
Tutorial 3: Newton & Quasi-Newton Methods

Implement Newton’s method with the Hessian modification.

Use your (or mine) steepest descend code as a starting point.
Use Matlab’s eigenvalue functions, eig, to compute the
eigenvalue.
Use Matlab’s backslash operator to solve the Newton system.
Test the code again on our examples.

Implement a quasi-Newton (or limited memory BFGS)
method.

1 / 3



Theory of Newton’s Method
4.1.1 Show that Newton’s method oscillates for the example

min f (x) = x2 − x4/4.
4.1.2 Show that the quasi-Newton condition, Bγ = δ holds for a

quadratic function.
4.1.3 Show that the rank-one formula terminates for a quadratic:

Show by induction that H(k+1)γ(j) = δ(j) for all j = 1, . . . , k.
Hence conclude that the method terminates after n + 1
iterations.

4.1.4 Code BFGS or limited-memory BFGS method in Matlab.
4.1.5 Apply Newton’s method to nonlinear least-squares:

minimize
x

f (x) =
m∑
i=1

ri (x)2 = r(x)T r(x) = ‖r(x)‖22.

What happens, if ri (x) are linear? Can you propose a strategy
for handling the case, where ∇2ri (x) are bounded, and
ri (x)→ 0?

2 / 3



Tutorial 3: Newton and Conjugate Gradient Methods

1 Implement the Barzilai-Borwein family of methods.

Modify SteepestDescend.m or your own code.
Try the method on quadratic problem, with G = tri(−1, 4− 1)
a tri-diagonal Matrix with 4 on the diagonal, and -1 on both
off-diagonals. You can try several g ’s, e.g. G = (1, . . . , 1)T .
Compare it to steepest descend.
Try Powell’s problem

3 / 3


