
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Compact Representations of BFGS Matrices

J. J. Brust, S. Leyffer, and C. G. Petra

Mathematics and Computer Science Division

Preprint ANL/MCS-P9279-0120

January 2020

1This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scien-
tific Computing Research, under Contract DE-AC02-06CH11357 at Argonne National Laboratory.
through the Project ”Multifaceted Mathematics for Complex Energy Systems.” This work was also
performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (“Argonne”). Ar-
gonne, a U.S. Department of Energy Office of Science labora-
tory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its be-
half, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or
on behalf of the Government. The Department of Energy will
provide public access to these results of federally sponsored re-
search in accordance with the DOE Public Access Plan. http:
//energy.gov/downloads/doe-public-accessplan

http://energy.gov/downloads/doe-public-accessplan
http://energy.gov/downloads/doe-public-accessplan

COMPACT REPRESENTATIONS OF STRUCTURED BFGS
MATRICES∗

JOHANNES J. BRUST† , SVEN LEYFFER† , AND COSMIN G. PETRA‡

Abstract. For general large-scale optimization problems compact representations exist in which
recursive quasi-Newton update formulas are represented as compact matrix factorizations. For
problems in which the objective function contains additional structure, so-called structured quasi-
Newton methods exploit available second-derivative information and approximate unavailable second
derivatives. This article develops the compact representations of two structured Broyden-Fletcher-
Goldfarb-Shanno update formulas. The compact representations enable efficient limited memory and
initialization strategies. Two limited memory line search algorithms are described and tested on a
collection of problems.

Key words. Quasi-Newton method, limited memory method, large-scale optimization, compact
representation, BFGS method

AMS subject classifications. 65K05 65F30 90C53 90C06

1. Introduction. The unconstrained minimization problem is

(1.1) minimize
x∈Rn

f(x),

where f : Rn → R is assumed to be twice continuously differentiable. If the Hessian
matrix ∇2f(x) ∈ Rn×n is unavailable, because it is unknown or difficult to compute,
then quasi-Newton methods are effective methods, which approximate properties of
the Hessian at each iteration, ∇2f(xk+1) ≈ Bk+1 [7]. Arguably, the most popular
quasi-Newton matrix is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) matrix [3, 11,
13, 19], because of its convincing results on many problems. Given sk ≡ xk+1 − xk
and yk ≡ ∇f(xk+1)−∇f(xk) the BFGS recursive update formula is

(1.2) Bk+1 = Bk −
1

sTkBksk
Bksks

T
kBk +

1

sTk yk
yky

T
k .

For a symmetric positive definite initialization B0 ∈ Rn×n (1.2) generates symmetric
positive definite matrices as long as sTk yk > 0 for all k ≥ 0 (see [11, Section 2]).

1.1. BFGS Compact Representation. Byrd et al. [5] propose the compact
representation of the recursive formula (1.2). The compact representation has been
successfully used for large-scale unconstrained and constrained optimization [24]. Let

the sequence of pairs {si,yi}k−1i=0 be given, and let these vectors be collected in the
matrices Sk = [s0, · · · , sk−1] ∈ Rn×k and Yk = [y0, · · · , yk−1] ∈ Rn×k.
Moreover, let STkYk = Lk + Rk, where Lk ∈ Rk×k is the strictly lower triangular
matrix, Rk ∈ Rk×k is the upper triangular matrix (including the diagonal), and
Dk = diag(STkYk) ∈ Rk×k is the diagonal part of STkYk. The compact representation
of the BFGS formula (1.2) is [5, Theorem 2.3]:

(1.3) Bk = B0 − [B0Sk Yk]

[
STkB0Sk Lk

LTk −Dk

]−1 [
STkB0

YT
k

]
.

∗Submitted to the editors DATE.
Funding: This material was based upon work supported by the U.S. Department of Energy,

Office of Science, Office of Advanced Scientific Computing Research (ASCR) under Contract DE-
AC02-06CH11347.
†Argonne National Laboratory, Lemont, IL (jbrust@anl.gov, leyffer@mcs.anl.gov).
‡Lawrence Livermore National Laboratory, Livermore, CA (petra1@llnl.gov).

1

mailto:jbrust@anl.gov
mailto:leyffer@mcs.anl.gov
mailto:petra1@llnl.gov

For large optimization problems limited memory versions of the compact representa-
tion in (1.3) are used. The limited memory versions typically store only the last m > 0

pairs {si,yi}k−1i=k−m when k ≥ m. In limited memory BFGS (L-BFGS) the dimensions
of Sk and Yk are consequently n × m. Usually the memory parameter is much
smaller than the problem size, namely, m� n. A typical range for this parameter is
5 ≤ m ≤ 50 (see Boggs and Byrd in [2]). Moreover, in line search L-BFGS methods
the initialization is frequently chosen as B0 = σ̂kIn, where σ̂k = yTk−1yk−1/s

T
k−1yk−1.

Such an initialization enables efficient computations with the formula in (1.3), and
adds extra information through the parameter σ̂k, which depends on the iteration k.

1.2. Structured Problems. When additional information about the structure
of the objective function is known, it is desirable to include this information in a
quasi-Newton update. Initial research efforts on structured quasi-Newton methods
were in the context of nonlinear least squares problems. These include the work of
Gill and Murray [12], Dennis et al. [8, 9], and Yabe and Takahashi [23]. Recently,
Petra et al. [18] formulated the general structured minimization problem as

(1.4) minimize
x∈Rn

f(x), f(x) = k̂(x) + û(x),

where k̂ : Rn → R has known gradients and known Hessians and û : Rn → R has
known gradients but unknown Hessians. For instance, objective functions composed
of a general nonlinear function plus a regularizer or penalty term are described with
(1.4). Thus, applications such as regularized logistic regressions [21] or optimal con-
trol problems contain structure that may be exploited, when we assume that the
Hessian of the regularizer is know. Even though approximating the Hessian of the
objective function in (1.4) by formula (1.2) or (1.3) is possible, this would not ex-
ploit the known parts of the Hessian. Therefore in [18] structured BFGS (S-BFGS)
updates are derived, which combine known Hessian information with BFGS approx-
imations for the unknown Hessian components. At each iteration the Hessian of the
objective is approximated as ∇2f(xk+1) ≈ ∇2k̂(xk+1) + Ak+1, where Ak+1 approx-
imates the unknown Hessian, that is, Ak+1 ≈ ∇2û(xk+1). Given the known Hessian

∇2k̂(xk+1) ≡ Kk+1 and the gradients of û, let uk ≡ Kk+1sk + (∇û(xk+1)−∇û(xk)).
One of two structured approximations from [18] is the structured BFGS-Minus (S-
BFGS-M) update

(1.5) AM
k+1 = BM

k −Kk+1 −
1

sTkBM
k sk

BM
k sks

T
kBM

k +
1

sTk uk
uku

T
k ,

where BM
k = AM

k + Kk. By adding Kk+1 to both sides, the update from (1.5) implies
a formula for BM

k+1 that resembles (1.2), in which Bk+1, Bk, and yk are replaced by

BM
k+1, BM

k , and uk, respectively. Consequently, BM
k+1 is symmetric positive definite

given a symmetric positive definite initialization BM
0 as long as sTk uk > 0 for k ≥ 0.

A second formula is the structured BFGS-Plus (S-BFGS-P) update

(1.6) AP
k+1 = AP

k −
1

sTk B̂P
k sk

B̂P
k sks

T
k B̂P

k +
1

sTk uk
uku

T
k ,

where B̂P
k = AP

k + Kk+1. Both of the updates in (1.5) and (1.6) were implemented
in a line search algorithm and compared with the unstructured BFGS formula (1.2)
in [18]. The structured updates obtained better results in terms of iteration count

2

and function evaluations than did the unstructured counterparts. Unlike the BFGS
formula from (1.2), which recursively defines Bk+1 as a rank-2 update to Bk, the
formulas for AM

k+1 and AP
k+1 in (1.5) and (1.6) additionally depend on the known

Hessians Kk+1 and Kk. For this reason the compact representations of AM
k+1 and

AP
k+1 are different from the one for Bk+1 in (1.3) and have not yet been proposed.

1.3. Article Contributions. In this article we develop the compact represen-
tations of the structured BFGS updates AM

k+1 and AP
k+1 from (1.5) and (1.6). We

propose the limited memory versions of the compact structured BFGS (L-S-BFGS)
matrices and provide line search algorithms that implement them. We exploit the com-
pact representations in order to compute search directions by means of the Sherman-
Morrison-Woodbury formula and implement effective initialization strategies. Nu-
merical experiments of the proposed limited memory structured BFGS methods on
various problems are presented.

2. Structured BFGS Compact Representations. To develop the compact
representations of the structured BFGS formulas, we define

(2.1) Uk = [u0, · · · , uk−1] , STkUk = LU
k + RU

k , diag(STkUk) = DU
k ,

where Uk ∈ Rn×k collects all uk for k ≥ 0 and where LU
k ∈ Rk×k is a strictly lower

triangular matrix, RU
k ∈ Rk×k is an upper triangular matrix (including the diagonal),

and DU
k ∈ Rk×k is the diagonal part of STkUk.

2.1. Compact Representation of AM
k . Theorem 2.1 contains the compact

representation of AM
k .

Theorem 2.1. The compact representation of AM
k in the update formula (1.5) is

(2.2) AM
k = BM

0 −Kk −
[

BM
0 Sk Uk

] [STkBM
0 Sk LU

k

(LU
k)T −DU

k

]−1 [
STk (BM

0)T

UT
k

]
,

where Sk is as defined in (1.3), Uk, LU
k , and DU

k are defined in (2.1), and

BM
0 = AM

0 + K0.

Proof. Observe that by adding Kk+1 to both sides of (1.5) the update formula of
BM
k+1 becomes

BM
k+1 = BM

k −
1

sTkBM
k sk

BM
k sks

T
kBM

k +
1

sTk uk
uku

T
k .

This expression is the same as (1.2) when BM
k+1 is relabeled as Bk+1, BM

k is relabeled
as Bk, and uk is relabeled as yk. The compact representation of (1.2) is given by
(1.3), and therefore the compact representation of BM

k is given by (1.3) with Yk

replaced by Uk and B0 replaced by BM
0 . Then (2.2) is obtained by subtracting Kk

from the compact representation of BM
k , and noting that BM

0 = AM
0 + K0. Since

BM
k is symmetric positive definite as long as BM

0 is symmetric positive definite and
sTk uk > 0 for k ≥ 0, the inverse in the right-hand side of (2.2) is nonsingular as long
as BM

0 is symmetric positive definite and sTk uk > 0 for k ≥ 0.

Corollary 2.2 describes the compact representation of the inverse HM
k = (Kk+AM

k)−1,
which is used to compute search directions in a line search algorithm (e.g., pM

k =
−HM

k ∇f(xk)).

3

Corollary 2.2. The inverse HM
k =

(
Kk + AM

k

)−1
, with the compact represen-

tation of AM
k from (2.2), is given as

(2.3)

HM
k = HM

0 −
[
Sk HM

0 Uk

] [(TU
k)T

(
DU
k + UT

kHM
0 Uk

)
TU
k −(TU

k)T

−TU
k 0k×k

] [
STk

UT
k (HM

0)T

]
,

where

HM
0 = (BM

0)−1 = (AM
0 + K0)−1

and where TU
k = (RU

k)−1 with Sk, Uk, DU
k , and RU

k defined in Theorem 2.1 and (2.1).

Proof. Define

Ξk ≡
[

BM
0 Sk Uk

]
, Mk ≡

[
STkBM

0 Sk LU
k

(LU
k)T −DU

k

]
,

in the compact representation of AM
k in (2.2). Let HM

0 = (BM
0)−1 then the expression

of HM
k is obtained by the Sherman-Morrison-Woodbury identity:

HM
k =

(
Kk + AM

k

)−1
=
(
BM

0 −ΞkM
−1
k ΞT

k

)−1
= (BM

0)−1 + (BM
0)−1Ξk

[
Mk −ΞT

k (BM
0)−1Ξk

]−1
ΞT
k (BM

0)−1

= HM
0 −HM

0 Ξk

[
0k×k RU

k

(RU
k)T DU

k + UT
kHM

0 Uk

]−1
ΞT
kHM

0

= HM
0 −HM

0 Ξk

[
(RU

k)−T
(
DU
k + UT

kHM
0 Uk

)
(RU

k)−1 −(RU
k)−T

−(RU
k)−1 0k×k

]
ΞT
kHM

0

where the third equality is obtained from applying the Sherman-Morrison-Woodbury
inverse, the fourth equality uses the identity STkUk−LU

k = RU
k , and the fifth equality is

obtained by explicitly computing the inverse of the block matrix. Using (RU
k)−1 = TU

k

and (BM
0)−1Ξk = (BM

0)−1[BM
0 Sk Uk] yields the expression in (2.3).

2.2. Compact Representation of AP
k . To develop the compact representa-

tion of the structured BFGS matrix AP
k , we define vk ≡ Kk+1sk in addition to the

expressions in (2.1) and

(2.4) Vk = [v0, . . . , vk−1] , STkVk = LV
k + RV

k , diag(STkVk) = DV
k ,

where Vk ∈ Rn×k collects all vk for k ≥ 0 and where LV
k ∈ Rk×k is the strictly

lower triangular matrix, RV
k ∈ Rk×k is the upper triangular matrix (including the

diagonal), and DV
k ∈ Rk×k is the diagonal part of STkVk. Theorem 2.3 contains the

compact representation of AP
k .

Theorem 2.3. The compact representation of AP
k in the update formula (1.6) is

(2.5) AP
k = AP

0 − [Qk Uk]

[
DV
k + LV

k + (LV
k)T + STkAP

0 Sk LU
k

(LU
k)T −DU

k

]−1 [
QT
k

UT
k

]
,

where

Qk ≡ Vk + AP
0 Sk

4

and where Sk,Uk,D
U
k , and LU

k are defined in Theorem 2.3 and Vk, LV
k , and DV

k are
defined in (2.4).

Proof. The proof of (2.5) is by induction. For k = 1 in (2.5) it holds that

AP
1 = AP

0 −
[
v0 + AP

0 s0 u0

] [sT0 v0 + sT0 AP
0 s0

−sT0 u0

]−1 [
(v0 + AP

0 s0)T

uT0

]
= AP

0 −
1

sT0 (K1 + AP
0)s0

(K1 + AP
0)s0s

T
0 (K1 + AP

0)T +
1

sT0 u0
u0u

T
0 .

This expression is the same as AP
1 in (1.6), and thus the compact representation

holds for k = 1. Next assume that (2.5) is valid for k ≥ 1, and in particular let it be
represented as

(2.6) AP
k = AP

0 − [Qk Uk]

[
(Mk)11 (Mk)12
(Mk)T12 (Mk)22

]−1 [
QT
k

UT
k

]
,

where

(Mk)11 = DV
k + LV

k + (LV
k)T + STkAP

0 Sk, (Mk)12 = LU
k , (Mk)22 = −DU

k .

We verify the validity of (2.6) by substituting it in the update formula (1.6), and then
seek the representation

AP
k+1 = AP

0 − [Qk+1 Uk+1]

[
(Mk+1)11 (Mk+1)12
(Mk+1)T12 (Mk+1)22

]−1 [
QT
k+1

UT
k+1

]
.

First let

qk = vk + AP
0 sk, wk = QT

k sk, rk = UT
k sk, ξk =

[
wk

rk

]
,

and note that in (1.6) it holds that

(AP
k + Kk+1)sk = AP

k sk + vk

= AP
0 sk − [Qk Uk] [Mk]−1

[
QT
k sk

UT
k sk

]
+ vk

≡ qk − [Qk Uk] [Mk]−1
[

wk

rk

]
≡ qk − [Qk Uk] [Mk]−1ξk.

Next we define σP
k = 1/sTk (AP

k + Kk+1)sk and obtain the following representation of

5

AP
k+1:

AP
k+1 = AP

k − σP
k (AP

k sk + vk)(AP
k sk + vk)T +

1

sTk uk
uku

T
k

= AP
0 − σP

k [Qk Uk qk]

[
M−1

k

σP
k

+ M−1
k ξkξ

T
kM−1

k −M−1
k ξk

−ξTkM−1
k 1

] QT
k

UT
k

qTk


+

1

sTk uk
uku

T
k

= AP
0 − [Qk Uk qk]

 Mk

[
wk

rk

]
[

wT
k rTk

]
sTk qk

−1  QT
k

UT
k

qTk

+
1

sTk uk
uku

T
k .

Using the permutation matrix P = [e1 · · · ek e2k+1 · · · e2k], we represent AP
k+1

as

AP
k+1 = AP

0 − [Qk Uk qk] PPT

 Mk

[
wk

rk

]
[

wT
k rTk

]
sTk qk

−1 PPT

 QT
k

UT
k

qTk


+

1

sTk uk
uku

T
k

= AP
0 − [Qk qk Uk uk]


(Mk)11 wk (Mk)12 0

wT
k sTk qk rTk 0

(Mk)T12 rk (Mk)22 0
0 0 0 −sTk uk


-1 

QT
k

qTk
UT
k

uTk

 .
Now we verify that the identities hold:

Qk+1 = [Qk qk] =
[

Vk + AP
0 Sk vk + AP

0 sk
]

= Vk+1 + AP
0 Sk+1,

Uk+1 = [Uk uk] ,

(Mk+1)11 =

[
(Mk)11 wk

wT
k sTk qk

]
= DV

k+1 + LV
k+1 + (LV

k+1)T + STk+1A
P
0 Sk+1,

(Mk+1)12 =

[
(Mk)12 0

rTk 0

]
= Lk+1,

(Mk+1)22 =

[
(Mk)22 0

0 −sTk uk

]
= −Dk+1.

Therefore we conclude that AP
k+1 is of the form (2.5) with k+ 1 replacing the indices

k.

2.3. Limited Memory Compact Structured BFGS. The limited memory
representations of (2.2) and (2.5) are obtained by storing only the last m ≥ 1 columns
of Sk,Uk and Vk. By setting m� n limited memory strategies enable computational
efficiencies and lower storage requirements, see e.g., [17]. Updating Sk,Uk and Vk

requires replacing or inserting one column at each iteration. Let an underline below
a matrix represent the matrix with its first column removed. That is, Sk represents
Sk without its first column. With this notation, a column update of a matrix, say

6

Sk, by a vector sk is defined as follows.

colUpdate (Sk, sk) ≡

{
[Sk sk] if k < m

[Sk sk] if k ≥ m.

Such a column update either directly appends a column to a matrix or first removes
a column and then appends one. This column update will be used to, for instance,
obtain Sk+1 from Sk and sk, i.e., Sk+1 = colUpdate(Sk, sk). Next, let an overline

above a matrix represent the matrix with its first row removed. That is, STkU
k

represents STkUk without its first row. With this notation, a product update of, say
STkUk, by matrices Sk, Uk and vectors sk, uk is defined as:

prodUpdate
(
STkUk,Sk,Uk, sk,uk

)
≡



[
STkUk STk uk

sTkUk sTk uk

]
if k < m[(

STkUk

)
STk uk

sTkUk sTk uk

]
if k ≥ m.

This product update is used to compute matrix products, such as, STk+1Uk+1, with

O(2mn) multiplications, instead of O(m2n) when the product STkUk had previously
been stored. Moreover, we let “diag(STkUk)” extract the diagonal elements of a ma-
trix, say STkUk, while “tril(STkUk,−1)” are the strictly lower triangular elements
(elements below, excluding the main diagonal) and “triu(STkUk, 0)” the upper trian-
gular elements (elements above, including the main diagonal). Section 3 discusses
computational and memory aspects in greater detail.

3. Algorithms. This section describes two line search algorithms with limited
memory structured BFGS matrices. The compact representations enable efficient
reinitialization strategies and search directions, and we discuss these two components
first, before presenting the overall algorithms.

3.1. Initializations. For the limited memory BFGS matrix based on (1.3) one

commonly uses the initializations B
(k)
0 = σ̂kIn, where σ̂k = yTk−1yk−1/s

T
k−1yk−1 (c.f.

[5]). Choosing the initialization as a multiple of the identity matrix enables fast com-
putations with the matrix in (1.3). In particular, the inverse of this matrix may be
computed efficiently by the Sherman-Morrison-Woodbury identity. Because at the
outset it is not necessarily obvious which initializations to use for the limited memory
structured-BFGS (L-S-BFGS) matrices based on (2.2) and (2.5), we investigate dif-
ferent approaches. We are motivated by the analysis in [1], which proposed formula

σ̂k. Additionally, in that work a second initialization σ̂
(2)
k = sTk−1yk−1/s

T
k−1sk−1 was

proposed. Because in the S-BFGS methods the vectors ûk and uk are used instead
of yk (unstructured BFGS), the initializations in this article are the below.

(3.1) σk+1 =



uT
k uk

sTk uk
Init. 1

ûT
k ûk

sTk ûk
Init. 2

sTk uk

sTk sk
Init. 3

sTk ûk

sTk sk
Init. 4

Note that Init. 1 and Init. 2 are extensions of σ̂k to structured methods. Instead
of using yk these initializations are defined by ûk and uk. Init. 3 and Init. 4

7

extend σ̂
(2)
k . Observe that the vectors ûk = ∇û(xk+1) − ∇û(xk) depend only on

gradient information of û(x). In contrast, uk = Kk+1sk + ûk depends on known
second-derivative information, too. Because the initial matrices AM

0 and AP
0 affect

the compact representations from Theorems 2.1 and 2.3 differently, we accordingly
adjust our initialization strategies for these two matrices. In particular, for L-S-BFGS-
M the compact limited memory formula for BM

k simplifies if we take BM
0 as a multiple

of the identity matrix:

(3.2) BM
0 = AM

0 + K0 ≡ σkI.

The advantage of this choice is that it enables computational complexities similar to
those of the L-BFGS formula from (1.3). However by setting this default initialization
for BM

0 the corresponding limited memory matrices BM
k are not equivalent anymore

to the full-memory matrices BM
k defined by (1.5), even when k < m. In Section 3.4.1

computational techniques are discussed when BM
0 is not taken as a multiple of the

identity matrix. For L-S-BFGS-P we set AP
0 = σkI. This initialization, as long as

σk remains constant, implies that the limited memory compact representations from
Theorem 2.1 and the update formulas from (1.6) produce the same matrices when
k < m.

3.2. Search Directions. The search directions for line search algorithms, with
the structured BFGS approximations, are computed as

(3.3) pk = −(Kk + Ak)−1gk,

where gk = ∇f(xk) and where Ak is either the limited memory version of AM
k from

(2.2) or AP
k from (2.5). When AM

k is used, we apply the expression of the inverse
from Corollary 2.2, in order to compute search directions. In particular, with the
initialization strategy BM

0 = σkI from the preceding section, the search directions
(3.3) are computed efficiently by
(3.4)

pM
k = −gk

σk
+ [Sk Uk]

[
(TU

k)T
(
DU
k + 1/σkU

T
kUk

)
TU
k −1/σk(TU

k)T

−1/σkT
U
k 0k×k

]([
STk
UT
k

]
gk

)
,

where TU
k is defined in Corollary 2.2. This computation is done efficiently assuming

that all matrices have been updated before, such as UT
kUk. Omitting terms of order

m, the multiplication complexity for this search direction is O(n(4m+ 1) + 3m2). In
particular, computing pM

k can be done by: two vector multiplies with the n × 2m
matrix [Sk Uk] (order 4nm), the scaling gk

σk
(order n) and a matrix vector product

with a structured 2m×2m matrix. Since TU
k represents a solve with an m×m upper

triangular matrix the vector product with the middle 2m×2m matrix is done in order
3m2. When AP

k is used, search directions are computed by solves of the linear system
(Kk + AP

k)pP
k = −gk.

3.3. Algorithms. As in the work of Petra et al. [18], the compact representa-
tions of the structured BFGS formulas are implemented in a strong Wolfe line search
algorithm based on [16]. For nonnegative constants 0 < c1 ≤ c2, the current iterate xk
and search direction pk, the strong Wolfe conditions define the step length parameter
α by two inequalities

(3.5) f(xk+αpk) ≤ f(xk)+c1α(pTk∇f(xk)),
∣∣pTk∇f(xk + αpk)

∣∣ ≤ c2 ∣∣pTk∇f(xk)
∣∣ .

8

Because the S-BFGS-M matrix from (2.2) is positive definite as long as sTk uk > 0 for
k ≥ 0, the line searches in our algorithms include this condition. Moreover, when
S-BFGS-M is used, new search directions are computed by using the inverse from
Corollary 2.2. In contrast, because the S-BFGS-P matrix from (2.5) is not necessarily
positive definite even if sTk uk > 0 for k ≥ 0 (see [18]), our implementation checks
whether Kk + AP

k is positive definite, before computing a new search direction. If
this matrix is positive definite, then a new search direction is computed by solving
the linear system (Kk + AP

k)pP
k = −gk. Otherwise the search direction is computed

by solving the system (Kk +AP
k + δIn)pP

k = −gk, where the scalar δ > 0 ensures that
(Kk + AP

k + δIn) � 0 (Here δ is chosen as the the first δ = 10j , j = 0, 1, . . . that yields
a positive definite matrix). The proposed limited memory line search algorithms are
listed in Algorithms 3.1 and 3.2.

Algorithm 3.1 Limited Memory Structured-BFGS-Minus (L-S-BFGS-M)

1: Initialize: k = 0, m > 0, ε > 0, σk > 0, 0 < c1 ≤ c2, xk, gk = ∇f(xk) =

∇k̂(xk) +∇û(xk), Sk = 0,Uk = 0,DU
k = 0, (RU

k)−1 = 0, STkUk = 0, UT
kUk = 0,

H0 = (1/σk)I, Θk = [Sk H0Uk]
2: while ‖gk‖∞ > ε do
3: Compute:

pk = −H0gk + ΘkMk(ΘT
k gk),

where

Mk =

[
(RU

k)−T (DU
k +UT

k H0Uk)(RU
k)−1 −(RU

k)−T

−(RU
k)−1 0

]
.

4: Strong Wolfe line search:
xk+1 = xk + αpk,

where α > 0, xk+1 satisfies strong Wolfe conditions (cf. [18] and (3.5)), sk =
xk+1 − xk, sTk uk > 0.

5: Updates: gk+1 = ∇f(xk+1), uk = ∇2k̂(xk+1)sk + (∇û(xk+1)−∇û(xk))
6: Sk+1 = colUpdate(Sk, sk)
7: Uk+1 = colUpdate(Uk,uk)
8: STk+1Uk+1 = prodUpdate(STkUk,Sk,Uk, sk,uk)

9: UT
k+1Uk+1 = prodUpdate(UT

kUk,Uk,Uk,uk,uk)

10: DU
k+1 = diag(STk+1Uk+1)

11: RU
k+1 = triu(STk+1Uk+1, 0)

12: Compute: σk+1

13: H0 = (1/σk+1)I, update Mk+1, Θk+1 using Theorem 2.1, k = k + 1
14: end while
15: return xk

Note that ΘT
k gk on Line 3 in Algorithm 3.1 is computed as

[
STk gk

H0(UT
k gk)

]
so that

only one linear solve with H0 = (K0 + AM
0)−1 is computed, when the algorithm does

not use a multiple of the identity as the initialization.
Algorithm 3.2 is expected to be computationally more expensive than Algo-

rithm 3.1 because it tests for the positive definiteness of Kk + Ak in Line 3 and
it computes search directions by the solve in Line 6. However, the structured quasi-
Newton approximation in Algorithm 3.2 may be a more accurate approximation of

9

Algorithm 3.2 Limited Memory Structured-BFGS-Plus (L-S-BFGS-P)

1: Initialize: k = 0, m > 0, ε > 0, σk > 0, 0 < c1 ≤ c2, xk, gk = ∇f(xk) =

∇k̂(xk) + ∇û(xk), Kk = ∇2k̂(xk), Sk = 0,Uk = 0,Vk = 0,DU
k = 0,LU

k =
0,DV

k = 0,LV
k = 0, Ωk = 0, STkUk = 0, STkVk = 0, STk Sk = 0, Ak = σkI

2: while ‖gk‖∞ > ε do
3: if (Kk + Ak) 6� 0 then
4: Find δ > 0 such that (Kk + Ak + δIn) � 0
5: end if
6: Solve:

(Kk + Ak)pk = −gk

7: Strong Wolfe line search:
xk+1 = xk + αpk,

where α > 0, xk+1 satisfies strong Wolfe conditions (cf. [18] and (3.5)), sk =
xk+1 = xk.

8: Updates: gk+1 = ∇f(xk+1), Kk+1 = ∇2k̂(xk+1), vk = Kk+1sk, uk = vk +
(∇û(xk+1)−∇û(xk))

9: Sk+1 = colUpdate(Sk, sk)
10: Uk+1 = colUpdate(Uk,uk)
11: Vk+1 = colUpdate(Vk,vk)
12: STk+1Uk+1 = prodUpdate(STkUk,Sk,Uk, sk,uk)

13: STk+1Vk+1 = prodUpdate(STkVk,Sk,Vk, sk,vk)

14: STk+1Sk+1 = prodUpdate(STk Sk,Sk,Sk, sk, sk)

15: LU
k+1 = tril(STk+1Uk+1,−1)

16: LV
k+1 = tril(STk+1Vk+1,−1)

17: DU
k+1 = diag(STk+1Uk+1)

18: DV
k+1 = diag(STk+1Uk+1)

19: Compute: σk+1

20: A0 = (1/σk+1)I, update Ωk+1 = [Vk+1 + A0Sk+1 Uk]
21:

Ak+1 = A0−Ωk+1

[
DV
k+1 + LV

k+1 + (LV
k+1)T + STk+1A0Sk+1 LU

k+1

(LU
k+1)T −DU

k+1

]−1
ΩT
k+1

22: k = k + 1
23: end while
24: return xk

the true Hessian (see [18]), which may result in fewer iterations or better convergence
properties. Unlike Algorithm 3.2, Algorithm 3.1 does not require solves with large
linear systems.

3.4. Large Scale Computation Considerations. This section discusses com-
putational complexity and memory requirements of the structured Hessian approxi-
mations when the problems become large. In particular, if n is very large the Hessian
matrices Kk typically exhibit additional structure, such as being diagonal or sparse.
When Kk is sparse and solves with it can be done efficiently, the compact represen-

10

tation of AM
k and AP

k can be exploited to compute inverses of Kk + Ak efficiently.
This is because the matrices Kk + Ak, (with limited memory Ak from Theorem 2.1
or Theorem 2.3, respectively), have the form with m� n:

(3.6) Kk + Ak ≡ K̂0 −

 Ξk

 [Mk

]−1[
ΞT
k

]
.

If AM
k is used in (3.6) then K̂0 = K0 + AM

0 and Ξk, Mk correspond to the remaining

terms in Theorem 2.1. Using AP
k in (3.6) then K̂0 = Kk+AP

0 and Ξk, Mk correspond
to the remaining terms in Theorem 2.3. Because of its structure the matrix in (3.6)
can be inverted efficiently by the Sherman-Morrison-Woodbury formula as long as
solves with K̂0 can be done efficiently. Next, L-S-BFGS-M and L-S-BFGS-P are
discussed in the situation when solves with K̂0 are done efficiently. Afterwards we
relate these methods to S-BFGS-M, S-BFGS-P and BFGS, L-BFGS.

3.4.1. Computations for L-S-BFGS-M. The most efficient computations are
achieved when K̂0 is set as a multiple of the identity matrix σkI (cf. Subsection 3.2
with O(n(4m+1)+3m2) multiplications). This approach however omits the K0 term.
Nevertheless, when K0 has additional structure such that factorizations and solves
with it can be done in, say nl multiplications, search directions can be computed
efficiently in this case, without omitting K0. In particular, the search direction is
computed as pM

k = −(Kk + AM
k)−1gk = −HM

k gk where HM
k is the inverse from

Corollary 2.2. The initialization matrix is HM
0 = (σkI + K0)−1. To determine the

search direction two matrix vector products with the n×2m matrices [Sk HM
0 Uk] are

required, at complexity O(4nm+2nl). The product with the 2m×2m middle matrix
is done at O(2nm+nl+2m2). Subsequently, −HM

0 gk is obtained at nl multiplications.
The total complexity is thus O(n(6m+4l)+2m2). Note that if σk is set to a constant
value, say σk = σ̄, then the complexity can be further reduced by storing the matrix
Ūk = [ūk−m . . . ūk−1], where ūi = (K0 + σ̄I)−1ui. The computational cost in this
situation is O(n(4m+ l)+3m2), excluding the updating cost of the vector ūi at order
nl. With a constant σk only one factorization of (K0 + σ̄I) is required.

3.4.2. Computations for L-S-BFGS-P. When AP
k is used in (3.6) with K̂0 =

(Kk + AP
0) and Q̂k = K̂−10 Qk, Ûk = K̂−10 Uk the inverse has the form

(Kk + AP
k)−1 = K̂−10

(
In + Ξk

(
Mk −ΞT

k K̂−10 Ξk

)−1
ΞT
k K̂−10

)
,

where ΞT
k K̂−10 Ξk =

[
QT

k Q̂k QT
k Ûk

UT
k Q̂k UT

k Ûk

]
and Ξk, Mk are defined in Theorem 2.3. Assum-

ing that Mk, Qk, Uk had previously been updated, computing the search direction
pP
k = −(Kk + AP

k)−1gk may be done as follows; First, Q̂k, Ûk are computed in

O(2nlm) multiplications. Then the 2m×2m matrix ΞT
k K̂−10 Ξk is formed in O(3nm2)

multiplications. Combining the former terms and solving with the (small) 2m × 2m
matrix explicitly, the direction pP

k is computed in O(n(2lm + 3m2 + 4m + 1) + m3)
multiplications. Note that this approach requires an additional 2nm storage locations
for the matrices Q̂k, Ûk. Two additional remarks; first, since Qk = Vk + AP

0 Sk,
the update of Qk uses O(nl) multiplications to form a new vk and additional nm

11

Table 1
Comparison of computational demands for BFGS,L-BFGS,S-BFGS-M,S-BFGS-P,L-S-BFGS-

M,L-S-BFGS-P, excluding storage of Kk and where solves with Kk are assumed to cost O(nl)
multiplications and vector multiplies cost O(l). Terms of order O(m) or lower are omitted.

Method Search Direction Memory Update
BFGS O(n2) O(n2) O(n2)
L-BFGS ((1.3), [5]) O(n(4m+ 2) +m2) O(2nm+ 3

2m
2) O(1)

S-BFGS-M ((1.5),[18]) O(n2) O(n2) O(n2)
S-BFGS-P ((1.6),[18]) O(n2) O(n2) O(n2)
L-S-BFGS-M ((3.4)) O(n(4m+ 1) +m2) O(2nm+ 3

2m
2) O(2nm+ l))

L-S-BFGS-M ((3.6)) O(n(6m+ 4l) +m2) O(2nm+ 3
2m

2) O(n(m+ l))
L-S-BFGS-P ((3.6)) O(n(2lm+ 3m2+ O(4nm+ 3m2) O(n(3m+ l))

4m+ 1) +m3)

multiplications if AP
0 = σkI. If σk remains constant, say σk = σ̄, then the update of

Qk is done at only O(nl) multiplications, because AP
0 Sk does not need to be recom-

puted each iteration. Second, if Kk = K0, in other words if Kk is a constant matrix
then Theorem 2.1 and Theorem 2.3 reduce to the same expressions yielding the same
computational complexities.

3.4.3. Memory Usage and Comparison. This section addresses the memory
usage of the proposed representations and relates their computational complexities to
existing methods. As a overall guideline, the representations from (3.6) use 2nm+4m2

storage locations, excluding the K̂0 term. This estimate is refined if the particular
structure of the matrix Mk is taken into consideration. For example, the matrices
TU
k and DU

k from Theorem 2.1 are upper triangular and diagonal, respectively. Thus,
when HM

0 = σkI, and when the matrix UT
kUk ∈ Rm×m is stored and updated,

the memory requirement for the limited memory version of HM
k in Theorem 2.1 are

O(2nm + 3
2m

2 + m) locations. We summarize the computational demands of the
different methods in the Table 1: Note that when m � n and l � n L-BFGS, L-S-
BFGS-M and L-S-BFGS-P enable computations with complexity lower than n2 and
therefore allow for large values of n.

4. Numerical Experiments. This section describes the numerical experiments
for the proposed methods in Section 3. The numerical experiments are carried out in
MATLAB 2016a on a MacBook Pro @2.6 GHz Intel Core i7, with 32 GB of memory.
The experiments are divided into four parts. In Experiment I, we investigate an op-
timal initialization strategy. Using the outcomes of the first experiment, Experiment
II compares the limited memory methods with the full-memory methods. For consis-
tency, the tests in this experiment are on the same 61 CUTEst [14] problems as in
[18], unless otherwise noted. In Experiment III, the proposed methods are used in two
structured problem applications. In the first application, we use classification data
from LIBSVM (a library for support vector machines [6]) in order to solve regularized
logistic regression problems. The second application is an optimal control problem
from PDE-constrained optimization. In Experiment IV, the proposed methods and
L-BFGS and IPOPT [22] solvers are compared.

Performance profiles as in [15] are provided. These profiles are an extension of
the well known profiles of Dolan and Moré [10]. We compare the number of iterations
and the total computational time for each solver on the test set of problems. The

12

performance metric ρs(τ) with a given number of test problems np is

ρs(τ) =
card {p : πp,s ≤ τ}

np
and πp,s =

tp,s
min tp,i

1≤i≤S,i 6=s

,

where tp,s is the “output” (i.e., iterations or time) of “solver” s on problem p. Here S
denotes the total number of solvers for a given comparison. This metric measures the
proportion of how close a given solver is to the best result. The extended performance
profiles are same as the classical ones for τ ≥ 1. In the profiles we include include
a dashed vertical grey line, to indicate this point. In all experiments the line search
parameters are set to c1 = 1e−4 and c2 = 0.9.

4.1. Experiment I. This experiment investigates the initialization strategies
from Section 3. To this end, the problems in this experiment are not meant to be
overly challenging, yet they are meant to enable some variations. Therefore, we define
the quadratic functions

Qi(x;φ, r) ≡ 1

2
xT (φ · I + QiDiQ

T
i)x,

with scalar parameters 0 < φ, 1 ≤ r ≤ n and where Di ∈ Rr×r is a diagonal
matrix and Qi ∈ Rn×r has orthonomal gaussian columns. Note that r eigenvalues
of the Hessian ∇2Qi are the diagonal elements of φ · I + Di, while the remaining
(n− r) eigenvalues are φ. Therefore, by varying φ, r, and the elements of Di, Hessian
matrices with different spectral properties are formed. In particular, when r � n,
the eigenvalues are clustered around φ. In the experiments of this section two values
are investigated; specifically, φ = {1, 1000}. The structured objective functions from
(1.4) are defined by

(4.1) k̂(x) = xTg +Q1(x;φ, r), û(x) = Q2(x;φ, r).

We refer to the objective functions f(x) = k̂(x) + û(x) defined by (4.1) as structured
quadratics. The problems in this experiment have dimensions n = j · 100 with corre-
sponding r = j · 10 for 1 ≤ j ≤ 7. Since some of the problem data in this experiment
is randomly generated (e.g., the orthonormal matrices Qi), the experiments are re-
peated five times for each n. The reported results are of the average values of the
five individual runs. For all solvers we set m = 8 (memory parameter), ε = 5× 10−6

(‖gk‖∞ ≤ ε), and maximum iterations to 10,000.

4.1.1. Experiment I.A: L-S-BFGS-M. Experiment I.A compares the four L-
S-BFGS-M initializations on the structured quadratic objective functions with eigen-
values clustered around 1. In particular, φ = 1, and the elements of Di are uniformly
distributed in the interval [0, 999]. The results are displayed in Figure 1. We observe
that in terms of number of iterations, Init. 4 (red) and Init. 3 (purple) perform
similarly and that also Init. 2 (green) and Init. 1 (blue) perform similarly. Overall,
Init. 4 and Init. 3 requirer fewer iterations on the structured quadratics. Moreover,
the solid lines are above the dashed ones for both pairs. This indicates that including
only gradient information in ûk and in the initialization strategy, as opposed to also
including 2nd derivative information from uk, may be desirable for this problem. Init.
1 and Init. 2 are fastest on these problems. Even though these initializations require
a larger number of iterations, they can be faster because the line searches terminate
more quickly. Next, the four L-S-BFGS-M initializations are compared on structured

13

1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

0.5 1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

Fig. 1. Comparison of initialization strategies for L-S-BFGS-M on problems with eigenvalues
clustered around 1 with 1 ≤ λr ≤ 1000 and λr+1 = · · · = λn = 1. Left: number of iterations; right:
time.

1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

0.5 1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

Fig. 2. Comparison of initialization strategies for L-S-BFGS-M on problems with eigenvalues
clustered around 1,000 with 1 ≤ λr ≤ 1000 and λr+1 = · · · = λn = 1000. Left: number of iterations;
right: time.

quadratic objective functions with eigenvalues clustered around 1000. In particular,
φ = 1000, and the elements of Di are uniformly distributed in the interval [−999, 0].
The results are displayed in Figure 2.

For the large clustered eigenvalues Init. 1 and 3 require the fewest iterations,
while Init. 3 appears fastest overall.

4.1.2. Experiment I.B: L-S-BFGS-P. Experiment I.B compares the four L-S-
BFGS-P initializations. As in Section 4.1.1 experiments on problems with eigenvalues
clustered at 1 and at 1000 are performed. The respective outcomes are in Figure 3
and Figure 4.

In Figure 3 we observe that, similar to Figure 1, Init. 3 and Init. 4 do best in
iterations, while Init. 1 does best in time.

For the experiments in Figure 4, Init. 2 and Init. 3 do best in iterations. To
analyze the properties of the scaling factor σk in greater detail, Section 4.1.3 describes
experiments that relate σk to eigenvalues.

4.1.3. Experiment I.C: Eigenvalue Estimation. In Experiment I.C we in-
vestigate the dynamics of σk in the four initialization strategies from (3.1) on a fixed
problem as the iteration count k increases. In particular, we use one representative
run from the average results of the preceding two subsections, where n = 100 and

14

1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

0.5 1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

Fig. 3. Comparison of initialization strategies for L-S-BFGS-P on problems with eigenvalues
clustered around 1 with 1 ≤ λr ≤ 1000 and λr+1 = · · · = λn = 1. Left: number of iterations; right:
time.

1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

0.5 1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

Fig. 4. Comparison of initialization strategies for L-S-BFGS-P on problems with eigenvalues
clustered around 1,000 with 1 ≤ λr ≤ 1000 and λr+1 = · · · = λn = 1000. Left: number of iterations;
right: time.

r = 10. In Figure 5 the evolution of σk of all four initializations for both; L-S-BFGS-
M and L-S-BFGS-P is displayed on a structured quadratic problem with eigenvalues
clustered at 1. In Figure 6 the same quantities are displayed for structured quadratic
problems with eigenvalues clustered at 1000. In green λ̄1≤n and λ̄1≤r are displayed,
which correspond to the median taken over the first 1, 2, · · · , n (all) and the first
1, 2, · · · , r eigenvalues, respectively. Because in Figure 5 the eigenvalues are clustered
around 1, λ̄1≤n = 1. In Figure 6 the eigenvalues are clustered around 1000 and
λ̄1≤r = 1000. In red σ̄k is the average σk value over all iterations.

Across all plots in Figures 5 and 6 we observe that the dynamics of σk for L-S-
BFGS-M and L-S-BFGS-P are similar. Moreover, the average σ̄k is higher for Init.
1 and Init. 2 than for Init. 3 and Init. 4. The variability of Init. 2 appears less
than that of Init. 1, while the variability of Init. 4 appears less than that of Init. 3.
We observe that Init. 1 and 2 approximate a large eigenvalue well, whereas Init. 3
and Init. 4 approximate smaller eigenvalues better (cf. Figure 5 lower half). Since
large σk values typically result in shorter step lengths (step computations use 1/σk),
choosing Init. 1 and Init. 2 result in shorter step lengths on average. Taking shorter
average steps can be a desirable conservative strategy when the approximation to the
full Hessian matrix is not very accurate. Therefore as a general guideline, Init. 1 and
Init. 2 appear more suited for problems in which it is difficult to approximate the

15

50 100 150 200
k

0

500

1000

1500

<
k

L-S-BFGS-M (Init.1)

50 100 150
k

0

500

1000

1500

<
k

L-S-BFGS-P (Init.1)

7615r

7615n

7<k

7615r

7615n

7<k

50 100 150 200
k

0

200

400

600

800

<
k

L-S-BFGS-M (Init.2)

50 100 150
k

0

200

400

600

800

<
k

L-S-BFGS-P (Init.2)

7615r

7615n

7<k 7615r

7615n

7<k

50 100 150
k

0

100

200

300

400

500

600

<
k

L-S-BFGS-M (Init.3)

20 60 100 140
k

0

100

200

300

400

500

600

<
k

L-S-BFGS-P (Init.3)

7615r

7615n

7<k

7615r

7615n

7<k

50 100 150
k

0

100

200

300

400

500

600

<
k

L-S-BFGS-M (Init.4)

20 60 100 140
k

0

100

200

300

400

500

600

<
k

L-S-BFGS-P (Init.4)

7615r

7615n
7<k

7615r

7615n
7<k

Fig. 5. Eigenvalue estimation with initialization parameter σk. The eigenvalues are clustered
around 1 with 1 ≤ λr ≤ 1000 and λr+1 = · · · = λn = 1.

2 4 6 8 10 12 14
k

0

500

1000

1500

2000

<
k

L-S-BFGS-M (Init.1)

2 4 6 8 10 12 14
k

0

500

1000

1500

2000

<
k

L-S-BFGS-P (Init.1)

7615r 7615n

7<k

7615r 7615n
7<k

5 10 15
k

0

200

400

600

800

1000

<
k

L-S-BFGS-M (Init.2)

2 4 6 8 10 12
k

0

200

400

600

800

1000

<
k

L-S-BFGS-P (Init.2)
7615r 7615n

7<k

7615r 7615n

7<k

2 4 6 8 10 12 14
k

0

500

1000

1500

<
k

L-S-BFGS-M (Init.3)

2 4 6 8 10 12
k

0

500

1000

1500

<
k

L-S-BFGS-P (Init.3)

7615r 7615n

7<k
7615r 7615n

7<k

5 10 15
k

0

200

400

600

800

1000

<
k

L-S-BFGS-M (Init.4)

2 4 6 8 10 12
k

0

200

400

600

800

1000

<
k

L-S-BFGS-P (Init.4)
7615r 7615n

7<k

7615r 7615n

7<k

Fig. 6. Eigenvalue estimation with scaling parameter. The eigenvalues are clustered around
1,000 with 1 ≤ λr ≤ 1000 and λr+1 = · · · = λn = 1000.

Hessian accurately, and Init. 1 and Init. 2 are more suited for problems in which
larger step sizes are desirable.

16

0.5 1 2 4 8 16 32

=

0

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

S-BFGS-M

0.5 1 2 4 8 16 32 64 128 256

=

0

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

S-BFGS-M

Fig. 7. Comparison of four initialization strategies of L-S-BFGS-M from (3.1) to the full-
recursive method S-BFGS-M (corresponding to (1.5)). The limited memory parameter is m = 8.
Left: number of iterations; right: time.

4.2. Experiment II. Experiment II compares the limited memory structured
formulas with the full-memory update formulas from Petra et al. [18]. The full-
memory algorithms from [18], which use (1.5) and (1.6), are called S-BFGS-M and
S-BFGS-P, respectively. The line search procedures of the limited memory struc-
tured BFGS algorithms (Algorithms 3.1 and 3.2) are the same as for the full memory
algorithms. Moreover, the initializations in the full memory algorithms are set as
AM

0 = σ̄In for S-BFGS-M, and AP
0 = σ̄In for S-BFGS-P, where σ̄ = 10i for the first

i ≥ 0 that satisfies (10iIn+K0) � 0 (usually i = 0). The experiments are divided into
two main parts. Experiment II.A. tests the limited memory structured BFGS-Minus
versions corresponding to Algorithm 3.1. Experiment II.A. is further subdivided into
the cases in which the memory parameters are m = 8 and m = 50. These values
represent a typical value (m = 8) and a relatively large value (m = 50), cf. e.g.,
[2]. Experiment II.B. tests the limited memory structured BFGS-Plus versions cor-
responding to Algorithm 3.2. As before, Experiment II.B. is further subdivided into
the cases in which the memory parameters are m = 8 and m = 50. For all the solvers,
we set ε = 1× 10−6 (‖gk‖∞ ≤ ε) and maximum iterations to 1,000.

4.2.1. Experiment II.A: L-S-BFGS-M. In Experiment II.A we compare the
limited memory implementations of Algorithm 3.1 with initialization strategies in
(3.1) with the full-recursive S-BFGS-M method from (1.5). The solvers are tested
on all 62 CUTEst problems from [18]. Figure 7 contains the results for the limited
memory parameter m = 8.

We observe that the full-memory S-BFGS-M (black) does well in terms of number
of iterations and execution time. However, L-S-BFGS-M1 (Init. 1, blue), a limited
memory version with memory of only m = 8, does comparatively well. In particular,
this strategy is able to solve one more problem, as indicated by the stair step at the
right end of the plot.

Figure 8 shows the results for the limited memory parameter m = 50. A larger
limited memory parameter makes using limited memory structured matrices more
computationally expensive but is also expected to increase the accuracy of the quasi-
Newton approximations.

Note that the outcomes of S-BFGS-M (black) in Figure 8 are the same as those
in Figure 7, because it does not depend on the memory parameter. For the limited
memory versions we observe that the outcomes of L-S-BFGS-M2 (green) improve

17

0.5 1 2 4 8 16 32

=

0

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

S-BFGS-M

0.5 1 2 4 8 16 32 64 128

=

0

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

S-BFGS-M

Fig. 8. Comparison of four initialization strategies of L-S-BFGS-M from (3.1) with the full-
recursive method S-BFGS-M (corresponding to (1.5)). The limited memory parameter is m = 50.
Left: number of iterations; right: time.

0.5 1 2 4 8 16 32

=

0

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

S-BFGS-P

0.5 1 2 4 8 16 32 64 128 256

=

0

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

S-BFGS-P

Fig. 9. Comparison of four initialization strategies of L-S-BFGS-P from (3.1) to the full-
recursive method S-BFGS-P (corresponding to (1.6)). The limited memory parameter is m = 8.
Left: number of iterations; right: time.

notably, whereas the other limited memory versions remain roughly unchanged. Using
the initialization strategies (Init. 1 or Init. 2), limited memory solvers are able to
solve one more problem than the full-memory method can, as indicated by the highest
ending lines in the plot. We believe that Init. 1 and Init. 2 (see section 4.1.3) generate
initialization parameters σk that are on average larger than those generated by Init.
3 or Init. 4. These larger values in turn result in shorter average step sizes, which
appears advantageous on general nonlinear problems.

4.2.2. Experiment II.B: L-S-BFGS-P. In Experiment II.B we compare the
versions of Algorithm 3.2 using the initialization strategies from (3.1) with the full
memory recursive S-BFGS-P method (1.6). The solvers are run on 55 of the 62
CUTEst problems from [18] for which n ≤ 2500. Figure 9 contains the results for the
limited memory parameter m = 8:

We observe that for a relatively small memory parameter m = 8, L-S-BFGS-M3
(Init. 3, purple) solves the most problems. L-S-BFGS-M4 (Init. 4, red) requires the
fewest iterations, as indicated by the highest circle on the y-axis in the left panel of
Figure 9.

Figure 10 shows the results for the limited memory parameter m = 50. A larger
parameter makes using limited memory structured matrices more computationally

18

0.5 1 2 4 8 16 32

=

0

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

S-BFGS-P

0.5 1 2 4 8 16 32 64 128

=

0

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

S-BFGS-P

Fig. 10. Comparison of four initialization strategies of L-S-BFGS-P from (3.1) to the full-
recursive method S-BFGS-P (corresponding to (1.6)). The limited memory parameter is m = 50.
Left: number of iterations; right: time.

expensive but is also expected to increase the accuracy of the quasi-Newton approxi-
mations.

Note that the outcomes of S-BFGS-P in Figure 10 are the same as in Figure 9,
because the full-memory solver does not depend on the memory parameter. For a
larger memory m = 50, the outcomes of L-S-BFGS-P2 (green) and L-S-BFGS-P4
(red) improve notably. Overall, L-S-BFGS-P4 solves the most problems.

From the experiments in this section, we find that initialization strategies Init.1
and Init. 2 appear most desirable for L-S-BFGS-M, whereas Init. 4 and Init. 2 appear
most desirable for L-S-BFGS-P.

4.3. Experiment III. This section describes two applications in which the
structured algorithms are applied. For all solvers we set m = 8 (memory parame-
ter), ε = 1× 10−6 (‖gk‖∞ ≤ ε) and maximum iterations to 10000. Since some of the
problems in this section are large we use the techniques describe in Subsection 3.4
throughout the experiments.

4.3.1. Experiment III.A: Logistic Regressions. Experiment III.A tests the
proposed methods on smooth-structured objective functions from machine learning, as
described, for example, in [20]. In particular, logistic regression problems use smooth
objective functions for classification tasks (for instance, [4]), which often depend on
a large number of data points and many variables. The classification problems are
defined by the data pairs {di, yi}Di=1, where the so-called feature vectors di ∈ Rn may
be large, and the so-called labels yi ∈ {−1, 1} are scalars. In [21] regularized logistic
regression problems are described in which the objective function is composed of two
terms. The optimization problems are formulated as

minimize
x∈Rn

λ

2
‖x‖22 +

D∑
i=1

log
(
1 + exp(−yixTdi)

)
,

where λ > 0. The regularization term, λ
2 ‖x‖

2, has a second derivative,λI, that is
readily available. Therefore, we define the known and unknown components for this
problem as

(4.2) k̂(x) =
λ

2
‖x‖22, û(x) =

D∑
i=1

log
(
1 + exp(−yixTdi)

)
.

19

0.5 1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1
L-S-BFGS-M2
L-S-BFGS-M3
L-S-BFGS-M4

0.5 1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1
L-S-BFGS-M2
L-S-BFGS-M3
L-S-BFGS-M4

Fig. 11. Comparison of L-S-BFGS-M solvers on 10 logistic regression classification problems
using data from LIBSVM. Left: number of iterations, right: time.

This experiment’s data was obtained from www.csie.ntu.edu.tw/~cjlin/libsvm/

(retrieved on 10/03/19). Ten problems were used, with problem dimensions listed in
Table 2.

Table 2
List of dimensions for 10 LIBSVM logistic regression problems. Here D denotes the number

of training pairs {di, yi}Di=1, and n denotes the number of variables/feature weights (the size of the
problem).

Problem D n
rcv1 20242 47236
duke 34 7129

gisette 6000 5000
colon cancer 62 2000

leukemia 38 7129
real sim 72309 20958
madelon 2000 500

w8a 49749 300
mushrooms 2000 500

a9a 32561 123

Some of the problems are large, with n ≥ 5000. Because the Hessian of k̂(x) is
constant, the search directions of L-S-BFGS-M and L-S-BFGS-P are the same, when
the computations with L-S-BFGS-M are done as described in Section 3.4.1. Thus we
focus on presenting the results with this method. The regularization parameter is set
as λ = 10−3. The results of the experiments are shown in Figure 11.

In this experiment L-S-BFGS-M1 (blue) appears the most robust. This solver is
based on Init. 1, which typically yields the largest values of σk (see section 4.1.3).
Overall, we believe that the dashed lines, which typically produce larger values of σk,
do best on these problems. Larger values of σk typically result in shorter steps (see
e.g., Line 3 in Algorithm 3.1 where H0 = (1/σk)I). Therefore when, as in this case,
the Hessian of û(x) may be difficult to accurately approximate, because it depends on
data, it appears advantageous to use initialization strategies, which produce relatively
large σk.

20

0.5 1 2 4

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

BFGS

0.5 1 2 4 8 16 32 64

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-M1

L-S-BFGS-M2

L-S-BFGS-M3

L-S-BFGS-M4

BFGS

Fig. 12. Comparison of L-S-BFGS-M solvers on PDE constrained optimal control problems.
The dimensions of the problems are n = (10×j−2)2 for j = 2, 3, · · · , 10. Left: number of iterations,
right: time.

4.3.2. Experiment III.B: Optimal Control Problems. This experiment de-
scribes a typical situation in PDE constrained optimization. In particular, if the PDE
is nonlinear, then we can compute gradients efficiently using the adjoint equation,
but Hessians of the unknown part cannot be computed efficiently. Denoting u as the
horizontal axis and v as the vertical axis, then 2D Poisson problems, with an unknown
control x(u, v), are defined by the differential equation: yuu + yvv = x. The solution
y(u, v) has known boundary values on a box (u, v) ∈ [0, 1]2; in other words, y(0, v),
y(1, v), y(u, 0), and y(u, 1) are known. Discretizing the domain and splitting it into
an interior and boundary part, we get for the optimal control problem

minimize
x∈Rn

1

2

{
‖x‖22 + ‖y(x)− y∗‖22

}
subject to Ay = x + g,

where g ∈ Rn represents a vector with boundary information, A ∈ Rn×n is a matrix
resulting from a 5-point stencil finite difference discretization of the partial derivatives,
and y∗ are fixed data values. Because the Hessian of the regularization term, 1

2‖x‖
2
2,

is straightforward to compute, we define the structured objective function by

(4.3) k̂(x) =
1

2
‖x‖22, û(x) =

1

2
‖y(x)− y∗‖22 ,

using y(x) = A−1(x + g). The number of variables is defined by the formula
n = (10 × j − 2)2, where j = 2, 3, · · · , 10, which corresponds to discretizations with
20, 30, · · · , 100 mesh points in one direction. The largest problem has n = 9604 vari-
ables. For comparison we also include the implementation of a “standard” BFGS
method from [18], which uses the same line search as do the limited memory struc-
tured methods.

In this experiment, L-S-BFGS-M3 and L-S-BFGS-M1 (dashed purple and blue)
appear to do best overall. Both solvers typically generate σk values, which are larger
than the ones from the solvers with solid lines (cf. observations from section 4.1.3).
Larger values of σk yield shorter step lengths, which may be regarded as a more
conservative strategy. The effect of computing search directions by the Sherman-
Morrison-Woodbury formula in Line 3 from Algorithm 3.1, appears in the right-hand
plot of Figure 12. In particular, the limited memory versions do not require solves with
linear systems that depend on the dimension n, whereas the BFGS implementation
from [18] is based on solves with n× n dimensional systems.

21

0.5 1 2 4 8 16 32

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

IPOPT

L-BFGS

0.25 0.5 1 2 4 8 16 32 64

=

0.2

0.4

0.6

0.8

1

;
s(=

)

L-S-BFGS-P1

L-S-BFGS-P2

L-S-BFGS-P3

L-S-BFGS-P4

IPOPT

L-BFGS

Fig. 13. Comparison of L-S-BFGS-P on structured objective functions to IPOPT and L-BFGS-
B. Left: number of iterations, right: time.

4.4. Experiment IV. In this experiment our structured solvers are tested next
to L-BFGS and IPOPT [22] (we use a precompiled Mex file with IPOPT 3.12.12,
MUMPS and MA57). The objective function is a structured quartic function

(4.4) f(x) = k̂(x) + û(x), k̂(x) =
1

12

n∑
i=1

(a2ix
4
i + 12xigi), û(x) =

1

2

n∑
i=1

qix
2
i ,

where the data ai, gi and qi are random normal variables with n = j× 100, 1 ≤ j ≤ 7.
The starting values are all ones, i.e., x0 = 1. We specify the limited memory BFGS
option for IPOPT using the setting hessian approximation=‘limited memory’ and
tolerances by tol=9.5e-10 and acceptable tol=9.5e-10. The L-BFGS solver uses
the same strong Wolfe line search as the algorithms from section 3. For all solvers
we set m = 8 (memory parameter), and maximum iterations to 10,000. A solver is
regarded to have converged when ‖gk‖∞ ≤ 9.5 × 10−5. The average outcomes of 5
runs of the experiments are in Figure 13.

IPOPT and the L-S-BFGS-P solvers converge to the specified tolerances on all
problems. L-BFGS converges on about 28% of the problems. The outcomes of the
number of iterations (left plot) and computational times (right plot) in Figure 13 are
consistent. In particular, we observe that the differences in the number of iterations
are roughly reflected in the difference in the computational times. In this problem
the known Hessian is not constant, and including second-order information in the
quasi-Newton approximations appears to yield better overall approximations such
that fewer iterations are required.

5. Conclusions. In this article we develop the compact representations of the
structured BFGS formulas proposed in Petra et al. [18]. Limited memory versions of
the compact representations with four initialization strategies are implemented in two
line search algorithms. The proposed limited memory compact representations enable
efficient search direction computations by the Sherman-Morrison-Woodbury formula
and the use of efficient initialization strategies. The proposed methods are compared
in a collection of experiments, which include the original full-memory methods. The
structured methods typically require fewer total iterations than do the unstructured
approaches. Among the four proposed initialization strategies, initializations 1 and 2
appear best for the structured minus methods (L-S-BFGS-M), whereas initializations
4 and 2 appear robust for the structured plus (L-S-BFGS-P) methods.

22

Acknowledgments. This work was supported by the U.S. Department of En-
ergy, Office of Science, Advanced Scientific Computing Research, under Contract
DE-AC02-06CH11357 at Argonne National Laboratory. through the Project ”Mul-
tifaceted Mathematics for Complex Energy Systems.” This work was also performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

REFERENCES

[1] Barzilai, J., and Borwein, J. Two-Point Step Size Gradient Methods. IMA Journal of
Numerical Analysis 8, 1 (01 1988), 141–148.

[2] Boggs, P., and Byrd, R. Adaptive, limited-memory bfgs algorithms for unconstrained opti-
mization. SIAM Journal on Optimization 29, 2 (2019), 1282–1299.

[3] Broyden, C. G. The Convergence of a Class of Double-rank Minimization Algorithms 1.
General Considerations. IMA Journal of Applied Mathematics 6, 1 (03 1970), 76–90.

[4] Byrd, R. H., Chin, G. M., Neveitt, W., and Nocedal, J. On the use of stochastic hessian
information in optimization methods for machine learning. SIAM Journal on Optimization
21 (2011), 977–995.

[5] Byrd, R. H., Nocedal, J., and Schnabel, R. B. Representations of quasi-Newton matrices
and their use in limited-memory methods. Math. Program. 63 (1994), 129–156.

[6] Chang, C.-C., and Lin, C.-J. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol. 2, 3 (May 2011), 27:1–27:27.

[7] Dennis, J., and Moré, J. Quasi-newton methods, motivation and theory. SIAM Review 19
(1977), 46–89.

[8] Dennis, Jr., J. E., Gay, D. M., and Walsh, R. E. An adaptive nonlinear least-squares
algorithm. ACM Trans. Math. Softw. 7, 3 (Sept. 1981), 348–368.

[9] Dennis, Jr, J. E., Martinez, H. J., and Tapia, R. A. Convergence theory for the structured
bfgs secant method with an application to nonlinear least squares. J. Optim. Theory Appl.
61, 2 (May 1989), 161–178.

[10] Dolan, E., and Moré, J. Benchmarking optimization software with performance profiles.
Mathematical Programming 91 (2002), 201–213.

[11] Fletcher, R. A new approach to variable metric algorithms. The Computer Journal 13, 3
(01 1970), 317–322.

[12] Gill, P. E., and Murray, W. Algorithms for the solution of the nonlinear least-squares
problem. SIAM J. Numer. Anal. 11 (Mar. 2010), 311–365.

[13] Goldfarb, D. A family of variable-metric methods derived by variational means. Math. Comp.
24 (1970), 23–26.

[14] Gould, N. I. M., Orban, D., and Toint, P. L. CUTEr and SifDec: A constrained and
unconstrained testing environment, revisited. ACM Trans. Math. Software 29, 4 (2003),
373–394.

[15] Mahajan, A., Leyffer, S., and Kirches, C. Solving mixed-integer nonlinear programs by
qp diving. Technical Report ANL/MCS-P2071-0312, Mathematics and Computer Science
Division, Argonne National Laboratory, Lemont, IL, 2012.

[16] Moré, J. J., and Thuente, D. J. Line search algorithms with guaranteed sufficient decrease.
ACM Trans. Math. Softw. 20, 3 (Sept. 1994), 286–307.

[17] Nocedal, J. Updating quasi-Newton matrices with limited storage. Math. Comput. 35 (1980),
773–782.

[18] Petra, C., Chiang, N., and Anitescu, M. A structured quasi-newton algorithm for optimizing
with incomplete hessian information. SIAM Journal on Optimization 29, 2 (2019), 1048–
1075.

[19] Shanno, D. F. Conditioning of quasi-Newton methods for function minimization. Math. Comp.
24 (1970), 647–656.

[20] Sra, S., Nowozin, S., and Wright, S. J. Optimization for Machine Learning. The MIT
Press, 2011.

[21] Teo, C. H., Vishwanthan, S., Smola, A. J., and Le, Q. V. Bundle methods for regularized
risk minimization. J. Mach. Learn. Res. 11 (Mar. 2010), 311–365.

[22] Wächter, A., and Biegler, L. T. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Math. Program. 106 (2006), 25–57.

[23] Yabe, H., and Takahashi, T. Factorized quasi-newton methods for nonlinear least squares
problems. Mathematical Programming 11, 75 (1991).

23

[24] Zhu, C., Byrd, R., and Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization. ACM Transactions on Mathematical Software
23 (1997), 550–560.

24

	Introduction
	BFGS Compact Representation
	Structured Problems
	Article Contributions

	Structured BFGS Compact Representations
	Compact Representation of AMk
	Compact Representation of APk
	Limited Memory Compact Structured BFGS

	Algorithms
	Initializations
	Search Directions
	Algorithms
	Large Scale Computation Considerations
	Computations for L-S-BFGS-M
	Computations for L-S-BFGS-P
	Memory Usage and Comparison

	Numerical Experiments
	Experiment I
	Experiment I.A: L-S-BFGS-M
	Experiment I.B: L-S-BFGS-P
	Experiment I.C: Eigenvalue Estimation

	Experiment II
	Experiment II.A: L-S-BFGS-M
	Experiment II.B: L-S-BFGS-P

	Experiment III
	Experiment III.A: Logistic Regressions
	Experiment III.B: Optimal Control Problems

	Experiment IV

	Conclusions
	References

