
Mixed-Integer Nonlinear Optimization:
Applications, Algorithms, and Computation III

Sven Leyffer

Mathematics & Computer Science Division
Argonne National Laboratory

Graduate School in
Systems, Optimization, Control and Networks

Université catholique de Louvain
February 2013

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

2 / 68

Recall: Nonlinear Branch-and-Bound

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Solve continuous relaxation (NLP) (0 ≤ xI ≤ 1)
. . . solution value provides lower bound

Branch on xi non-integral

Solve NLPs & branch until
1 Node infeasible: •
2 Node integer feasible: 2

⇒ get upper bound (U)

3 Lower bound ≥ U:

Search until no unexplored nodes

Snag: Solve thousands of NLPs ...
3 / 68

Recall: Outer Approximation

Alternate between solve NLP(xI) and MILP relaxation

MILP ⇒ lower bound; NLP ⇒ upper bound

Snag: Solve multiple MILPs ...

4 / 68

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

5 / 68

Single-Tree Methods

Goal: perform only a single MILP tree-search per MINLP

Branch-and-Bound is s single-tree method
... but can be too expensive per node

Avoid re-solving MILP master for OA, Benders, and ECP
... instead update master (MILP) data

Can be interpreted as branch-and-cut approach
... but cuts are very simple

Solve MILP with full set of linearizations X and apply delayed
constraint generation technique of “formulation constraints”
X k ⊂ X .

At integer points, separate cuts by solving an NLP

... basis for state-of-the-art convex MINLP solvers

6 / 68

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Form MILP outer
approximation

Take initial MILP tree

interrupt MILP, when new

integral x
(j)
I found

⇒ solve NLP(x
(j)
I) get x (j)

linearize f , c about x (j)

⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA

7 / 68

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Form MILP outer
approximation

Take initial MILP tree

interrupt MILP, when new

integral x
(j)
I found

⇒ solve NLP(x
(j)
I) get x (j)

linearize f , c about x (j)

⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA

7 / 68

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Form MILP outer
approximation

Take initial MILP tree

interrupt MILP, when new

integral x
(j)
I found

⇒ solve NLP(x
(j)
I) get x (j)

linearize f , c about x (j)

⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA

7 / 68

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Form MILP outer
approximation

Take initial MILP tree

interrupt MILP, when new

integral x
(j)
I found

⇒ solve NLP(x
(j)
I) get x (j)

linearize f , c about x (j)

⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA

7 / 68

LP/NLP-Based Branch-and-Bound

Aim: avoid solving expensive MILPs

Form MILP outer
approximation

Take initial MILP tree

interrupt MILP, when new

integral x
(j)
I found

⇒ solve NLP(x
(j)
I) get x (j)

linearize f , c about x (j)

⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

Software:
FilMINT: FilterSQP + MINTO [L & Linderoth]
BONMIN: IPOPT + CBC [IBM/CMU] also BB, OA

7 / 68

Branch-and-Cut in MINOTAUR
Suppose we need a branch-and-cut solver.

Node Relaxer

Obtain linear
relaxation in
root node.

Node Processor

Solve Relax.

Can stop?

Cut?

Return

Gen. Cut Branch

yes

no
no

yes

Brancher

Pick a
fractional variable.

Only
CxLinHandler

CxLinHandler
IntVarHandler

Only IntVarHandler

relax() {
// Solve NLP
// get Linearization at sol.
}
bool isFeasible() {
// check non-linear constraints
}

separate() {
// solve NLP
// get Linearization at sol.
}
cand* findBrCandidates() {
// empty
}

8 / 68

LP/NLP-Based Branch-and-Bound

Algorithmic refinements, e.g. [Abhishek et al., 2010]

Advanced MILP search and cut management techniques
... remove “old” OA cuts from LP relaxation ⇒ faster LP

Generate cuts at non-integer points: ECP cuts are cheap
... generate cuts early (near root) of tree

Strong branching, adaptive node selection & cut management

Fewer nodes, if we add more cuts (e.g. ECP cuts)
More cuts make LP harder to solve
⇒ remove outdated/inactive cuts from LP relaxation

... balance OA accuracy with LP solvability

Compress OA cuts into Benders cuts can be OK

Interpret as hybrid algorithm, [Bonami et al., 2008]

Benders and ECP versions are also possible.

9 / 68

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

10 / 68

Presolve for MINLP

Presolve plays key role in MILP solvers

Bound tightening techniques

Checking for duplicate rows

Fixing or removing variables

Identifying redundant constraints

... creates tighter LP/NLP relaxations ⇒ smaller trees!

... some presolve in AMPL, but no nonlinear presolve

11 / 68

What Could Go Wrong in MINLP?

Syn20M04M : a synthesis design problem
in chemical engineering

Problem size: 160 Integer Variables,
56 Nonlinear constraints

1000+ nodes after solving for 75s

5000+ nodes after solving for 200s

250+ nodes after solving for 45s

Solver CPU Nodes

Bonmin >2h >149k
MINLPBB >2h >150k
Minotaur >2h >264k

12 / 68

Improving Coefficients: An Example

(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

13 / 68

Improving Coefficients: An Example

(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

13 / 68

Improving Coefficients: An Example

(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 5x2 ≤ 14

13 / 68

Improving Coefficients: An Example

(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 5x2 ≤ 14

Reformulation:

(2) x1 + 5x2 ≤ 14

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 14

(2) is tight.

l

If x2 = 1

x1 ≤ 9

(2) is tight.

(1) and (2) equivalent. But relaxation of (2) is tighter.

13 / 68

Improving Coefficients: Linear to Nonlinear

c(x1, x2, . . . , xk) ≤ M(1− x0)

li ≤ xi ≤ ui , i = 1, . . . , k

x0 ∈ {0, 1}

If c(x1, x2, . . . , xk) ≤ M(1− 0), is loose, tighten it!

Let cu = max
x

c(x1, . . . , xk) (MAX-c)

s.t. li ≤ xi ≤ ui , i = 1, . . . , k

If cu < M, then tighten: c(x1, . . . , xk) ≤ cu(1− x0)

(MAX-c) is a nonconvex NLP ... time-consuming

Upper bound on (MAX-c) will also tighten

Trade-off between time and quality of bound: Fast or Tight!

14 / 68

Improving Coefficients: Linear to Nonlinear

c(x1, x2, . . . , xk) ≤ M(1− x0)

li ≤ xi ≤ ui , i = 1, . . . , k

x0 ∈ {0, 1}

If c(x1, x2, . . . , xk) ≤ M(1− 0), is loose, tighten it!

Let cu = max
x

c(x1, . . . , xk) (MAX-c)

s.t. li ≤ xi ≤ ui , i = 1, . . . , k

If cu < M, then tighten: c(x1, . . . , xk) ≤ cu(1− x0)

(MAX-c) is a nonconvex NLP ... time-consuming

Upper bound on (MAX-c) will also tighten

Trade-off between time and quality of bound: Fast or Tight!

14 / 68

Improving Coefficients: Linear to Nonlinear

c(x1, x2, . . . , xk) ≤ M(1− x0)

li ≤ xi ≤ ui , i = 1, . . . , k

x0 ∈ {0, 1}

If c(x1, x2, . . . , xk) ≤ M(1− 0), is loose, tighten it!

Let cu = max
x

c(x1, . . . , xk) (MAX-c)

s.t. li ≤ xi ≤ ui , i = 1, . . . , k

If cu < M, then tighten: c(x1, . . . , xk) ≤ cu(1− x0)

(MAX-c) is a nonconvex NLP ... time-consuming

Upper bound on (MAX-c) will also tighten

Trade-off between time and quality of bound: Fast or Tight!

14 / 68

Improving Coefficients: Using Implications

c(x1, x2, . . . , xk) ≤ M(1− x0),

li ≤ xi ≤ ui , i = 1, . . . , k ,

x0 ∈ {0, 1}.
Often, x0, xi also occur in other constraints of MINLP. e.g.

c(x1, x2, . . . , xk) ≤ M(1− x0)

0 ≤ x1 ≤ M1x0

0 ≤ x2 ≤ M2x0

. . .

x0 ∈ {0, 1}

x0 = 0⇒ x1 = x2, . . . = xk = 0. (Implications)

If c(0, . . . , 0) < M, then we can tighten.

No need to solve (MAX-c). Fast and Tight.

15 / 68

Improving Coefficients: Using Implications

c(x1, x2, . . . , xk) ≤ M(1− x0),

li ≤ xi ≤ ui , i = 1, . . . , k ,

x0 ∈ {0, 1}.
Often, x0, xi also occur in other constraints of MINLP. e.g.

c(x1, x2, . . . , xk) ≤ M(1− x0)

0 ≤ x1 ≤ M1x0

0 ≤ x2 ≤ M2x0

. . .

x0 ∈ {0, 1}

x0 = 0⇒ x1 = x2, . . . = xk = 0. (Implications)

If c(0, . . . , 0) < M, then we can tighten.

No need to solve (MAX-c). Fast and Tight.

15 / 68

Improving Coefficients: Using Implications

c(x1, x2, . . . , xk) ≤ M(1− x0),

li ≤ xi ≤ ui , i = 1, . . . , k ,

x0 ∈ {0, 1}.
Often, x0, xi also occur in other constraints of MINLP. e.g.

c(x1, x2, . . . , xk) ≤ M(1− x0)

0 ≤ x1 ≤ M1x0

0 ≤ x2 ≤ M2x0

. . .

x0 ∈ {0, 1}

x0 = 0⇒ x1 = x2, . . . = xk = 0. (Implications)

If c(0, . . . , 0) < M, then we can tighten.

No need to solve (MAX-c). Fast and Tight.

15 / 68

Presolve for MINLP

Advanced functions of presolve (Reformulating):

Improve coefficients.

Disaggregate constraints.

Derive implications and conflicts.

Basic functions of presolve (Housekeeping):

Tighten bounds on variables and constraints.

Fix/remove variables.

Identify and remove redundant constraints.

Check duplicacy.

Popular in Mixed-Integer Linear Optimization [Savelsbergh, 1994]

16 / 68

Presolve for MINLP: Computational Results

Syn20M04M from egon.cheme.cmu.edu

No Presolve Basic Presolve Full Presolve

Variables: 420 328 292
Binary Vars: 160 144 144
Constraints: 1052 718 610
Nonlin. Constr: 56 56 56
Bonmin(sec): >7200 NA NA
Minotaur(sec): >7200 >7200 2.3

Minotaur, no presolve: 10000+ nodes after solving for 360s

Why does no one else do this?
Full Presolve

17 / 68

Why Does No One else Do It? . . . Better AD!

NLP solvers need 1st and 2nd derivatives

Rely on modeling software: AMPL, GAMS
⇒ cannot modify functions during solve

Minotaur has routines to

create computational graphs,
evaluate 1st and 2nd derivatives,
tighten and propagate bounds,
modify graphs.

Simple modification routines:

Fix and delete variables.
Substitute variables.
Extract subgraphs.

x1x2 x3 34

+

××

sin

/

−

f =
x2

sin(4×x3+x1)
−3×x1

Scope for more improvements

18 / 68

Presolve for MINLP: Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Normalized Time

with presolve
without presolve

Time taken in Branch-and-Bound on all 463 instances.

19 / 68

Presolve for MINLP: Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Normalized Time

Minotaur with presolve
Minotaur without presolve

Bonmin

Time for B&B on 96 RSyn-X and Syn-X instances.

20 / 68

Presolve for MINLP: Constraint Disaggregation
[Wolsey, 1998] uncapacitated facility location

Set of customers i = 1, . . . ,m

Set of facilities j = 1, . . . , n

Which facilities should we open
(xj ∈ {0, 1}, j = 1, . . . , n)

yij = 1 if facility j serves customer i

Every customer served by one facility:

n∑
j=1

yij = 1, ∀i = 1, . . . ,m, and
m∑
i=1

yij ≤ mxj , ∀j = 1, . . . , n,

Equivalent tighter formulation is (disagregated constraints):

n∑
j=1

yij = 1, ∀i = 1, . . . ,m, and yij ≤ xj , ∀i = 1, . . . ,m, j = 1, . . . , n.

... modern MIP solvers detect this automatically
21 / 68

Presolve for MINLP: Constraint Disaggregation

Nonlinear disaggregation [Tawarmalani and Sahinidis, 2005]

S := {x ∈ Rn : c(x) = h(g(x)) ≤ 0} ,

g : Rn → Rp smooth convex;
h : Rp → R smooth, convex, and nondecreasing
⇒ c(x) smooth convex

Like group partial separability [Griewank and Toint, 1984]

Disaggregated formulation: introduce y = g(x) ∈ Rp

Sd :=
{

(x , y) ∈ Rn × Rp : h(y) ≤ 0, y ≥ g(x)
}
.

Lemma

S is projection of Sd onto x.

22 / 68

Presolve for MINLP: Constraint Disaggregation

Consider
S := {x ∈ Rn : c(x) = h(g(x)) ≤ 0} ,

and
Sd :=

{
(x , y) ∈ Rn × Rp : h(y) ≤ 0, y ≥ g(x)

}
.

Theorem

Any outer approximation of Sd is stronger than OA of S

Given X k :=
{
x (1), . . . , x (k)

}
construct OA for S , Sd :

Soa :=
{
x : c(l) +∇c(l)T (x − x (l)) ≤ 0, ∀x (l) ∈ X k

}
Soa
d :=

{
(x , y) : h(l) +∇h(l)T (y − g(x (l))) ≤ 0,

y ≥ g (l) +∇g (l)T (x − x (l)), ∀x (l) ∈ X k
}
,

[Tawarmalani and Sahinidis, 2005] show Soa
d stronger than Soa

23 / 68

Presolve for MINLP: Constraint Disaggregation

[Hijazi et al., 2010] studyx : c(x) :=

q∑
j=1

hj(a
T
j x + bj) ≤ 0


where hj : R→ R are smooth and convex

Disaggregated formulation: introduce y ∈ Rq(x , y) :

q∑
j=1

yj ≤ 0, and yj ≥ hj(a
T
j x + bj)


can be shown to be tighter

24 / 68

Recall: Worst Case Example of OA

Apply disaggregation to [Hijazi et al., 2010] example:

minimize
y

0

subject to
n∑

i=1

(
xi −

1

2

)2

≤ n − 1

4

x ∈ {0, 1}n

Intersection of ball of radius
√
n−1
2

with unit hypercube.

Disaggregate
∑(

xi − 1
2

)2 ≤ n−1
4 as

n∑
i=1

yi ≤ 0 and

(
xi −

1

2

)2

≤ yi

25 / 68

Presolve for MINLP: Constraint Disaggregation

[Hijazi et al., 2010] disaggregation on worst-case example of OA

Linearize around x (1) ∈ {0, 1}n and complement
x (2) := e − x (1), where e = (1, . . . , 1)

OA of disaggregated constraint is

n∑
i=1

yi , and xi − 3
4 ≤ yi , and 1

4 − xi ≤ yi ,

Using xi ∈ {0, 1} implies zi ≥ 0, implies
∑

zi ≥ n
4 >

n−1
4

⇒ OA-MILP master of x (1) and x (2) is infeasible.
... terminate in two iterations

26 / 68

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

27 / 68

Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Assumptions:

A1 X is a bounded polyhedral set.

A2 f and c are twice continuously differentiable convex
functions.

A3 MINLP satisfies a constraint qualification.

Look at another class of branch-and-cut methods ...

28 / 68

Overview of Branch-and-Cut Methods

Extend nonlinear branch-and-bound
1 Solve NLP(l , u) at each node of tree

Generate a cut to eliminate fractional solution & re-solve
Only branch if solution fractional after some rounds of cuts

2 Generation of good cuts is key [Stubbs and Mehrotra, 1999]

3 Hope that tree is smaller than BnB

4 Goal: get formulation closer to convex hull

29 / 68

Recall Nonlinear Branch-and-Bound

Solve NLP relaxation

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X

If xi ∈ Z ∀ i ∈ I , then solved MINLP

If relaxation is infeasible, then MINLP infeasible

... otherwise search tree whose nodes are NLPs:
minimize

x
f (x),

subject to c(x) ≤ 0,
x ∈ X ,
li ≤ xi ≤ ui , ∀i ∈ I .

(NLP(l , u))

NLP relaxation is NLP(−∞,∞)

30 / 68

Recall Nonlinear Branch-and-Bound

Branch-and-bound for MINLP
Choose tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove (NLP(l , u)) from heap: H = H− { NLP(l , u) }.
Solve (NLP(l , u)) ⇒ solution x (l ,u).
if (NLP(l , u)) is infeasible then

Prune node: infeasible
else if f (x (l ,u)) > U then

Prune node; dominated by bound U

else if x
(l ,u)
I integral then

Update incumbent : U = f (x (l ,u)), x∗ = x (l ,u).
else

BranchOnVariable(x
(l ,u)
i , l , u,H)

31 / 68

Generic Nonlinear Branch-and-Cut

Branch-and-cut for MINLP
Choose a tol ε > 0, set U =∞, add (NLP(−∞,∞)) to heap H.
while H 6= ∅ do

Remove (NLP(l , u)) from heap: H = H− { NLP(l , u) }.
repeat

Solve (NLP(l , u)) ⇒ solution x (l ,u).
if (NLP(l , u)) is infeasible then

Prune node: infeasible
else if f (x (l ,u)) > U then

Prune node; dominated by bound U

else if x
(l ,u)
I integral then

Update incumbent: U = f (x (l ,u)), x∗ = x (l ,u) & prune.
else GenerateCuts(x (l ,u), j) ... details later

until no new cuts generated or node pruned
if (NLP(l , u)) not pruned & not incumbent then

BranchOnVariable(x
(l ,u)
j , l , u,H)

32 / 68

Cut Generation Overview

Algorithm 1: Solve separation problem to generate subgradient cut

Subroutine: GenerateCuts (x (l ,u), j)

// Generate a valid inequality that cuts off x
(l ,u)
j /∈ {0, 1}

Solve separation (NLP) problem in x (l ,u) for valid cut.
Add valid inequality to (NLP(l , u)).

GenerateCuts: valid inequality to eliminate fractional solution

Given fractional solution x (l ,u) with x
(l ,u)
j /∈ {0, 1}.

Let F(l , u) mixed-integer feasible set of node NLP(l , u).

Find cut πT x ≤ π0 such that

πT x ≤ π0 for all x ∈ F(l , u)
πT x (l,u) > π0, i.e. x (l,u) violates the cut

Solve a separation problem (e.g. an NLP) for cut πT x ≤ π0

... lifting cuts makes them valid throughout the tree.

33 / 68

Branch-and-Cut Challenges

Computational Considerations of Branch-and-Cut

Cut-generation problem may be hard to solve

Adds burden of additional NLP solves to BnB

Can solve LP instead of NLP, e.g. from OA

Must add cut-management to solver

Lifting cuts may help to make them valid in whole tree

NLPs still don’t hot-start

[Stubbs and Mehrotra, 1999] generate cuts only at root node

34 / 68

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

35 / 68

Mixed-Integer Rounding (MIR) for OA-MILP

Goal: Strengthen MILP relaxations of LP/NLP-based BnB
... iteratively add cuts to remove fractional LP solutions

Start by considering MIR cuts for “easy set”

S := {(x1, x2) ∈ R× Z | x2 ≤ b + x1, x1 ≥ 0},

where R = {1} and I = {2}.
Let f0 = b − bbc, then cut

x2 ≤ bbc+
x1

1− f0

is valid for S ; look at two cases:

1 x2 ≤ bbc
2 x2 ≥ bbc+ 1.

36 / 68

Example of Simple MIR Cut

MIR cut:x2 ≤ 2x1 derived from x2 ≤ 1
2 + x1.

37 / 68

General MIR Cuts

For general MILP consider set

X :=
{

(x+
R , x

−
R , xI) ∈ R2

+ × Zp
+ | aTI xI + x+

R ≤ b + x−R
}
.

... selected constraint row of MILP or one-row relaxation of subset

Continuous variables aggregated in x+
R and x−R depending on

sign of coefficient in aR .

Obtain following valid inequality:∑
i∈I

(
baic+

max{fi − f0, 0}
1− f0

)
xi ≤ bbc +

x−R
1− f0

,

fi = ai − baic for i ∈ I and f0 = b − bbc fractional parts a and b.

38 / 68

Gomory Cuts and MIR Cuts

Gomory cuts originally from [Gomory, 1958, Gomory, 1960] for ILP
MILP Gomory cut given by∑

i∈I1

fixi +
∑
i∈I2

f0(1− fi)

fi
xi + x+

R +
f0

1− f0
x−R ≥ f0

where I1 = {i ∈ I | fi ≤ f0} and I2 = I \ I1.
... is instance of MIR cut. Consider set

X = {(xR , x0, xI) ∈ R2
+ × Z+ × Zp | x0 + aTI xI + x+

R − x−R = b},

generate a MIR inequality, and eliminate x0
I .

In MINLP Gomory & MIR cuts generated from MILP relaxations
... [Akrotirianakis et al., 2001] report modest improvement

39 / 68

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

40 / 68

Perspective Formulations

MINLPs use binary indicator variables, xb, to model nonpositivity
of xc ∈ R

Model as variable upper bound

0 ≤ xc ≤ ucxb, xb ∈ {0, 1}

⇒ if xc > 0, then xb = 1

Perspective reformulation applies, if xb also in convex c(x) ≤ 0

Significantly improve reformulation

Pioneered by [Frangioni and Gentile, 2006];
... strengthen relaxation using perspective cuts

41 / 68

Example of Perspective Formulation
Consider MINLP set with three variables:

S =
{

(x1, x2, x3) ∈ R2 × {0, 1} : x2 ≥ x2
1 , ux3 ≥ x1 ≥ 0

}
.

Can show that S = S0 ∪ S1, where

S0 =
{

(0, x2, 0) ∈ R3 : x2 ≥ 0
}
,

S1 =
{

(x1, x2, 1) ∈ R3 : x2 ≥ x2
1 , u ≥ x1 ≥ 0

}
.

x1

x2

x3 = 1

x3

x2 ≥ x2
1

42 / 68

Example of Perspective Formulation

Geometry of convex hull of S :
Lines connecting origin (x3 = 0) to parabola x2 = x2

1 at x3 = 1

Define convex hull of S as conv(S)

:=
{

(x1, x2, x3) ∈ R3 : x2x3 ≥ x2
1 , ux3 ≥ x1 ≥ 0, 1 ≥ x3 ≥ 0, x2 ≥ 0

}
where x2x3 ≥ x2

1 is defined in terms of perspective function

Pf (x , z) :=

{
0 if z = 0,
zf (x/z) if z > 0.

Epigraph of Pf (x , z): cone pointed at origin with lower shape f (x)

xb ∈ {0, 1} indicator forces xc = 0, or c(xc) ≤ 0 if xb = 1 write

xbc(xc/xb) ...is tighter convex formulation

43 / 68

Generalization of Perspective Cuts

[Günlük and Linderoth, 2012] consider more general problem

(P) min
(x ,z,η)∈Rn×{0,1}×R

{
η | η ≥ f (x) + cz ,Ax ≤ bz

}
.

where

1 X = {x | Ax ≤ b} is bounded

2 f (x) is convex and finite on X , and f (0) = 0

Theorem (Perspective Cut)

For any x̄ ∈ X and subgradient s ∈ ∂f (x̄), the inequality

η ≥ f (x̄) + c + sT (x − x̄) + (c + f (x̄)− sT x̄))(z − 1)

is valid cut for (P)

44 / 68

Stronger Relaxations [Günlük and Linderoth, 2012]

zR : Value of NLP relaxation

zGLW : Value of NLP relaxation after GLW cuts

zP : Value of perspective relaxation

z∗: Optimal solution value

Separable Quadratic Facility Location Problems
|M| |N| zR zGLW zP z∗

10 30 140.6 326.4 346.5 348.7
15 50 141.3 312.2 380.0 384.1
20 65 122.5 248.7 288.9 289.3
25 80 121.3 260.1 314.8 315.8
30 100 128.0 327.0 391.7 393.2

⇒ Tighter relaxation gives faster solves!

45 / 68

Nonlinear Perspective of the Perspective

Potential Pitfalls of Perspective of h(x) ≤ 0:

yh(x/y) ≤ 0 ... division by zero?

function, gradients & Hessian may not be defined at 0

in practice get IEEE exception messages from AMPL

Example: Stochastic Service System Design

minimize
x ,y ,z

v
100 + (y − 1

4)2 + (z − 1
2)2

subject to z − v
1+v ≤ 0

0 ≤ z ≤ y , v ≥ 0, y ∈ {0, 1}

Perspective of nonlinear constraint:

y

(
z/y − v/y

1 + v/y

)
≤ 0 ⇔ z − v

1 + v/y
≤ 0

... not defined at y = 0 even after cancellation.

46 / 68

Nonlinear Perspective of the Perspective

Study re-formulations:

z − v
1+v/y ≤ 0 perspective

zy + zv − vy ≤ 0 smooth√
4v2 + (y + z)2 − 2v + y − z ≤ 0 2nd-order cone

2nd-order cone requires SOC solver ⇒ no general NLPs!

IPOPT, SNOPT et al. fail for smooth formulation:

“Smooth formulation is nonconvex ⇒ NLP solvers fail”
BONMIN fails to solve MINLPs using smooth formulation

BB solvers fail on perspective formulation:
... IEEE exception ∀ nodes with y = 0

47 / 68

Nonlinear Perspective on the Perspective

Nonconvex formulation: c1(v , y , z) = zy + zv − vy ≤ 0

Feasible set is convex ⇒ unique minimizer

NLP solvers converge to unique minimum ... just very slowly!

Look at gradient:

∇c1 =

 z − y
z − v
y + v


⇒ ∇c1(0) = 0T

⇒ c1 violates MFCQ at 0

Slow convergence & failure is due to failure of MFCQ
... more next!

48 / 68

Gradients & Constraint Qualifications (CQ)

Let F := {c(x) ≥ 0} feasible set

CQs ensure that linearizations describe F locally!

LPs always satisfy a CQ

Ensure validity of first-order (gradient/KKT) conditions

Solvers that rely on linearization techniques work well

Mangasarian-Fromowitz Constraint Qualification (MFCQ)

1 The gradients of equality constraints linearly independent

2 For all active A inequality constraints A(x) := {i : ci (x) = 0}:
∃s : ∇cTi s < 0, ∀i ∈ A ... strictly feasible direction

MFCQ violated by ∇c1 = 0, because 0T s < 0 can never hold!
... causes slow convergence of any NLP solver

49 / 68

Numerical Experience with the Bad the Perspective

Bad perspective of uncapacitated facility location problem:

minimize
x ,y ,z

z + y

subject to x2 − zy ≤ 0 0 ≤ x ≤ z , z ∈ {0, 1}
Major Minor TrustRad RegParam StepNorm Constrnts Objective Optimal Phase Step

--

0 0 10 10 0 0.5 1.01 0 2

1 1 10 10 0.625 0 0.385 0 2 SQP

2 1 10 10 0.188 0 0.1875 0 2 SQP

[...]

28 1 10 10 2.79e-09 0 2.794e-09 0 2 SQP

29 1 10 10 1.4e-09 0 1.397e-09 0 2 SQP

30 1 10 10 6.98e-10 0 6.985e-10 2 2 SQP

ASTROS Version 2.0.2 (20100913): Solution Summary

===

Major iters = 30 ; Minor iters = 30 ;

KKT-residual = 0.4286 ; Complementarity = 1.996e-10 ;

Final step-norm = 6.985e-10 ; Final TR-radius = 10 ;

ASTROS Version 2.0.2 (20100913): Step got too small

Linear rate of convergence ... similar for MINOS, FilterSQP, ...

50 / 68

Remedy: Limiting Gradients for the Perspective

Goal: Compute limiting gradients for perspective as y → 0

Perspective of SSSD example

z − v
1+v/y ≤ 0

0 ≤ z ≤ y
v ≥ 0, y ∈ {0, 1}.

Objective implies
v = z/(1− z) active.

∇cp =



−1

(1 + v/y)2

−v2/y2

(1 + v/y)2

1


Observation: y → 0 implies z → 0, and v = z/(1− z)→ 0.

∇cp(0) ∈ conv


−1

0
1

 ,

−1
4
−1

4
1


... similar derivation possible for gradients of SOC formulation!

51 / 68

Nonlinear Perspective of the Perspective

NLP solvers for perspective constraints

Perspective violates linear independence CQ (LICQ)
... OK for robust NLP solvers (work with basis)

Limiting gradients exist & satisfy MFCQ at 0

Hessian blows up near y = 0: ∇2cp = O(y−1) typically
... OK because null-space is empty near y = 0 (LICQ fails)

Modify NLP solvers & make them aware of structure

1 Use limiting gradients near 0

2 Set Hessian ∇2cp = [0] near 0

⇒ robust & fast local convergence (proof similar to MPECs?)

52 / 68

Exact Smoothing of the Perspective

Changing NLP solvers is hard ... modify the perspective:

minimize
x ,y ,z

z + y

subject to
x2

z
− y ≤ 0, 0 ≤ x ≤ z , z ∈ {0, 1}

For τ > 0 (e.g. τ = 0.1), replace perspective by:

cs(x , y , z) =


x2

z
− y if z ≥ τ

2x + x − y − z otherwise,

continuously differentiable (across line x = z = τ).

... readily implemented in AMPL & converges rapidly!

53 / 68

Nonlinear Perspective of the Perspective

Another example

... work in progress

54 / 68

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

55 / 68

Disjunctive Branch-and-Cut

[Stubbs and Mehrotra, 1999] for convex, binary MINLP:

minimize
η,x

η s.t. η ≥ f (x), c(x) ≤ 0, x ∈ X , xi ∈ {0, 1} ∀ i ∈ I

Node in BnB tree with solution x ′, and 0 < x ′j < 1 for j ∈ I
Relaxation: C = {x ∈ X | f (x) ≤ η, c(x) ≤ 0, 0 ≤ xI ≤ 1}
Let I0, I1 ⊆ I index sets of 0-1 vars fixed to zero or one

Goal: Generate a valid inequality tat cuts off x ′

Consider two disjoint sets (“feasible sets after branching on xj”)

C0
j = {x ∈ C | xj = 0, 0 ≤ xi ≤ 1 ∀i ∈ I , i 6= j},
C1
j = {x ∈ C | xj = 1, 0 ≤ xi ≤ 1 ∀i ∈ I , i 6= j}.

... and find description of convex hull: M̃j(C) = conv(C0
j ∪ C1

j)

56 / 68

Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
Continuous relaxation

C := {x |c(x) ≤ 0, 0 ≤ xI ≤ 1, 0 ≤ xC ≤ U}

C := conv({x ∈ C | xI ∈ {0, 1}p})
C0/1
j := {x ∈ C|xj = 0/1}

letMj(C) :=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0

j , u1 ∈ C1
j


⇒ Pj(C) := projection of Mj(C) onto z

⇒ Pj(C) = conv (C ∩ xj ∈ {0, 1}) and P1...p(C) = C

57 / 68

Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
Continuous relaxation

C := {x |c(x) ≤ 0, 0 ≤ xI ≤ 1, 0 ≤ xC ≤ U}
C := conv({x ∈ C | xI ∈ {0, 1}p})

C0/1
j := {x ∈ C|xj = 0/1}

letMj(C) :=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0

j , u1 ∈ C1
j


⇒ Pj(C) := projection of Mj(C) onto z

⇒ Pj(C) = conv (C ∩ xj ∈ {0, 1}) and P1...p(C) = C

57 / 68

Disjunctive Cuts for MINLP

Extension of disjunctive cuts from MILP, [Balas, 1979]
Continuous relaxation

C := {x |c(x) ≤ 0, 0 ≤ xI ≤ 1, 0 ≤ xC ≤ U}
C := conv({x ∈ C | xI ∈ {0, 1}p})
C0/1
j := {x ∈ C|xj = 0/1}

letMj(C) :=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0

j , u1 ∈ C1
j


⇒ Pj(C) := projection of Mj(C) onto z

⇒ Pj(C) = conv (C ∩ xj ∈ {0, 1}) and P1...p(C) = C

57 / 68

Disjunctive Cuts

Snag: Description of convex hull is nonconvex:

letMj(C) :=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C0

j , u1 ∈ C1
j



⇒ need global optimization solvers for separation problem

⇒ prohibitive; instead use convex formulation: M̃j(C)

58 / 68

Disjunctive Cuts

Can describe M̃j(C) with perspective Pci

M̃j(C) =

 (xF , v0, v1, λ0, λ1)

∣∣∣∣∣∣∣∣
v0 + v1 = xF , v0j = 0, v1j = λ1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
λ0ci (v0/λ0) ≤ 0, 1 ≤ i ≤ m
λ1ci (v1/λ1) ≤ 0, 1 ≤ i ≤ m

 ,

Obtain a convex separation NLP ...

59 / 68

Disjunctive Cuts: Separation NLP

Goal: Find x̂ closest to fractional solution x ′ in convex hull

BC-SEP(x ′, j)


minimize
x ,v0,v1,λ0,λ1

||x − x ′||,
subject to (x , v0, v1, λ0, λ1) ∈ M̃j(C)

xi = 0, ∀i ∈ I0
xi = 1, ∀i ∈ I1.

optimal solution x̂ with multipliers πF for equality v0 + v1 = xF

Theorem

Optimal dual solution of (BC-SEP(x ′, j)), then following cut is
valid and eliminates x ′:

πTF xF ≤ πTF x̂F

60 / 68

Disjunctive Cuts: Example

Consider following MINLP example
minimize

x1,x2

x1

subject to (x1 − 1
2)2 + (x2 − 3

4)2 ≤ 1
−2 ≤ x1 ≤ 2
x2 ∈ {0, 1}

⇒ solution of NLP relaxation: x ′ = (x ′1, x
′
2) = (−1

2 ,
3
4)

Solve (x1 − 1
2)2 + (x2 − 3

4)2 ≤ 1 for x1, given x2 = 0 and x2 = 1:

C0 =
{

(x1, 0) ∈ R× {0, 1}
∣∣∣ 2−

√
7 ≤ 4x1 ≤ 2 +

√
7
}
,

C1 =
{

(x1, 1) ∈ R× {0, 1}
∣∣∣ 2−

√
15 ≤ 4x1 ≤ 2 +

√
15
}
.

Solving (BC-SEP(x ′, 2)), we find the cut x1 + 0.3x2 ≥ −0.166

61 / 68

Disjunctive Cuts: Example

C0 C1

x̂ = (x̂1, x̂2)

x2

x1

C0 C1

x̂ = (x̂1, x̂2)

x∗

Convex hull, relaxation, and disjunctive cut

62 / 68

Lifting Disjunctive Cuts

Cuts are only valid for sub-tree rooted at relaxation
To obtain globally valid cut

πT x ≤ πT x̂

assign
πi = min{eTi HT

0 µ0, e
T
i HT

1 µ1}, i /∈ F

where ei is i th unit vector, F set of “free” variables and

µ0 = (µ0F , 0) and µ0F multiplier of perspective Pc(v0, λ0) ≤ 0

µ1 = (µ1F , 0) and µ1F multiplier of perspective Pc(v1, λ1) ≤ 0

H0, H1 matrices of subgradient rows ∂vPci (vj , λj)T , for
j = 0, 1

Preferred norm for cut generation, (BC-SEP(x ′, j)), is `∞-norm

63 / 68

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

64 / 68

Implementation of Disjunctive Cuts

NLP (BC-SEP(x ′, j)) is not easy to solve:

NLP has twice number of variables as original problem

Perspective functions not differentiable at origin

Hessian of perspective blows up near origin

⇒ NLP slow (and solvers may fail)

Suggest LP-based separation [Kılınç et al., 2010]

Consider outer approximation relaxations of MINLP

Iteratively tighten the outer approximation

⇒ faster and more robust cut generation

65 / 68

Implementation of Disjunctive Cuts

Let B ⊃ C = {x ∈ X | f (x) ≤ η, c(x) ≤ 0, 0 ≤ xI ≤ 1}
Instead of C0

j and C1
j we consider

B0
j = {x ∈ B0 | xj = 0}, B1

j = {x ∈ B0 | xj = 1}

valid inequalities for conv(B0
j ∪ B1

j) are also valid for conv(C0
j ∪ C1

j)

Create linear (OA) sets B0
j ,B1

j iteratively (t):

B0
j (t) =

{
x ∈ Rn | xj = 0, f ′ +∇f ′T (x − x ′) ≤ η,

c ′ +∇c ′T (x − x ′) ≤ 0, ∀x ′ ∈ K0
j (t)

}
,

where K0
j (t) set of linearization points; B1

j (t) defined similarly

K0
j (t) augmented by solution of linear separation, x ′t

Use “friendly points”, x ′t = λx ′t0 + (1− λ)x ′t1 for λ ∈ [0, 1]

⇒ converges to solution of (BC-SEP(x ′, j)); but slowly (?)

66 / 68

Outline

1 Single-Tree Methods

2 Presolve for MINLP

3 Branch-and-Cut for MINLP

4 Cutting Planes for MINLP
Mixed-Integer Rounding (MIR) Cuts
Perspective Cuts
Disjunctive Cuts
Implementation Considerations

5 Summary and Solution to Exercises

67 / 68

Summary and Exercises

Key points

Single-tree methods are state-of-the-art

Presolve for MINLP important ... need computational graph

Branch-and-cut approaches being developed for MINLP

Solution to exercises ...

68 / 68

Abhishek, K., Leyffer, S., and Linderoth, J. T. (2010).
FilMINT: An outer-approximation-based solver for nonlinear mixed integer
programs.
INFORMS Journal on Computing, 22:555–567.
DOI:10.1287/ijoc.1090.0373.

Akrotirianakis, I., Maros, I., and Rustem, B. (2001).
An outer approximation based branch-and-cut algorithm for convex 0-1 MINLP
problems.
Optimization Methods and Software, 16:21–47.

Atamtürk, A. and Narayanan, V. (2010).
Conic mixed-integer rounding cuts.
Mathematical Programming A, 122(1):1–20.

Balas, E. (1979).
Disjunctive programming.
In Annals of Discrete Mathematics 5: Discrete Optimization, pages 3–51. North
Holland.

Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee,
J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A. (2008).
An algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5(2):186–204.

Çezik, M. T. and Iyengar, G. (2005).
Cuts for mixed 0-1 conic programming.
Mathematical Programming, 104:179–202.

68 / 68

Drewes, S. (2009).
Mixed Integer Second Order Cone Programming.
PhD thesis, Technische Universität Darmstadt.

Drewes, S. and Ulbrich, S. (2012).
Subgradient based outer approximation for mixed integer second order cone
programming.
In Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in
Mathematics and its Applications, pages 41–59. Springer, New York.
ISBN 978-1-4614-1926-6.

Frangioni, A. and Gentile, C. (2006).
Perspective cuts for a class of convex 0-1 mixed integer programs.
Mathematical Programming, 106:225–236.

Gomory, R. E. (1958).
Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Monthly, 64:275–278.

Gomory, R. E. (1960).
An algorithm for the mixed integer problem.
Technical Report RM-2597, The RAND Corporation.

Griewank, A. and Toint, P. L. (1984).
On the exsistence of convex decompositions of partially separable functions.
Mathematical Programming, 28:25–49.

Günlük, O. and Linderoth, J. T. (2012).
Perspective reformulation and applications.

68 / 68

In IMA Volumes, volume 154, pages 61–92.

Hijazi, H., Bonami, P., and Ouorou, A. (2010).
An outer-inner approximation for separable MINLPs.
Technical report, LIF, Faculté des Sciences de Luminy, Université de Marseille.

Kılınç, M., Linderoth, J., and Luedtke, J. (2010).
Effective separation of disjunctive cuts for convex mixed integer nonlinear
programs.
Technical Report 1681, Computer Sciences Department, University of
Wisconsin-Madison.

Savelsbergh, M. W. P. (1994).
Preprocessing and probing techniques for mixed integer programming problems.
ORSA Journal on Computing, 6:445–454.

Stubbs, R. and Mehrotra, S. (1999).
A branch-and-cut method for 0-1 mixed convex programming.
Mathematical Programming, 86:515–532.

Tawarmalani, M. and Sahinidis, N. V. (2005).
A polyhedral branch-and-cut approach to global optimization.
Mathematical Programming, 103(2):225–249.

Wolsey, L. A. (1998).
Integer Programming.
John Wiley and Sons, New York.

68 / 68

	Single-Tree Methods
	Presolve for MINLP
	Branch-and-Cut for MINLP
	Cutting Planes for MINLP
	Mixed-Integer Rounding (MIR) Cuts
	Perspective Cuts
	Disjunctive Cuts
	Implementation Considerations

	Summary and Solution to Exercises

