-Point for MINLP

What NLP solver should I use in MINLP?

Warm-start for IPM is active area of research

Active-set methods have better re-start capabilities

MINLP 6= MILP:

LP basis factors can be re-used in tree-search
NLP (KKT) factors are always out-of-date

... no quick re-solves ... not even SQP or SLP!!!

... active-set methods are preferred for MINLPs.

The Three Most Important Things in MINLP

Use LP solvers as much as possible in MINLP
⇒ linearize, linearize, linearize
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Active-Set vs. Interior-Point Solvers

BONMIN with IPOPT vs. FilterSQP: # nodes

IPOPT has fewer nodes ... random round-off issue?

FilterSQP warm-starts faster ... not surprising!
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MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999]
... even more important in MINLP

MINLP combines integer and nonlinear formulations

Reformulations of nonlinear relationships can be convex

Interactions of nonlinear functions and binary variables

Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.
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Convexification of Binary Quadratic Programs

Consider pure binary quadratic function

q(x) = xTQx + gT x where x ∈ {0, 1}p

Let λ be smallest eigenvalue of Q

If λ ≥ 0 then q(x) is convex

Convexification of Binary Quadratics

Let W := Q − λI and c := g + λe, where e = (1, . . . , 1),
then q(x) = xTWx + cT x is convex.
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Modeling of Discrete Variables

We can model discrete variables such as

y ∈ {Y1,Y2, . . . ,Yk}

where Yi are discrete parameters (e.g. pipe diameters) with
special ordered sets (SOS):

y =
k∑

i=1

ziYi , 1 =
k∑

i=1

zi , zi ∈ {0, 1}

see [Beale and Tomlin, 1970, Beale and Forrest, 1976]

Similarly linearize univariate functions f (z), z ∈ Z
Generalizes to higher dimensions

Solvers detect SOS structure and use special branching rules
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Exploiting Low-Rank Hessians

Consider (convex) quadratic function

q(x) = xTWx + gT x ,

where x mixture of variables, and W dense with structure:

W = ZTR−1Z low rank, e.g. estimation problems

R ∈ Rm×m nonsingular (co-variance matrix)

Z ∈ Rm×n, where m� n and Z is sparse.

Then introduce variables z , constraints

z = Zx , and write xTWx = zTR−1z

... QP/NLP solvers can exploit sparsity of Z .
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Linearization of Constraints

Assum x2 6= 0. A simple transformation (a constant parameter):

x1
x2

= a ⇔ x1 = ax2

Linearization of bilinear terms x1x2 with:

Binary variable x2 ∈ {0, 1}
Variable upper bound: 0 ≤ x1 ≤ Ux2

... introduce new variable x12 to replace x1x2 and add constraints

0 ≤ x12 ≤ x2U and − U(1− x2) ≤ x1 − x12 ≤ U(1− x2),
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Never Multiply a Nonlinear Function by a Binary

Previous example generalizes to nonlinear functions
Often binary variables “switch” constraints on/off

Warning

Never model on/off constraints by multiplying by a binary variable.

Three alternative approaches

Disjunctive programming, see [Grossmann and Lee, 2003]

Perspective formulations (not always), see
[Günlük and Linderoth, 2012]

Big-M formulation (weak relaxations)
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Avoiding Undefined Nonlinear Expressions

MINLP solvers fail because NLP solver gets IEEE exception, e.g.

c(x1) = − ln(sin(x1)) ≤ 0,

cannot be evaluated at sin(x1) ≤ 0

Reformulate equivalently as

c̃(x2) = − ln(x2) ≤ 0, x2 = sin(x1), and x2 ≥ 0.

IPM solvers never evaluate at x2 ≤ 0
Active-set method can also safeguard against x2 ≤ 0

x2 ≥ 0 is s simple bound which can be enforced exactly

x2 = 0 get IEEE exception ⇒ trap & reduce trust-region

As x2 → 0, the constraint violation c(x2)→∞
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Variable Transformations

Design of multiproduct batch plant includes nonconvex terms∑
j∈M

αjNjV
βj
j ; CiNj ≥ τij ;

∑
i∈N

ψi

Bi
Ci ≤ γ

where variables are upper case, parameters are Greek letters.

Introduce log-transform variables

vj = ln(Vj), nj = ln(Nj), bi = ln(Bi ), ci = ln(Ci ).

Transformed expressions are convex:∑
j∈M

αje
nj+βjvj , ci + nj ≥ ln(τij),

∑
i∈N

ψie
ci−bi ≤ γ
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Design of Water Distribution Networks

Model of water, gas, air networks
Goal: design minimum cost network from discrete pipe diameters

N nodes in network

S source nodes

A: arcs in the network
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Design of Water Distribution Networks

Goal: design minimum cost network from discrete pipe diameters
N nodes, S source nodes, A: arcs in the network
Variables:
qij : flow pipe (i , j) ∈ A
dij : diameter of pipe (i , j) ∈ A, where dij ∈ {P1, . . . ,Pr}
hi : hydraulic head at node i ∈ N
zij : binary variables model flow direction (i , j) ∈ A
aij : area of cross section (i , j) ∈ A
yijk : SOS-1 variables to model diameter

NB: aij = πd2
ij/4 is redundant ... but useful!
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Design of Water Distribution Networks

N nodes, S source nodes, A: arcs in the network
Equations for qij flow pipe (i , j) ∈ A

Conservation of flow at every node∑
(i ,j)∈A

qij −
∑

(j ,i)∈A

qji = Di , ∀i ∈ N − S.

Flow bounds are linear in dij ... nonlinear in aij :

−Vmaxaij ≤ qij ≤ Vmaxaij , ∀(i , j) ∈ A.
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Design of Water Distribution Networks

Modeling Trick: SOS & Nonlinear Expressions
Modeling discrete dij ∈ {P1, . . . ,Pr} and nonlinear aij = πd2

ij/4:

1 Introduce SOS-1 variables yijk ∈ {0, 1} for k = 1, . . . , r

2 Model discrete choice as

r∑
k=1

yijk = 1, and
r∑

k=1

Pkyijk = dij . ∀(i , j) ∈ A,

3 Model nonlinear relationship as

r∑
k=1

(πPk/4)yijk = aij , ∀(i , j) ∈ A.

⇒ no longer need aij = πd2
ij/4!
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Design of Water Distribution Networks
Nonsmooth pressure loss model along arc (i , j) ∈ A

hi − hj =
sgn(qij)|qij |c1c2LijK−c1ij

dc3
ij

... introduce binary variables to model nonsmooth term |qij |c1
1 Add binary variables zij ∈ {0, 1}
2

0 ≤ q+ij ≤ Qmaxzij , 0 ≤ q−ij ≤ Qmax(1− zij), qij = q+ij − q−ij .

3 Pressure drop becomes

hi − hj =

[(
q+ij

)c1
−
(
q−ij

)c1]
c2LijK

−c1
ij

dc3
ij

, ∀(i , j) ∈ A.

... can again linearize the dc3
ij expression with SOS

... alternative uses complementarity
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Other MINLP Applications

MINLP

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Applications:

reactor core reload operation

power grid operation & design

buildings co-generation

optimal oil-spill response

gas transmission networks
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Application: Nuclear Reactor-Core Reloading

Mixed Integer Nonlinear Program (MINLP)

min
s

f (x) s.t. c(x) ≤ 0, x ∈ X , and xI integer

simplified physics (neutron transport)

maximize reactor efficiency after reload

subject to diffusion process & safety
⇒ integer & nonlinear model

avoid reactor becoming sub-critical

avoid reactor becoming super-critical

look for cycles for moving bundles:
e.g. 4 → 6 → 8 → 10
means bundle moved from 4 to 6 etc

53 / 73



Application: Nuclear Reactor-Core Reloading

Mixed Integer Nonlinear Program (MINLP)

min
s

f (x) s.t. c(x) ≤ 0, x ∈ X , and xI integer

simplified physics (neutron transport)

maximize reactor efficiency after reload

subject to diffusion process & safety
⇒ integer & nonlinear model

avoid reactor becoming sub-critical

avoid reactor becoming super-critical

look for cycles for moving bundles:
e.g. 4 → 6 → 8 → 10
means bundle moved from 4 to 6 etc

53 / 73



Application: Nuclear Reactor-Core Reloading

Mixed Integer Nonlinear Program (MINLP)

min
s

f (x) s.t. c(x) ≤ 0, x ∈ X , and xI integer

simplified physics (neutron transport)

maximize reactor efficiency after reload

subject to diffusion process & safety
⇒ integer & nonlinear model

avoid reactor becoming sub-critical

avoid reactor becoming super-critical

look for cycles for moving bundles:
e.g. 4 → 6 → 8 → 10
means bundle moved from 4 to 6 etc

53 / 73



Application: Nuclear Reactor-Core Reloading

Mixed Integer Nonlinear Program (MINLP)

min
s

f (x) s.t. c(x) ≤ 0, x ∈ X , and xI integer

simplified physics (neutron transport)

maximize reactor efficiency after reload

subject to diffusion process & safety
⇒ integer & nonlinear model

avoid reactor becoming sub-critical

avoid reactor becoming super-critical

look for cycles for moving bundles:
e.g. 4 → 6 → 8 → 10
means bundle moved from 4 to 6 etc

53 / 73



Application: Nuclear Reactor-Core Reloading

Mixed Integer Nonlinear Program (MINLP)

min
s

f (x) s.t. c(x) ≤ 0, x ∈ X , and xI integer

simplified physics (neutron transport)

maximize reactor efficiency after reload

subject to diffusion process & safety
⇒ integer & nonlinear model

avoid reactor becoming sub-critical

avoid reactor becoming super-critical

look for cycles for moving bundles:
e.g. 4 → 6 → 8 → 10
means bundle moved from 4 to 6 etc

53 / 73



Nuclear Core Reload Optimization

look for cycles for moving bundles:

e.g.
4 → 6 → 8 → 10
means bundle moved from 4 to
6 to ...

model with integer variables
xilm ∈ {0, 1}
xilm = 1: node i has bundle l of
cycle m

exactly one bundle per node:

L∑
l=1

M∑
m=1

xilm = 1 ∀i ∈ I
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Nuclear Core Reload Optimization

Branch-and-bound: small search-tree ... watch progress:

depth-first, maximum
fractional branching

uncover first integer
feasible node &
backtrack

uncover better feasible
point (optimal)

prune rest of tree
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Blackout Prevention in National Power Grid

2003 blackout: before and during

2003 blackout cost $4-10 billion and affected 50 million people
prevent with contingency analysis

find least number of transmission lines whose removal results
in failure
binary variables model removal of lines
nonlinearities model power flow
results in large integer optimization problem

current analysis limited to 10s of lines

... similar models arise in many other power-grid applications
56 / 73



Power-Grid Transmission Network Expansion

Problem. Given a power grid network and demand forecast,
design an expanded network by adding lines to the existing network
that allows secure transmission of increased demand.
Traditional Approach. Simplify nonlinear (AC) power flow model:

F (Uk ,Ul , θk , θl) := bklUkUlsin(θk − θl) + gklU
2
k − gklUkUlcos(θk − θl)

by setting sin(x) ' x and cos(x) ' 1 and U ' 1
... to obtain the linearized (DC) power flow model.
Nonlinear Optimization Approach. Work directly with nonlinear
model −M(1− zk,l) ≤ fk,l − F (Uk ,Ul , θk , θl) ≤ M(1− zk,l)
... M > 0 constant; zk,l ∈ {0, 1} switch lines on/off ... by setting
flow −Mzk,l ≤ fk,l ≤ Mz + k, l
Questions.

Can we solve the nonlinear models? What is a good formulation?
Does it matter which flow model we use?
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Power-Grid Transmission Network Expansion
Expansion Results for linear vs. nonlinear power flow models

Solve realistic AC power flow expansion models on desktop

Significant difference between DC and AC solution

Linearized DC model not feasible in AC power flow

Approximation assumptions do not hold when topology
changes
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Example: Optimal Transmission Switching
Optimize network by controlling transmission line circuit breakers

Improve system dispatch by changing network topology.
Optimize economic efficiency of power system dispatch:
e.g. minimize generator costs.
Formulate as mixed-integer optimization problem:

Binary variables represent state of lines: open/closed.
Physical constraints of power system: AC or DC power flow.

Challenging mixed-integer nonlinear optimization problem.

Goal:
Benchmark state-of-the-art solvers:
e.g. Argonne’s MINOTAUR.
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Effect of Increased Transmission Switching

Our DC models agree with observations in literature:

Increased switching ⇒ reduced transmission cost.

Increased switching ⇒ explosion in computational effort.
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Comparison of AC and DC Switching

DC transmission switching:
DC cost reduced, but “true” AC cost increases!

AC transmission switching: switch different set of lines.

⇒ nonlinear (AC) models: 2% cost reduction; but harder problem.
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Co-Generation for Commercial Buildings
Goal: Net-zero energy buildings by 2020 ⇒ 60% reduction of CO2

Co-generation units: fuel-cell, solar panel, wind, storage unit.

Which units to buy to minimize energy and purchase cost?
Binary variables model type of equipment & size (discrete).

Ramping for fuel-cell & storage unit ⇒ nonlinearities.

Optimal hourly operation of units ⇒ on/off constraints.

Pruitt, Newman, Braun (Colorado School of Mines & NREL)
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Co-Generation for Commercial Buildings

1-Day Data Set
MINOTAUR
BnB QPD Bonmin Baron Couenne MINLPBB

Objf 836.30 968.73 836.43 840.64 844.92 836.17
CPU 117.87 2.59 174.496 > 10hrs > 10hrs 147.98
Nodes 204 5 61 363,358 932,400 129

4-Day Data Set
MINOTAUR
BnB QPD Bonmin Baron Couenne MINLPBB

Objf 3344.81 3344.81 3304.69 3304.69 Inf 3266.47
CPU 11.45 23.87 7522.89 > 10hrs > 10hrs 26293.08
Nodes 1 1 9 17,875 88,454 3,062

7 Day Data Set
MINOTAUR
BnB QPD Bonmin Baron Couenne MINLPBB

Objf 6178.37 6178.37 Inf 5748.18 Inf 5726.0
CPU 168.38 54.55 > 10hrs > 10hrs > 10hrs > 10hrs
Nodes 1 3 350 13,231 38,693 827

... tough problem, and not even the right one!
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Optimal Design of Concrete Structures

Optimal design of reinforced concrete structures

minimize cost: material (concrete & steel),
labor, & form-work

subject to:

geometry & sizes of elements
stiffness & displacement correlations (FEM)
RC element strength & ACI-code safety
⇒ modeled as complementarity constraints

discrete variables: reinforced steel dimensions

integer variables: no. of re-enforcement bars

binary variables: form-work re-use
Complex nonconvex MINLP with complementarity constraints
Can be “solved” using robust nonlinear branch-and-bound
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Optimization of IEEE 802.11 Broadband Networks

Optimize 802.11 broadband networks for resource sharing meshes

objective: minimizing co-channel and inter-channel
interference

integrality: assign channels to basic nodes within a network

13 Direct Sequence Spread Spectrum (DSSS) overlapping
channels

co-channel interference: two access points with same channel

inter-channel interference: cards with overlapping channels
transmit simultaneously

⇒ general nonconvex MINLP

Original model has one horrible constraint ...
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Optimization of IEEE 802.11 Broadband Networks

... and the horrible constraint is ...

z =
1

1 + 1000(x − y)10

highly nonlinear/nonconvex

z = 1, if x = y

z = 0, if x 6= y

x , y integer (channels)

model as MIP not NLP
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Wise or Otherwise of IEEE 802.11 Broadband Networks

z =
1

1 + 1000(x − y)10

Chinese Proverb
Give a man a fish and he will eat for a day.

Teach a man about nonlinear functions and you will lead a
troubled life.
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Application: Distillation Column Design

Mixed Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Small process design example:

synthesis of distillation column

nonlinear physics: phase equilibrium,
component material balance

integers model number of trays in columns

xI ∈ {0, 1}p models position of feeds

Process network design for fossil power plants ...
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Collections of MINLP Test Problems

AMPL Collections of MINLP Test Problems

1 MacMINLP www.mcs.anl.gov/~leyffer/macminlp/

2 IBM/CMU collection egon.cheme.cmu.edu/ibm/page.htm

GAMS Collections of MINLP Test Problems

1 GAMS MINLP-world www.gamsworld.org/minlp/

2 MINLP CyberInfrastructure www.minlp.org/index.php

Solve MINLPs online on the NEOS server,
www.neos-server.org/neos/

... and there are even a few CUTEr problems in SIF!
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Outline of Remainder of Course
1 Basic Methods for Convex MINLPs

outer approximation, Benders decomposition
branch-and-bound
hybrid methods

2 Advanced Methods for Convex MINLPs
cutting planes for MINLP
branch-and-cut
cutting planes for conic constraints

3 Methods for Nonconvex MINLPs I
basic techniques
branch-and-bound
piecewise linear approximations

4 Methods for Nonconvex MINLPs II
special methods for special structure
modern solvers for nonconvex problems

5 Heuristics, Software, and Extensions
RINS, local branching, guided dives
modeling languages, open-source and other software
mixed-integer nonlinear optimal control
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Summary and Exercises
Key points

Modeling is very, very, very important

Linearize, linearize, linearize as much as possible

Two little exercises

1 Assume c(x) ≤ 0 convex and C2, and ∃i : ci (x̂) > 0. Show
that x̂ violates

0 ≥ ĉi +∇ĉT (x − x̂).

2 Consider the worst-ever nonlinear function,

z =
1

1 + 1000(x − y)10
,

which “models” that z = 1, if x = y , and z = 0, if x 6= y .
Assuming that 0 ≤ x , y ≤ U are integers, derive an equivalent
linear model.

... all answers will be revealed on Friday!
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