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© Quasi-Newton Methods
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Quadratic Models and Newton's Method

Consider unconstrained optimization problem:

e f
minimize (x),

where f : R” — R twice continuously differentiable.

Motivation for Newton:

@ Steepest descend is easy,
... but can be slow

@ Quadratics approximate
nonlinear f(x) better

@ Faster local convergence

@ More “robust” methods




Quadratic Models and Newton's Method
mi)?ei?&ize f(x)

Main Idea Behind Newton

e Quadratic function approximates a nonlinear f(x) well.

o First-order conditions of quadratics are easy to solve.

Consider minimizing a quadratic function (wlog cons t= 0)
1
minimize q(x) = EXTHX +b"x
X
First-order conditions, Vg(x) = 0, are

Hx = —b

. a linear system of equations
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N
Quadratic Models and Newton's Method

minimize f(x)
x€eR"

Newton's method uses truncated Taylor series:
1
F(x®) 4 d) = FR) 4 g7 g 4 5 H¥d +o(|d|?)

where a = o(||d||?) means that W — 0 as [|d||* = 0.

Notation Convention

Functions evaluated at x(¥) are identified by superscripts:
o fK) .— f(x(k))
o gk .= g(X(k)) = Vf(x(k))
o HK) .= H(X(k)) = sz(x(k))




N
Quadratic Models and Newton's Method

e f
minimize (x)

Newton's method defines quadratic approx. at x(¥)
g (d) = FR) 4 g g 4 %dTH(k)d,
and steps to minimum of q(¥)(d).

If H(K) positive definite, solve linear system:

min ¢¥(d) & Vq®(d)=0 < VH®I=_g".

... then sets x(kt1) .= x(k) ¢



Simple Version of Newton's Method

minimize f(x)
xER"

Simple Newton Line-Search Method
Given X(O), set k = 0.
repeat
Solve H(Fs(k) .= —g(x(k)) for Newton direction

Find step length oy := Armijo(f(x), x(K), s(K)
Set x(k*t1) .= x(K) 4 o, (k) and k = k + 1.

until x(%) js (local) optimum;

See Matlab demo
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Theory of Newton's Method

Newton direction is a descend direction if H(K) is positive definite:

Lemma

If HK) is positive definite, then s) from solve of
H®s(k) .= —g(x(K) is a descend direction.
Proof.

Drop superscripts (k) for simplicity
H is positive definite = H™! inverse exists and is pos. definite
=gls=g"Hl(—g)<0

= s is a descend direction. O
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Theory of Newton's Method

Newton's method converges quadratically
. steepest descend only linearly

Theorem
f(x) twice continuously differentiable and that H(x) is Lipschitz:

IH(x) = Hy)Il < Liix =yl

near local minimum x*.
If x(K) sufficiently close x*, and if H* positive definite, then
Newton’s method converges quadratically and oy = 1.
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Theory of Newton's Method

Newton's method converges quadratically
. steepest descend only linearly

Theorem
f(x) twice continuously differentiable and that H(x) is Lipschitz:

IH(x) = Hy)Il < Liix =yl

near local minimum x*.
If x(K) sufficiently close x*, and if H* positive definite, then
Newton’s method converges quadratically and oy = 1.

This is a remarkable result:
@ Near a local solution, we do not need a line search.

@ Convergence is quadratic ... double the significant digits.

35



.\ _________________________________________
lllustrative Example of Newton's Method

| Iteration 1 of Newton for f(x) = x* + x*y + (1+y)? | Iteration 1 of Newton for f(x) = x* + x*y + (1+y)?
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| Iteration 1 of Newton for f(x) = x* + x*y + (1+y)? e Failure of Newton for f(x) = x* + x*y + (1+y)®
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. Convergence & failure of Newton: f(x) = x{ +x1x2 + (1 + x2)?

q
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N
Discussion of Newton's Method |
Full Newton step may fail to reduce f(x), E.g.

1
minimize f(x) = x* — —x*.
X 4

x(0) = /2/5 creates alternating iterates —/2/5 and 1/2/5.
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Remedy: Use a line search.
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Discussion of Newton's Method I

@ Newton's method solves linear system at every iteration.
Can be computationally expensive, if n is large.
Remedy: Apply iterative solvers, e.g. conjugate-gradients.

@ Newton's method needs first and second derivatives.
Finite differences are computationally expensive.
Use automatic differentiation (AD) for gradient
... Hessian is harder, get efficient Hessian products: H(*)y
Remedy: Code efficient gradients, or use AD tools.
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N
Discussion of Newton's Method [l]

Problem, if Hessian, H(%) not positive definite
@ Newton direction may not be defined
If H®) singular, then HK)s = —g(k) not well defined:

o Either HK)s = —g(*) has no solution,
o or HWs = —g(k) has infinitely many solutions!

e Even if Newton direction exists, it may not reduce f(x)
= Newton’s method fails even with line search
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Discussion of Newton's Method |V
Problem, if Hessian, H(k), has indefinite curvature:
Consider

minimize f(x) = x{ + x1x2 + (1 4 x2)?
X

Starting Newton at x(9) = 0, get

KO o, 0= () po_ L s s (72
2 L 0

Line-search from x(9) in direction s(%

x5 = <_§O‘> = f(xO+4as®) = (—20)*+1 = 160*+1 > 1

for all & > 0, hence cannot decrease f(x) = a9 =0

= Newton's method stalls
a 14/35



Failure of Newton's Method

Steepest descend works fine
= Remedy: Modify Hessian to make it positive definite.
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Modifying the Hessian to Ensure Descend |

Newton's method can fail, if H(k), is not positive definite.
To modify the Hessian, estimate smallest eigenvalue, )\min(H(k)),

Define modification matrix, My:
My := max (o, e )\min(H(k))) I,

where € > 0 small, and / € R™*" identity matrix
Use modified Hessian, Hk) + My, which is positive definite

Matlab get smallest eigenvalue: Lmin = min(eig(H))
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Modifying the Hessian to Ensure Descend Il

Alternative modification

e Compute Cholesky factors of H(¥):
H®) 4 My = L L]

where Ly lower triangular with positive diagonal
LkLZ— is positive definite

Choose My = 0 if H(¥) is positive definite
Choose M not unreasonably large

Related to LkaLZ— factors

... perform modification as we solve the Newton system,

HI ) . _ g(x(K)
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Modified Newton Line-Search Method

Given x(9), set k = 0. repeat
Form My from eigenvalue est. or mod. Cholesky factors.

Get modified Newton direction: (H(k) + M) s(k) .= —g(x(K)),

Get step length a := Armijo(f(x), x(K), s(K)).

Set x(k*1) .= x(K) 4 o s(K) and k = k + 1.
until x(%) is (local) optimum;

Modification H(K) — )\m;n(H(k))/ bias towards steepest descend:
Let = Am;n(H(k))*l, then solve

Amin(H®) (HE) 1) 580 = —g(x9),

As 1 — 0, recover steepest-descend direction, s(k) ~ —g(x(¥))
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Outline

© Quasi-Newton Methods
@ The Rank-One Quasi-Newton Update.
@ The BFGS Quasi-Newton Update.
@ Limited-Memory Quasi-Newton Methods
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Quasi-Newton Methods

Quasi-Newton Methods avoid pitfalls of Newton's method:
@ Failure Newton's, if HK) not positive definite;
@ Need for second derivatives;

© Need to solve linear system at every iteration.

Study quasi-Newton and more modern limited-memory
quasi-Newton methods

@ Overcome computational pitfalls of Newton

@ Retain fast local convergence (almost)

Quasi-Newton methods work with approx. B*) ~ H(K)™
= Newton solve becomes matrix-vector product: s(k) = —B(K) g(k)
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Quasi-Newton Methods
Choose initial approximation, B(®) = v/ Define

A (K) = glk+1) _ g(k) gradient difference
§(k) .= x(k+1) _ (k) jterate difference,

then, for quadratic q(x) :=qo+ & x—|— LxT Hx, get
~B) = H5K) o 5 = g1y

Because B(X) ~ H(K) ™" ideally want B(K)(K) = §(k)

Not possible, because need B*) to compute x(K*1), hence use

Quasi-Newton Condition

k1) (k) — 5(4)
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Rank-One Quasi-Newton Update
Goal: Find rank-one update such that B(k+1)~ (k) — 5(k)
Express symmetric rank-one matrix as outer product:

uu” = [uu;.. . upu],  and set BOHD = BUO 4 quy T,
Choose a € R and u € R" such that update, B(k+1), satisfies

50 = Bkt (k) = Bk~ (K) 4 gy T~ ()

... quasi-Newton condition
Rewrite Quasi-newton condition as

“Solving” last equation of u, then quasi-Newton condition implies

u= (5(k) _ B(k)’y(k)> / (auT’y(k))

assuming au’ (K £0



Rank-One Quasi-Newton Update

From previous page: Quasi-Newton condition implies
y= (5(k> _ B(k>7<k)) / (au (k))

assuming au’~(K) £0

We are Iooklng for update auu’

o Assume au’ (%) £ 0 (can be monitored)
@ Choose u = §(k) — B(k)(K)

Given this choice of u, we must set a as

1 1
a= = .
uTy ) (500 — BUIy(K)) T (k)

Double check that we satisfy the quasi-Newton condition:

B+ (k) — B (K) L g0y T~ ()
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Rank-One Quasi-Newton Update

Substituting values for a and u we get ...

(6 — B (50 — BT (¥

U1 () _ g (k)
! ! (60 — BR4() T 40

_ B0 (K) 4 50 _ B,k _ 5(K)

Rank-One Quasi-Newton Update
Assuming that (6 — B~)" v # we use:

glk+1) _ (5 Bv) (6 — By)"
(6-B7)"y
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Properties of Rank-One Quasi-Newton Update

Rank-One Quasi-Newton Update

gy _ g, =B —TBV)T
(6 —=B7)" v

Theorem (Quadratic Termination of Rank-One)

If rank-one update is well defined, and 61, ... (") linearly
independent, then rank-one method terminates in at most n + 1
steps with B("Y) = H=1 for quadratic with pos. definite Hessian.

Remark (Disadvantages of Rank-One Formula)

@ Does not maintain positive definiteness of B(k)
= steps may not be descend directions

@ Rank-one breaks down, if denominator is zero or small.
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BFGS Quasi-Newton Update

BFGS rank-two update ... method of choice
BFGS Quasi-Newton Update

ooy g (ATEEBWTY (o0 a7
Y

.. works well with low-accuracy line-search

Theorem (BFGS Update is Positive Definite)
If 5T~ > 0, then BFGS update remains positive definite. J
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Picture of BFGS Quasi-Newton Update

We can visualize the BFGS update ...
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Picture of BFGS Quasi-Newton Update

We can visualize the BFGS update ...

a 27/35



Convergence of BFGS Updates

Does BFGS converge for nonconvex f(x) with Wolfe line-search? l

Wolfe line search finds a:

g(X(k) + aks(k))Ts(k) Z o-g(k)Ts(k)_

%
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Convergence of BFGS Updates

Question (Convergence of BFGS with Wolfe Line Search) J

Does BFGS converge for nonconvex f(x) with Wolfe line-search?

Wolfe Line-Search Conditions
Wolfe line search finds a:

g(X(k) + O[kS(k))TS(k) Z o-g(k)Ts(k)'

Unfortunately, the answer is no!
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Dai [2013] Example of Failure of BFGS

Constructs “perfect 4D example” for BFGS method:

o Steps s(K), gradients, g(K), satisfy
(k) _ [R1 0 | (k-1 (k) _ [TR1 0| (k1)
° [oTRz]S and g [ORzg ’

where 7 parameter, and Ry, R» rotation matrices

_ | cosa —sina | cosB —sinf
Rl_[sinoz cosa] and R2_[sinﬁ cosﬁ}

Can show that
@ «ay = 1 satisfies Wolfe or Armijo line search
e f(x) is polynomial of degree 38 (strongly convex along s(¥).
@ lterates converge to circle around vertices of octagon

. not stationary points.
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N
Limited-Memory Quasi-Newton Methods

Disadvantage of quasi-Newton: Storage & computat™: O(n?)
@ Quasi-Newton matrices are dense (3 sparse updates).

o Storage & computation of O(n?) prohibitive for large n
. solve inverse problems from geology with 10'? unknowns

Limited memory method are clever way to re-write quasi-Newton
@ Store m < n most recent difference pairs m ~ 10

o Cost per iteration only O(nm) not O(n?)
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Limited-Memory Quasi-Newton Methods

Recall BFGS update:

5vTB + B~ys§T TB~\ 667
(k+1) _p_ (97 BT B0 B
. . ( 6Ty ) - (1 - 6Ty )

SyTB+ BT B 6T 68T
=B — u + b v +
5T~ 6T~ ) 6Ty 6Ty

Rewrite BFGS update as (substitute and prove for yourself!)
BYEY = VT BV + pidd T,

where 1
Pk = (5T’Y> , and V=1 —peys’.

Recur update back to initial matrix, B(®) = 0

8Ty
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Limited-Memory Quasi-Newton Methods

Idea: Apply m < n quasi-Newton updates at iteration k,
corresponding to difference pairs, (;,7;) for i=k —m,... , k—1:

Bk — [VkT—l . \/kT_m} B(0) [Vk—l o \/k_m]

tPk—m [VkT_l T VkT_m+1] B [Vk—l e Vk—m—l—l}
+ ...
+pk_15(k—1)6(k—l)T

.. can be implemented recursively!
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Limited-Memory Quasi-Newton Methods

Recursive procedure to compute BFGS direction, s:

Limited Memory BFGS Search Direction Computation
Given initial B(®), memory m, set gradient, g = V£ (x(K).
fori=k—1,...,k—mdo

Set aj = p;5(i)T'y(i)

Update gradient: g = g — aj7(")

end

Apply initial quasi-Newton matrix: r = HOq
fori=k—1,...,k— mdo

Set = piy)'r

Update direction: r = r 4 6()(a; — )

end
Return search direction: s(k) := r (= H(k)g(k))

Cost of recursion is O(4nm) if H( is diagonal
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General Quasi-Newton Methods

Given any of updates discussed, quasi-Newton algorithm is

General Quasi-Newton (qN) Line-Search Method
Given X(O), set k = 0.

repeat

Get quasi-Newton direction, s(k) = —B(K) g(k)

Step length ay := Armijo(f(x), x(kK), s(K))

Set x(kt1) .= x(K) 4 o s(K)|

Form ~(K),§(K) update gN matrix, Bt set k = k + 1.
until x(%) is (local) optimum;
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Summary: Newton and Quasi-Newton Methods

Methods for unconstrained optimization:

minimize f(x)

@ Quadratic model provides better approx. of f(x)

@ Newton's method minimizes quadratic for step d:

minidmize g (d) == k) 4 g d + %dTH(k)d,

o Modify if H¥) not pos. def. (no descend): H¥) + M, > 0
o Converges quadratically (near solution)
@ Quasi-Newton methods avoid need for Hessian Hk)
o Update quasi-Newton approx. B*) ~ H(K)™
o Limited memory version for large-scale optimization
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