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Recall: Nonlinear Branch-and-Bound

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Solve continuous relaxation (NLP) (0 ≤ xI ≤ 1)
. . . solution value provides lower bound

Branch on xi non-integral

Solve NLPs & branch until
1 Node infeasible: •
2 Node integer feasible: 2

⇒ get upper bound (U)

3 Lower bound ≥ U:

Search until no unexplored nodes

Snag: Solve thousands of NLPs ...
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Recall: Outer Approximation

Alternate between solve NLP(xI ) and MILP relaxation

MILP ⇒ lower bound; NLP ⇒ upper bound

Snag: Solve multiple MILPs ...
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Single-Tree Methods

Goal: perform only a single MILP tree-search per MINLP

Branch-and-Bound is s single-tree method
... but can be too expensive per node

Avoid re-solving MILP master for OA, Benders, and ECP
... instead update master (MILP) data

Can be interpreted as branch-and-cut approach
... but cuts are very simple

Solve MILP with full set of linearizations X and apply delayed
constraint generation technique of “formulation constraints”
X k ⊂ X .

At integer points, separate cuts by solving an NLP

... basis for state-of-the-art convex MINLP solvers
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LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Form MILP outer
approximation

Take initial MILP tree

interrupt MILP, when new

integral x
(j)
I found

⇒ solve NLP(x
(j)
I ) get x (j)

linearize f , c about x (j)

⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA
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Branch-and-Cut in MINOTAUR
Suppose we need a branch-and-cut solver.

Node Relaxer

Obtain linear
relaxation in
root node.

Node Processor

Solve Relax.

Can stop?

Cut?

Return

Gen. Cut Branch

yes

no
no

yes

Brancher

Pick a
fractional variable.

Only
CxLinHandler

CxLinHandler
IntVarHandler

Only IntVarHandler

relax() {
// Solve NLP
// get Linearization at sol.
}
bool isFeasible() {
// check non-linear constraints
}

separate() {
// solve NLP
// get Linearization at sol.
}
cand* findBrCandidates() {
// empty
}
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LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]

Advanced MILP search and cut management techniques
... remove “old” OA cuts from LP relaxation ⇒ faster LP

Generate cuts at non-integer points: ECP cuts are cheap
... generate cuts early (near root) of tree

Strong branching, adaptive node selection & cut management

Fewer nodes, if we add more cuts (e.g. ECP cuts)
More cuts make LP harder to solve
⇒ remove outdated/inactive cuts from LP relaxation

... balance OA accuracy with LP solvability

Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]

Benders and ECP versions are also possible.
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Presolve for MINLP

Presolve plays key role in MILP solvers

Bound tightening techniques

Checking for duplicate rows

Fixing or removing variables

Identifying redundant constraints

... creates tighter LP/NLP relaxations ⇒ smaller trees!

... some presolve in AMPL, but no nonlinear presolve
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What Could Go Wrong in MINLP?

Syn20M04M : a synthesis design problem
in chemical engineering

Problem size: 160 Integer Variables,
56 Nonlinear constraints

1000+ nodes after solving for 75s

5000+ nodes after solving for 200s

250+ nodes after solving for 45s

Solver CPU Nodes

Bonmin >2h >149k
MINLPBB >2h >150k
Minotaur >2h >264k
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Improving Coefficients: An Example

(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}
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(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 5x2 ≤ 14

Reformulation:

(2) x1 + 5x2 ≤ 14

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 14

(2) is tight.

l

If x2 = 1

x1 ≤ 9

(2) is tight.

(1) and (2) equivalent. But relaxation of (2) is tighter.
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Improving Coefficients: Linear to Nonlinear

c(x1, x2, . . . , xk) ≤ M(1− x0)

li ≤ xi ≤ ui , i = 1, . . . , k

x0 ∈ {0, 1}

If c(x1, x2, . . . , xk) ≤ M(1− 0), is loose, tighten it!

Let cu = max
x

c(x1, . . . , xk) (MAX-c)

s.t. li ≤ xi ≤ ui , i = 1, . . . , k

If cu < M, then tighten: c(x1, . . . , xk) ≤ cu(1− x0)

(MAX-c) is a nonconvex NLP ... time-consuming

Upper bound on (MAX-c) will also tighten

Trade-off between time and quality of bound: Fast or Tight!
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Improving Coefficients: Using Implications

c(x1, x2, . . . , xk) ≤ M(1− x0),

li ≤ xi ≤ ui , i = 1, . . . , k ,

x0 ∈ {0, 1}.
Often, x0, xi also occur in other constraints of MINLP. e.g.

c(x1, x2, . . . , xk) ≤ M(1− x0)

0 ≤ x1 ≤ M1x0

0 ≤ x2 ≤ M2x0

. . .

x0 ∈ {0, 1}

x0 = 0⇒ x1 = x2, . . . = xk = 0. (Implications)

If c(0, . . . , 0) < M, then we can tighten.

No need to solve (MAX-c). Fast and Tight.
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Presolve for MINLP

Advanced functions of presolve (Reformulating):

Improve coefficients.

Disaggregate constraints.

Derive implications and conflicts.

Basic functions of presolve (Housekeeping):

Tighten bounds on variables and constraints.

Fix/remove variables.

Identify and remove redundant constraints.

Check duplicacy.

Popular in Mixed-Integer Linear Optimization [Savelsbergh, 1994]
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Presolve for MINLP: Computational Results

Syn20M04M from egon.cheme.cmu.edu

No Presolve Basic Presolve Full Presolve

Variables: 420 328 292
Binary Vars: 160 144 144
Constraints: 1052 718 610
Nonlin. Constr: 56 56 56
Bonmin(sec): >7200 NA NA
Minotaur(sec): >7200 >7200 2.3

Minotaur, no presolve: 10000+ nodes after solving for 360s

Why does no one else do this?
Full Presolve
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Why Does No One else Do It? . . . Better AD!

NLP solvers need 1st and 2nd derivatives

Rely on modeling software: AMPL, GAMS
⇒ cannot modify functions during solve

Minotaur has routines to

create computational graphs,
evaluate 1st and 2nd derivatives,
tighten and propagate bounds,
modify graphs.

Simple modification routines:

Fix and delete variables.
Substitute variables.
Extract subgraphs.

x1x2 x3 34

+

××

sin

/

−

f =
x2

sin(4×x3+x1)
−3×x1

Scope for more improvements
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Presolve for MINLP: Results
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Presolve for MINLP: Constraint Disaggregation
[Wolsey, 1998] uncapacitated facility location

Set of customers i = 1, . . . ,m

Set of facilities j = 1, . . . , n

Which facilities should we open
(xj ∈ {0, 1}, j = 1, . . . , n)

yij = 1 if facility j serves customer i

Every customer served by one facility:

n∑
j=1

yij = 1, ∀i = 1, . . . ,m, and
m∑
i=1

yij ≤ mxj , ∀j = 1, . . . , n,

Equivalent tighter formulation is (disagregated constraints):

n∑
j=1

yij = 1, ∀i = 1, . . . ,m, and yij ≤ xj , ∀i = 1, . . . ,m, j = 1, . . . , n.

... modern MIP solvers detect this automatically
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Presolve for MINLP: Constraint Disaggregation

Nonlinear disaggregation [Tawarmalani and Sahinidis, 2005]

S := {x ∈ Rn : c(x) = h(g(x)) ≤ 0} ,

g : Rn → Rp smooth convex;
h : Rp → R smooth, convex, and nondecreasing
⇒ c(x) smooth convex

Like group partial separability [Griewank and Toint, 1984]

Disaggregated formulation: introduce y = g(x) ∈ Rp

Sd :=
{

(x , y) ∈ Rn × Rp : h(y) ≤ 0, y ≥ g(x)
}
.

Lemma

S is projection of Sd onto x.
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Presolve for MINLP: Constraint Disaggregation

Consider
S := {x ∈ Rn : c(x) = h(g(x)) ≤ 0} ,

and
Sd :=

{
(x , y) ∈ Rn × Rp : h(y) ≤ 0, y ≥ g(x)

}
.

Theorem

Any outer approximation of Sd is stronger than OA of S

Given X k :=
{
x (1), . . . , x (k)

}
construct OA for S , Sd :

Soa :=
{
x : c(l) +∇c(l)T (x − x (l)) ≤ 0, ∀x (l) ∈ X k

}
Soa
d :=

{
(x , y) : h(l) +∇h(l)T (y − g(x (l))) ≤ 0,

y ≥ g (l) +∇g (l)T (x − x (l)), ∀x (l) ∈ X k
}
,

[Tawarmalani and Sahinidis, 2005] show Soa
d stronger than Soa
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Presolve for MINLP: Constraint Disaggregation

[Hijazi et al., 2010] studyx : c(x) :=

q∑
j=1

hj(a
T
j x + bj) ≤ 0


where hj : R→ R are smooth and convex

Disaggregated formulation: introduce y ∈ Rq(x , y) :

q∑
j=1

yj ≤ 0, and yj ≥ hj(a
T
j x + bj)


can be shown to be tighter
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Recall: Worst Case Example of OA

Apply disaggregation to [Hijazi et al., 2010] example:

minimize
y

0

subject to
n∑

i=1

(
xi −

1

2

)2

≤ n − 1

4

x ∈ {0, 1}n

Intersection of ball of radius
√
n−1
2

with unit hypercube.

Disaggregate
∑(

xi − 1
2

)2 ≤ n−1
4 as

n∑
i=1

yi ≤ 0 and

(
xi −

1

2

)2

≤ yi
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Presolve for MINLP: Constraint Disaggregation

[Hijazi et al., 2010] disaggregation on worst-case example of OA

Linearize around x (1) ∈ {0, 1}n and complement
x (2) := e − x (1), where e = (1, . . . , 1)

OA of disaggregated constraint is

n∑
i=1

yi , and xi − 3
4 ≤ yi , and 1

4 − xi ≤ yi ,

Using xi ∈ {0, 1} implies zi ≥ 0, implies
∑

zi ≥ n
4 >

n−1
4

⇒ OA-MILP master of x (1) and x (2) is infeasible.
... terminate in two iterations
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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Assumptions:

A1 X is a bounded polyhedral set.

A2 f and c are twice continuously differentiable convex
functions.

A3 MINLP satisfies a constraint qualification.

Look at another class of branch-and-cut methods ...
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Overview of Branch-and-Cut Methods

Extend nonlinear branch-and-bound
1 Solve NLP(l , u) at each node of tree

Generate a cut to eliminate fractional solution & re-solve
Only branch if solution fractional after some rounds of cuts

2 Generation of good cuts is key [Stubbs and Mehrotra, 1999]

3 Hope that tree is smaller than BnB

4 Goal: get formulation closer to convex hull
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Recall Nonlinear Branch-and-Bound

Solve NLP relaxation

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X

If xi ∈ Z ∀ i ∈ I , then solved MINLP

If relaxation is infeasible, then MINLP infeasible

... otherwise search tree whose nodes are NLPs:
minimize

x
f (x),

subject to c(x) ≤ 0,
x ∈ X ,
li ≤ xi ≤ ui , ∀i ∈ I .

(NLP(l , u))

NLP relaxation is NLP(−∞,∞)

30 / 68



Recall Nonlinear Branch-and-Bound

Branch-and-bound for MINLP
Choose tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove (NLP(l , u)) from heap: H = H− { NLP(l , u) }.
Solve (NLP(l , u)) ⇒ solution x (l ,u).
if (NLP(l , u)) is infeasible then

Prune node: infeasible
else if f (x (l ,u)) > U then

Prune node; dominated by bound U

else if x
(l ,u)
I integral then

Update incumbent : U = f (x (l ,u)), x∗ = x (l ,u).
else

BranchOnVariable(x
(l ,u)
i , l , u,H)
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Generic Nonlinear Branch-and-Cut

Branch-and-cut for MINLP
Choose a tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove (NLP(l , u)) from heap: H = H− { NLP(l , u) }.
repeat

Solve (NLP(l , u)) ⇒ solution x (l ,u).
if (NLP(l , u)) is infeasible then

Prune node: infeasible
else if f (x (l ,u)) > U then

Prune node; dominated by bound U

else if x
(l ,u)
I integral then

Update incumbent: U = f (x (l ,u)), x∗ = x (l ,u) & prune.
else GenerateCuts(x (l ,u), j) ... details later

until no new cuts generated or node pruned
if (NLP(l , u)) not pruned & not incumbent then

BranchOnVariable(x
(l ,u)
j , l , u,H)
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Cut Generation Overview

Algorithm 1: Solve separation problem to generate subgradient cut

Subroutine: GenerateCuts (x (l ,u), j)

// Generate a valid inequality that cuts off x
(l ,u)
j /∈ {0, 1}

Solve separation (NLP) problem in x (l ,u) for valid cut.
Add valid inequality to (NLP(l , u)).

GenerateCuts: valid inequality to eliminate fractional solution

Given fractional solution x (l ,u) with x
(l ,u)
j /∈ {0, 1}.

Let F(l , u) mixed-integer feasible set of node NLP(l , u).

Find cut πT x ≤ π0 such that

πT x ≤ π0 for all x ∈ F(l , u)
πT x (l,u) > π0, i.e. x (l,u) violates the cut

Solve a separation problem (e.g. an NLP) for cut πT x ≤ π0

... lifting cuts makes them valid throughout the tree.
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Branch-and-Cut Challenges

Computational Considerations of Branch-and-Cut

Cut-generation problem may be hard to solve

Adds burden of additional NLP solves to BnB

Can solve LP instead of NLP, e.g. from OA

Must add cut-management to solver

Lifting cuts may help to make them valid in whole tree

NLPs still don’t hot-start

[Stubbs and Mehrotra, 1999] generate cuts only at root node

34 / 68



Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

35 / 68



Mixed-Integer Rounding (MIR) for OA-MILP

Goal: Strengthen MILP relaxations of LP/NLP-based BnB
... iteratively add cuts to remove fractional LP solutions

Start by considering MIR cuts for “easy set”

S := {(x1, x2) ∈ R× Z | x2 ≤ b + x1, x1 ≥ 0},

where R = {1} and I = {2}.
Let f0 = b − bbc, then cut

x2 ≤ bbc+
x1

1− f0

is valid for S ; look at two cases:

1 x2 ≤ bbc
2 x2 ≥ bbc+ 1.

36 / 68



Example of Simple MIR Cut

MIR cut:x2 ≤ 2x1 derived from x2 ≤ 1
2 + x1.
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General MIR Cuts

For general MILP consider set

X :=
{

(x+
R , x

−
R , xI ) ∈ R2

+ × Zp
+ | aTI xI + x+

R ≤ b + x−R
}
.

... selected constraint row of MILP or one-row relaxation of subset

Continuous variables aggregated in x+
R and x−R depending on

sign of coefficient in aR .

Obtain following valid inequality:∑
i∈I

(
baic+

max{fi − f0, 0}
1− f0

)
xi ≤ bbc +

x−R
1− f0

,

fi = ai − baic for i ∈ I and f0 = b − bbc fractional parts a and b.
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Gomory Cuts and MIR Cuts

Gomory cuts originally from [Gomory, 1958, Gomory, 1960] for ILP
MILP Gomory cut given by∑

i∈I1

fixi +
∑
i∈I2

f0(1− fi )

fi
xi + x+

R +
f0

1− f0
x−R ≥ f0

where I1 = {i ∈ I | fi ≤ f0} and I2 = I \ I1.
... is instance of MIR cut. Consider set

X = {(xR , x0, xI ) ∈ R2
+ × Z+ × Zp | x0 + aTI xI + x+

R − x−R = b},

generate a MIR inequality, and eliminate x0
I .

In MINLP Gomory & MIR cuts generated from MILP relaxations
... [Akrotirianakis et al., 2001] report modest improvement
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Perspective Formulations

MINLPs use binary indicator variables, xb, to model nonpositivity
of xc ∈ R

Model as variable upper bound

0 ≤ xc ≤ ucxb, xb ∈ {0, 1}

⇒ if xc > 0, then xb = 1

Perspective reformulation applies, if xb also in convex c(x) ≤ 0

Significantly improve reformulation

Pioneered by [Frangioni and Gentile, 2006];
... strengthen relaxation using perspective cuts
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Example of Perspective Formulation
Consider MINLP set with three variables:

S =
{

(x1, x2, x3) ∈ R2 × {0, 1} : x2 ≥ x2
1 , ux3 ≥ x1 ≥ 0

}
.

Can show that S = S0 ∪ S1, where

S0 =
{

(0, x2, 0) ∈ R3 : x2 ≥ 0
}
,

S1 =
{

(x1, x2, 1) ∈ R3 : x2 ≥ x2
1 , u ≥ x1 ≥ 0

}
.

x1

x2

x3 = 1

x3

x2 ≥ x2
1
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Example of Perspective Formulation

Geometry of convex hull of S :
Lines connecting origin (x3 = 0) to parabola x2 = x2

1 at x3 = 1

Define convex hull of S as conv(S)

:=
{

(x1, x2, x3) ∈ R3 : x2x3 ≥ x2
1 , ux3 ≥ x1 ≥ 0, 1 ≥ x3 ≥ 0, x2 ≥ 0

}
where x2x3 ≥ x2

1 is defined in terms of perspective function

Pf (x , z) :=

{
0 if z = 0,
zf (x/z) if z > 0.

Epigraph of Pf (x , z): cone pointed at origin with lower shape f (x)

xb ∈ {0, 1} indicator forces xc = 0, or c(xc) ≤ 0 if xb = 1 write

xbc(xc/xb) ...is tighter convex formulation
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Generalization of Perspective Cuts

[Günlük and Linderoth, 2012] consider more general problem

(P) min
(x ,z,η)∈Rn×{0,1}×R

{
η | η ≥ f (x) + cz ,Ax ≤ bz

}
.

where

1 X = {x | Ax ≤ b} is bounded

2 f (x) is convex and finite on X , and f (0) = 0

Theorem (Perspective Cut)

For any x̄ ∈ X and subgradient s ∈ ∂f (x̄), the inequality

η ≥ f (x̄) + c + sT (x − x̄) + (c + f (x̄)− sT x̄))(z − 1)

is valid cut for (P)

44 / 68



Stronger Relaxations [Günlük and Linderoth, 2012]

zR : Value of NLP relaxation

zGLW : Value of NLP relaxation after GLW cuts

zP : Value of perspective relaxation

z∗: Optimal solution value

Separable Quadratic Facility Location Problems
|M| |N| zR zGLW zP z∗

10 30 140.6 326.4 346.5 348.7
15 50 141.3 312.2 380.0 384.1
20 65 122.5 248.7 288.9 289.3
25 80 121.3 260.1 314.8 315.8
30 100 128.0 327.0 391.7 393.2

⇒ Tighter relaxation gives faster solves!
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Nonlinear Perspective of the Perspective

Potential Pitfalls of Perspective of h(x) ≤ 0:

yh(x/y) ≤ 0 ... division by zero?

function, gradients & Hessian may not be defined at 0

in practice get IEEE exception messages from AMPL

Example: Stochastic Service System Design

minimize
x ,y ,z

v
100 + (y − 1

4 )2 + (z − 1
2 )2

subject to z − v
1+v ≤ 0

0 ≤ z ≤ y , v ≥ 0, y ∈ {0, 1}

Perspective of nonlinear constraint:

y

(
z/y − v/y

1 + v/y

)
≤ 0 ⇔ z − v

1 + v/y
≤ 0

... not defined at y = 0 even after cancellation.
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Nonlinear Perspective of the Perspective

Study re-formulations:

z − v
1+v/y ≤ 0 perspective

zy + zv − vy ≤ 0 smooth√
4v2 + (y + z)2 − 2v + y − z ≤ 0 2nd-order cone

2nd-order cone requires SOC solver ⇒ no general NLPs!

IPOPT, SNOPT et al. fail for smooth formulation:

“Smooth formulation is nonconvex ⇒ NLP solvers fail”
BONMIN fails to solve MINLPs using smooth formulation

BB solvers fail on perspective formulation:
... IEEE exception ∀ nodes with y = 0
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Nonlinear Perspective on the Perspective

Nonconvex formulation: c1(v , y , z) = zy + zv − vy ≤ 0

Feasible set is convex ⇒ unique minimizer

NLP solvers converge to unique minimum ... just very slowly!

Look at gradient:

∇c1 =

 z − y
z − v
y + v


⇒ ∇c1(0) = 0T

⇒ c1 violates MFCQ at 0

Slow convergence & failure is due to failure of MFCQ
... more next!
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Gradients & Constraint Qualifications (CQ)

Let F := {c(x) ≥ 0} feasible set

CQs ensure that linearizations describe F locally!

LPs always satisfy a CQ

Ensure validity of first-order (gradient/KKT) conditions

Solvers that rely on linearization techniques work well

Mangasarian-Fromowitz Constraint Qualification (MFCQ)

1 The gradients of equality constraints linearly independent

2 For all active A inequality constraints A(x) := {i : ci (x) = 0}:
∃s : ∇cTi s < 0, ∀i ∈ A ... strictly feasible direction

MFCQ violated by ∇c1 = 0, because 0T s < 0 can never hold!
... causes slow convergence of any NLP solver
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Numerical Experience with the Bad the Perspective

Bad perspective of uncapacitated facility location problem:

minimize
x ,y ,z

z + y

subject to x2 − zy ≤ 0 0 ≤ x ≤ z , z ∈ {0, 1}
Major Minor TrustRad RegParam StepNorm Constrnts Objective Optimal Phase Step

------------------------------------------------------------------------------

0 0 10 10 0 0.5 1.01 0 2

1 1 10 10 0.625 0 0.385 0 2 SQP

2 1 10 10 0.188 0 0.1875 0 2 SQP

[ ... ]

28 1 10 10 2.79e-09 0 2.794e-09 0 2 SQP

29 1 10 10 1.4e-09 0 1.397e-09 0 2 SQP

30 1 10 10 6.98e-10 0 6.985e-10 2 2 SQP

ASTROS Version 2.0.2 (20100913): Solution Summary

===============================================

Major iters = 30 ; Minor iters = 30 ;

KKT-residual = 0.4286 ; Complementarity = 1.996e-10 ;

Final step-norm = 6.985e-10 ; Final TR-radius = 10 ;

---------------------------------------------------------------

ASTROS Version 2.0.2 (20100913): Step got too small

Linear rate of convergence ... similar for MINOS, FilterSQP, ...
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Remedy: Limiting Gradients for the Perspective

Goal: Compute limiting gradients for perspective as y → 0

Perspective of SSSD example

z − v
1+v/y ≤ 0

0 ≤ z ≤ y
v ≥ 0, y ∈ {0, 1}.

Objective implies
v = z/(1− z) active.

∇cp =



−1

(1 + v/y)2

−v2/y2

(1 + v/y)2

1


Observation: y → 0 implies z → 0, and v = z/(1− z)→ 0.

∇cp(0) ∈ conv


−1

0
1

 ,

−1
4
−1

4
1


... similar derivation possible for gradients of SOC formulation!
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Nonlinear Perspective of the Perspective

NLP solvers for perspective constraints

Perspective violates linear independence CQ (LICQ)
... OK for robust NLP solvers (work with basis)

Limiting gradients exist & satisfy MFCQ at 0

Hessian blows up near y = 0: ∇2cp = O(y−1) typically
... OK because null-space is empty near y = 0 (LICQ fails)

Modify NLP solvers & make them aware of structure

1 Use limiting gradients near 0

2 Set Hessian ∇2cp = [0] near 0

⇒ robust & fast local convergence (proof similar to MPECs?)
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Exact Smoothing of the Perspective

Changing NLP solvers is hard ... modify the perspective:

minimize
x ,y ,z

z + y

subject to
x2

z
− y ≤ 0, 0 ≤ x ≤ z , z ∈ {0, 1}

For τ > 0 (e.g. τ = 0.1), replace perspective by:

cs(x , y , z) =


x2

z
− y if z ≥ τ

2x + x − y − z otherwise,

continuously differentiable (across line x = z = τ).

... readily implemented in AMPL & converges rapidly!
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Nonlinear Perspective of the Perspective

Another example

... work in progress
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Disjunctive Branch-and-Cut

[Stubbs and Mehrotra, 1999] for convex, binary MINLP:

minimize
η,x

η s.t. η ≥ f (x), c(x) ≤ 0, x ∈ X , xi ∈ {0, 1} ∀ i ∈ I

Node in BnB tree with solution x ′, and 0 < x ′j < 1 for j ∈ I
Relaxation: C = {x ∈ X | f (x) ≤ η, c(x) ≤ 0, 0 ≤ xI ≤ 1}
Let I0, I1 ⊆ I index sets of 0-1 vars fixed to zero or one

Goal: Generate a valid inequality tat cuts off x ′

Consider two disjoint sets (“feasible sets after branching on xj”)

C0
j = {x ∈ C | xj = 0, 0 ≤ xi ≤ 1 ∀i ∈ I , i 6= j},
C1
j = {x ∈ C | xj = 1, 0 ≤ xi ≤ 1 ∀i ∈ I , i 6= j}.

... and find description of convex hull: M̃j(C) = conv(C0
j ∪ C1

j )
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Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
Continuous relaxation

C := {x |c(x) ≤ 0, 0 ≤ xI ≤ 1, 0 ≤ xC ≤ U}

C := conv({x ∈ C | xI ∈ {0, 1}p})
C0/1
j := {x ∈ C|xj = 0/1}

letMj(C ) :=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0

j , u1 ∈ C1
j


⇒ Pj(C) := projection of Mj(C) onto z

⇒ Pj(C) = conv (C ∩ xj ∈ {0, 1}) and P1...p(C) = C
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Disjunctive Cuts

Snag: Description of convex hull is nonconvex:

letMj(C) :=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0

j , u1 ∈ C1
j



⇒ need global optimization solvers for separation problem

⇒ prohibitive; instead use convex formulation: M̃j(C)
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Disjunctive Cuts

Can describe M̃j(C) with perspective Pci

M̃j(C) =

 (xF , v0, v1, λ0, λ1)

∣∣∣∣∣∣∣∣
v0 + v1 = xF , v0j = 0, v1j = λ1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
λ0ci (v0/λ0) ≤ 0, 1 ≤ i ≤ m
λ1ci (v1/λ1) ≤ 0, 1 ≤ i ≤ m

 ,

Obtain a convex separation NLP ...
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Disjunctive Cuts: Separation NLP

Goal: Find x̂ closest to fractional solution x ′ in convex hull

BC-SEP(x ′, j)


minimize
x ,v0,v1,λ0,λ1

||x − x ′||,
subject to (x , v0, v1, λ0, λ1) ∈ M̃j(C)

xi = 0, ∀i ∈ I0
xi = 1, ∀i ∈ I1.

optimal solution x̂ with multipliers πF for equality v0 + v1 = xF

Theorem

Optimal dual solution of (BC-SEP(x ′, j)), then following cut is
valid and eliminates x ′:

πTF xF ≤ πTF x̂F
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Disjunctive Cuts: Example

Consider following MINLP example
minimize

x1,x2

x1

subject to (x1 − 1
2 )2 + (x2 − 3

4 )2 ≤ 1
−2 ≤ x1 ≤ 2
x2 ∈ {0, 1}

⇒ solution of NLP relaxation: x ′ = (x ′1, x
′
2) = (−1

2 ,
3
4 )

Solve (x1 − 1
2 )2 + (x2 − 3

4 )2 ≤ 1 for x1, given x2 = 0 and x2 = 1:

C0 =
{

(x1, 0) ∈ R× {0, 1}
∣∣∣ 2−

√
7 ≤ 4x1 ≤ 2 +

√
7
}
,

C1 =
{

(x1, 1) ∈ R× {0, 1}
∣∣∣ 2−

√
15 ≤ 4x1 ≤ 2 +

√
15
}
.

Solving (BC-SEP(x ′, 2)), we find the cut x1 + 0.3x2 ≥ −0.166
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Disjunctive Cuts: Example

C0 C1

x̂ = (x̂1, x̂2)

x2

x1

C0 C1

x̂ = (x̂1, x̂2)

x∗

Convex hull, relaxation, and disjunctive cut

62 / 68



Lifting Disjunctive Cuts

Cuts are only valid for sub-tree rooted at relaxation
To obtain globally valid cut

πT x ≤ πT x̂

assign
πi = min{eTi HT

0 µ0, e
T
i HT

1 µ1}, i /∈ F

where ei is i th unit vector, F set of “free” variables and

µ0 = (µ0F , 0) and µ0F multiplier of perspective Pc(v0, λ0) ≤ 0

µ1 = (µ1F , 0) and µ1F multiplier of perspective Pc(v1, λ1) ≤ 0

H0, H1 matrices of subgradient rows ∂vPci (vj , λj)T , for
j = 0, 1

Preferred norm for cut generation, (BC-SEP(x ′, j)), is `∞-norm
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Implementation of Disjunctive Cuts

NLP (BC-SEP(x ′, j)) is not easy to solve:

NLP has twice number of variables as original problem

Perspective functions not differentiable at origin

Hessian of perspective blows up near origin

⇒ NLP slow (and solvers may fail)

Suggest LP-based separation [Kılınç et al., 2010]

Consider outer approximation relaxations of MINLP

Iteratively tighten the outer approximation

⇒ faster and more robust cut generation
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Implementation of Disjunctive Cuts

Let B ⊃ C = {x ∈ X | f (x) ≤ η, c(x) ≤ 0, 0 ≤ xI ≤ 1}
Instead of C0

j and C1
j we consider

B0
j = {x ∈ B0 | xj = 0}, B1

j = {x ∈ B0 | xj = 1}

valid inequalities for conv(B0
j ∪ B1

j ) are also valid for conv(C0
j ∪ C1

j )

Create linear (OA) sets B0
j ,B1

j iteratively (t):

B0
j (t) =

{
x ∈ Rn | xj = 0, f ′ +∇f ′T (x − x ′) ≤ η,

c ′ +∇c ′T (x − x ′) ≤ 0, ∀x ′ ∈ K0
j (t)

}
,

where K0
j (t) set of linearization points; B1

j (t) defined similarly

K0
j (t) augmented by solution of linear separation, x ′t

Use “friendly points”, x ′t = λx ′t0 + (1− λ)x ′t1 for λ ∈ [0, 1]

⇒ converges to solution of (BC-SEP(x ′, j)); but slowly (?)
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Summary and Exercises

Key points

Single-tree methods are state-of-the-art

Presolve for MINLP important ... need computational graph

Branch-and-cut approaches being developed for MINLP

Solution to exercises ...
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